Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioact Mater ; 27: 377-393, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37122897

RESUMO

Crosstalk between nerves and bone is essential for bone repair, for which Schwann cells (SCs) are crucial in the regulation of the microenvironment. Considering that exosomes are critical paracrine mediators for intercellular communication that exert important effects in tissue repair, the aim of this study is to confirm the function and molecular mechanisms of Schwann cell-derived exosomes (SC-exos) on bone regeneration and to propose engineered constructs that simulate SC-mediated nerve-bone crosstalk. SCs promoted the proliferation and differentiation of bone marrow mesenchymal stem cells (BMSCs) through exosomes. Subsequent molecular mechanism studies demonstrated that SC-exos promoted BMSC osteogenesis by regulating the TGF-ß signaling pathway via let-7c-5p. Interestingly, SC-exos promoted the migration and tube formation performance of endothelial progenitor cells. Furthermore, the SC-exos@G/S constructs were developed by bioprinting technology that simulated SC-mediated nerve-bone crosstalk and improved the bone regeneration microenvironment by releasing SC-exos, exerting the regulatory effect of SCs in the microenvironment to promote innervation, vascularization, and osteogenesis and thus effectively improving bone repair in a cranial defect model. This study demonstrates the important role and underlying mechanism of SCs in regulating bone regeneration through SC-exos and provides a new engineered strategy for bone repair.

2.
Adv Healthc Mater ; 12(3): e2201349, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36325633

RESUMO

Repairing infected bone defects is a challenge in the field of orthopedics because of the limited self-healing capacity of bone tissue and the susceptibility of refractory materials to bacterial activity. Innervation is the initiating factor for bone regeneration and plays a key regulatory role in subsequent vascularization, ossification, and mineralization processes. Infection leads to necrosis of local nerve fibers, impeding the repair of infected bone defects. Herein, a biomaterial that can induce skeletal-associated neural network reconstruction and bone regeneration with high antibacterial activity is proposed for the treatment of infected bone defects. A photosensitive conductive hydrogel is prepared by incorporating magnesium-modified black phosphorus (BP@Mg) into gelatin methacrylate (GelMA). The near-infrared irradiation-based photothermal and photodynamic treatment of black phosphorus endows it with strong antibacterial activity, improving the inflammatory microenvironment and reducing bacteria-induced bone tissue damage. The conductive nanosheets and bioactive ions released from BP@Mg synergistically improve the migration and secretion of Schwann cells, promote neurite outgrowth, and facilitate innerved bone regeneration. In an infected skull defect model, the GelMA-BP@Mg hydrogel shows efficient antibacterial activity and promotes bone and CGRP+ nerve fiber regeneration. The phototherapy conductive hydrogel provides a novel strategy based on skeletal-associated innervation for infected bone defect repair.


Assuntos
Regeneração Óssea , Hidrogéis , Antibacterianos/farmacologia , Gelatina/farmacologia , Hidrogéis/farmacologia , Osteogênese , Fósforo/farmacologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA