Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Sci Total Environ ; 948: 174826, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39025151

RESUMO

Long-term atmospheric nitrogen (N) deposition has been known to enhance plant productivity by increasing available N in terrestrial ecosystems. However, the response of carbon process to N deposition in terrestrial ecosystems remains unclear, particularly about different climate regions and biomes. In this study, we synthesized 1281 pairwise observations from 218 published articles on experimental N addition globally, aiming to quantify the responses of the carbon process and its mechanisms to N addition. Our results revealed a significant overall increase in net ecosystem productivity (NEP) by 31.42 % following N addition treatment, owing to increased aboveground net primary productivity (ANPP, 16.46 %), belowground net primary productivity (BNPP, 27.74 %), and reduced soil respiration (Rs, -2.56 %), soil heterotrophic respiration (Rh, -6.24 %). Furthermore, the effects of N addition on NEP varied with biomes and climate regions. The positive effect of N addition on NEP was more pronounced in arid regions (28.67 %) compared to humid regions (21.92 %), primarily driven by a higher increase in vegetation productivity. Additionally, N addition exhibited a higher increase in NEP (33.95 %) in forest compared to grassland (31.80 %), resulting from a more reduction in respiratory processes. However, the positive effects of N addition on NEP diminished with increasing experimental duration. Furthermore, ANPP and BNPP displayed a convex relationship with N addition rates, with the optimum BNPP addition rate exceeding that of ANPP. In contrast, Rs exhibited a concave response to addition rates. These findings suggest that carbon sink in terrestrial ecosystems could be enhanced under future atmospheric N deposition, especially in arid regions and forest ecosystems. Our study provided insight for predicting how N deposition influences terrestrial ecosystem carbon process.


Assuntos
Sequestro de Carbono , Ecossistema , Nitrogênio , Carbono/metabolismo , Solo/química , Florestas
2.
J Environ Manage ; 360: 121158, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38781875

RESUMO

The estimation of terrestrial carbon sinks in the Qinghai-Tibet Plateau (QTP) still faces significant uncertainties, and the spatiotemporal dynamics of terrestrial carbon sinks along altitudinal gradients remain unexplored. Moreover, the driving mechanisms of terrestrial carbon sinks at the watershed scale in the QTP continue to be lacking. To address these research gaps, based on multi-source remote sensing data and meteorological data, this study calculated the Net Ecosystem Productivity (NEP) in the QTP from 2000 to 2020 using the Modis NPP-soil respiration model. Through the coefficient of variation (CV), the Mann-Kendall test (MK), and the spatial autocorrelation methods, the spatial distribution pattern and spatiotemporal trends of NEP were investigated. Employing a pixel accumulation method, the variation of NEP along altitudinal gradients was explored. Grey relation analysis, Pearson correlation analysis, and Geographical detector (GD) were used to investigate the driving mechanisms of NEP at the watershed scale. Results showed that: (1) the terrestrial ecosystem in the QTP served as a carbon sink, which produced a total of 2.04 Pg C from 2000 to 2020, and the multi-year average of total carbon sinks was 96.92 Tg C; (2) the spatial distribution of NEP shows a decreasing change from southeast to northwest, and the clustering characteristic of NEP is significant at the watershed scale; (3) the elevation of 4507 m we proposed is likely to be a key threshold for biophysical processes of the terrestrial ecosystems in the QTP; (4) the fluctuation and change trend of carbon sources and carbon sinks show significant differences between the East and West; (5) at the watershed scale, precipitation and temperature play a dominant role in the variation of NEP, while the impact of human activities on NEP variation is weak. Our study aims to address the existing knowledge gaps and provide valuable insights into the management of terrestrial carbon sinks in QTP.


Assuntos
Sequestro de Carbono , Ecossistema , Tibet , Solo/química , Carbono/análise
3.
Huan Jing Ke Xue ; 45(5): 2806-2816, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629543

RESUMO

Net ecosystem productivity (NEP) is an important index for the quantitative evaluation of carbon sources and sinks in terrestrial ecosystems. Based on MOD17A3 and meteorological data, the vegetation NEP was estimated from 2000 to 2021 in the Loess Plateau (LP) and its six ecological subregions of the LP (loess sorghum gully subregions:A1, A2; loess hilly and gully subregions:B1, B2; sandy land and agricultural irrigation subregion:C; and earth-rock mountain and river valley plain subregion:D). Combined with the terrain, remote sensing, and human activity data, Theil-Sen Median trend analysis, correlation analysis, multiple regression residual analysis, and geographic detector were used, respectively, to explore the spatio-temporal characteristics of NEP and its response mechanism to climate, terrain, and human activity. The results showed that:① On the temporal scale, from 2000 to 2021 the annual mean NEP of the LP region (in terms of C) was 104.62 g·(m2·a)-1. The annual mean NEP for both the whole LP and each of the ecological subregions showed a significant increase trend, and the NEP of the LP increased by 6.10 g·(m2·a)-1 during the study period. The highest growth rate of the NEP was 9.04 g·(m2·a)-1, occurring in the A2 subregion of the loess sorghum gully subregions. The subregion C had the lowest growth rate of 2.74 g·(m2·a)-1. Except for the C subregion, all other ecological subregions (A1, A2, B1, B2, and D) were carbon sinks. ② On the spatial scale, the spatial distribution of annual NEP on the LP was significantly different, with the higher NEP distribution in the southeast of the LP and the lower in the northwest of the LP. The high carbon sink area was mainly distributed in the southern part of the loess sorghum gully subregions, and the carbon source area was mainly distributed in the northern part of the loess sorghum gully subregions and most of the C subregion. The high growth rate was mainly distributed in the central and the southern part of the A2 subregion and the southwest part of the B2 subregion. ③ Human activities had the greatest influence on the temporal variation in NEP in the LP and all the ecological subregions, with the correlation coefficient between human activity data and NEP being above 0.80, and the relative contribution rates of human factors was greater than 50%. The spatial distribution was greatly affected by meteorological factors, among which the precipitation and solar radiation were the main factors affecting the spatial changes in the NEP of the LP. The temporal and spatial variations in the NEP in the LP were influenced by natural and human social factors. To some extent, these results can provide a reference for the terrestrial ecosystem in the LP to reduce emissions and increase sinks and to achieve the goal of double carbon.


Assuntos
Clima , Ecossistema , Humanos , Tecnologia de Sensoriamento Remoto , Areia , Carbono/análise , China , Mudança Climática
4.
Plants (Basel) ; 13(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38256799

RESUMO

The vegetation ecosystem in the southern hilly region of China (SHRC) plays a crucial role in the country's carbon reservoir. Clarifying the dynamics of net primary productivity (NPP) in this area and its response to climate factors in the context of climate change is important for national forest ecology, management, and carbon neutrality efforts. This study, based on remote sensing and meteorological data spanning the period 2001 to 2021, aims to unveil the spatiotemporal patterns of vegetation productivity and climate factors in the southern hilly region, explore interannual variation characteristics of vegetation productivity with altitude, and investigate the response characteristics of NPP to various climate factors. The results indicate that from 2001 to 2021, the annual average NPP in the southern hilly region had a significant increasing trend of 2.13 ± 0.78 g m-2 a-1. The trend of NPP varies significantly with altitude. Despite a general substantial upward trend in vegetation NPP, regions at lower elevations exhibit a faster rate of increase, suggesting a diminishing difference in the NPP of different elevation ranges. The overall rise in average temperature has positive implications for the southern hilly region, while the impact of precipitation on vegetation NPP demonstrates noticeable spatial heterogeneity. Regions in which vegetation NPP is significantly negatively correlated with precipitation are mainly concentrated in the southern areas of Guangdong, Fujian, and Jiangxi provinces. In contrast, other regions further away from the southeastern coast tend to exhibit a positive correlation. Over the past two decades, there has been an asymmetry in the diurnal temperature variation in the SHRC, with the nighttime warming rate being 1.8 times that of the daytime warming rate. The positive impact of daytime warming on NPP of vegetation is more pronounced than the impact of nighttime temperature changes. Understanding the spatiotemporal patterns of NPP in the SHRC and the characteristics of its response to climate factors contributes to enhancing our ability to protect and manage vegetation resources amidst the challenges of global climate change.

6.
Sci Total Environ ; 903: 166204, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37567287

RESUMO

Assessing the carbon storage capacity of terrestrial ecosystems is crucial for land management and carbon reduction policymaking. There is still a knowledge gap regarding how ecosystem carbon storage will be impacted by combined environmental and land-use factors and their spatial-temporal changes, especially in developed regions where urbanization has slowed down. This study investigated how developed regions in subtropical and tropical areas might increase carbon storage and achieve carbon neutrality, using Guangdong Province in South China as an example. Based on the sustainable development assumption, three land-management scenarios were developed and simulated for 2020-2060 using the Patch-generating Land Use Simulation model. Without considering disturbance and natural losses, carbon storage was estimated by net ecosystem productivity (NEP)-the difference between net primary productivity (NPP) and heterotrophic respiration (HR). NPP was predicted using an artificial neural network model trained by historical NPP data and 16 environmental and land-use variables. HR was predicted using soil respiration models from previous research. Based on the balance between carbon storage and emissions, we predicted the allowable fossil fuel consumption to achieve net-zero CO2 emissions in 2060. The results show that Guangdong's total carbon storage changes from 73.7 MtC in 2020 to 70.6-74.8 MtC in 2060 under different scenarios. Nonlinear relationships exist between the carbon stored and the areas of different land-use types. Topography, temperatures, and land-use configurations jointly lead to significantly varied carbon storage between croplands and between forests in space and time. Protecting and regenerating forests in subtropical areas and forest edges is more effective than afforestation in lowland tropical areas for storing carbon. Net-zero CO2 emissions rely more on reducing emissions than land management. To achieve this, the proportion of fossil energy in total energy consumption should be lowered from 75.5 % in 2020 to ~25 % in 2060.

7.
Glob Chang Biol ; 29(18): 5379-5396, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37381105

RESUMO

Atmospheric dryness, as indicated by vapor pressure deficit (VPD), has a strong influence on forest greenhouse gas exchange with the atmosphere. In this study, we used long-term (10-30 years) net ecosystem productivity (NEP) measurements from 60 forest sites across the world (1003 site-years) to quantify long-term changes in forest NEP resistance and NEP recovery in response to extreme atmospheric dryness. We tested two hypotheses: first, across sites differences in NEP resistance and NEP recovery of forests will depend on both the biophysical characteristics (i.e., leaf area index [LAI] and forest type) of the forest as well as on the local meteorological conditions of the site (i.e., mean VPD of the site), and second, forests experiencing an increasing trend in frequency and intensity of extreme dryness will show an increasing trend in NEP resistance and NEP recovery over time due to emergence of long-term ecological stress memory. We used a data-driven statistical learning approach to quantify NEP resistance and NEP recovery over multiple years. Our results showed that forest types, LAI, and median local VPD conditions explained over 50% of variance in both NEP resistance and NEP recovery, with drier sites showing higher NEP resistance and NEP recovery compared to sites with less atmospheric dryness. The impact of extreme atmospheric dryness events on NEP lasted for up to 3 days following most severe extreme events in most forests, indicated by an NEP recovery of less than 100%. We rejected our second hypothesis as we found no consistent relationship between trends of extreme VPD with trends in NEP resistance and NEP recovery across different forest sites, thus an increase in atmospheric dryness as it is predicted might not increase the resistance or recovery of forests in terms of NEP.


Assuntos
Ecossistema , Florestas , Atmosfera
8.
Ying Yong Sheng Tai Xue Bao ; 34(5): 1331-1340, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37236951

RESUMO

Coastal estuarine wetland ecosystem has strong ability for carbon (C) storage and sequestration. Accurate assessment of C sequestration and its environmental impact factors is the basis of scientific protection and mana-gement of coastal estuarine wetlands. Taking the Panjin reed (Phragmites australis) wetland as the object, we used terrestrial ecosystem model, together with Mann-Kendall mutation test, statistical analysis methods, and scenario simulation experiment, to analyze the temporal characteristics, stability, changing trend of net ecosystem production (NEP) of wetlands and the contribution rate of environmental impact factors to NEP during 1971 to 2020. The results showed that the annual average NEP of Panjin reed wetland was 415.51 g C·m-2·a-1 during 1971 to 2020, with a steady increase rate of 1.7 g C·m-2·a-1, which would still have a continuous increasing trend in the future. The annual average NEP in spring, summer, autumn, and winter was 33.95, 418.05, -18.71, and -17.78 g C·m-2·a-1, with an increase rate of 0.35, 1.26, 0.14 and -0.06 g C·m-2·a-1, respectively. In the future, NEP would show an increasing trend in both spring and summer, but a declining trend in both autumn and winter. The contribution rates of environmental impact factors to NEP of Panjin reed wetland depended on temporal scale. At the interannual scale, the contribution rate of precipitation was the highest (37.1%), followed by CO2 (28.4%), air temperature (25.1%) and photosynthetically active radiation (9.4%). Precipitation mainly affected NEP in both spring and autumn with the contribution rates of 49.5% and 38.8%, while CO2 concentration (36.9%) and air temperature (-86.7%) were dominant in summer and winter, respectively.


Assuntos
Ecossistema , Áreas Alagadas , Dióxido de Carbono , Estações do Ano , Temperatura , Poaceae , China
9.
Front Plant Sci ; 14: 1120064, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008462

RESUMO

Changes in net ecosystem productivity (NEP) in terrestrial ecosystems in response to climate warming and land cover changes have been of great concern. In this study, we applied the normalized difference vegetation index (NDVI), average temperature, and sunshine hours to drive the C-FIX model and to simulate the regional NEP in China from 2000 to 2019. We also analyzed the spatial patterns and the spatiotemporal variation characteristics of the NEP of terrestrial ecosystems and discussed their main influencing factors. The results showed that (1) the annual average NEP of terrestrial ecosystems in China from 2000 to 2019 was 1.08 PgC, exhibiting a highly significant increasing trend with a rate of change of 0.83 PgC/10 y. The terrestrial ecosystems in China remained as carbon sinks from 2000 to 2019, and the carbon sink capacity increased significantly. The NEP of the terrestrial ecosystem increased by 65% during 2015-2019 compared to 2000-2004 (2) There was spatial differences in the NEP distribution of the terrestrial ecosystems in China from 2000-2019. Taking the line along the Daxinganling-Yin Mountains-Helan Mountains-Transverse Range as the boundary, the NEP was significantly higher in the eastern part than in the western part. Among them, the NEP was positive (carbon sink) in northeastern, central, and southern China, and negative (carbon source) in parts of northwestern China and the Tibet Autonomous Region. The spatial variation of NEP in terrestrial ecosystems increased from 2000 to 2009. The areas with a significant increase accounted for 45.85% and were mainly located in the central and southwestern regions. (3) The simulation results revealed that vegetation changes and CO2 concentration changes both contributed to the increase in the NEP in China, contributing 85.96% and 36.84%, respectively. The vegetation changes were the main factor causing the increase in the NEP. The main contribution of this study is to further quantify the NEP of terrestrial ecosystems in China and identify the influencing factors that caused these changes.

10.
Sci Total Environ ; 879: 163074, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966836

RESUMO

Continuous urban expansion has a negative impact on the potential of terrestrial vegetation. Till now, the mechanism of such impact remains unclear, and there have been no systematic investigations. In this study, we design a theoretical framework by laterally bridging urban boundaries to explain the distress of regional disparities and longitudinally quantify the impacts of urban expansion on net ecosystem productivity (NEP). The findings demonstrate that global urban expanded by 37.60 × 104 km2 during 1990-2017, which is one of the causes of vegetation carbon loss. Meanwhile, certain climatic changes (e.g., rising temperature, rising CO2, and nitrogen deposition) caused by urban expansion indirectly boosted vegetation carbon sequestration potential through photosynthetic enhancement. The direct decrease in NEP due to the urban expansion (occupying 0.25 % of the Earth's land area) offsets the 1.79 % increase due to the indirect impact. Our findings contribute to a better understanding of the uncertainty associated with urban expansion towards carbon neutrality and provide a scientific reference for sustainable urban development worldwide.

11.
Chemosphere ; 309(Pt 2): 136654, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36183885

RESUMO

Humic acid originating from lignite is a popular resource of organic fertilizer. The effects of humic acid application on crop biomass and soil CO2 emission charged the regional agro-ecosystem carbon balance. Two kinds of humic acid, obtained from lignite via H2O2-oxidation (OHA) and KOH-activation (AHA), were applied in a wheat-maize rotation located field at three levels of 500 (OHA1; AHA1), 1000 (OHA2; AHA2), and 1500 kg hm-2 (OHA3; AHA3), only chemical fertilizer treatment (CF) as control to investigate the change of soil CO2 emission, crop yield and ecosystem carbon balance in 2016-2019. During the four experimental years, the trend of cumulative efflux of soil CO2 was increasing in medium and high dosage humic acid treatments. The grain yield of wheat and maize had the same trend as the cumulative efflux of soil CO2 due to the increase of soil NO3--N and soil available P directly affected by humic acid application. The main factor of cumulative soil CO2 efflux improvement was soil NO3--N and soil available P in 2016, while soil available potassium became key factor in 2019 with the step regression. Net ecosystem productivity (NEP) was used to assess ecosystem carbon balance, which was positive values showed atmospheric CO2 sink under all the fertilization treatments and increased with the increase of humic acid use level. AHA2 and AHA3 treatments charged the higher NEP in 2019 than 2016. Meanwhile, AHA treatment presented a higher NEP average than OHA treatment with the same applied level. Crop yield and soil available P was the directly positive factor to NEP over four years under the fertilization by SEM analysis. It is recommended that AHA be applied at 1000 kg hm-2 together with chemical fertilizers to achieve the higher crop yield and a sink of the atmospheric CO2 in agricultural fields in North China.


Assuntos
Fertilizantes , Solo , Fertilizantes/análise , Substâncias Húmicas/análise , Zea mays , Triticum , Carbono/análise , Ecossistema , Dióxido de Carbono/análise , Carvão Mineral/análise , Agricultura , Peróxido de Hidrogênio/análise , Potássio/análise
12.
Sci Total Environ ; 838(Pt 1): 155993, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35584756

RESUMO

Net ecosystem productivity (NEP) is an important index that indicates the carbon sequestration capacity of forest ecosystems. However, the effect of climate change on the spatiotemporal variability in NEP is still unclear. Using the Integrated Terrestrial Ecosystem Carbon-budget (InTEC) model, this study takes the typical subtropical forests in the Zhejiang Province, China as an example, simulated the spatiotemporal patterns of forest NEP from 1979 to 2079 based on historically observed climate data (1979-2015) and data from three representative concentration pathway (RCP) scenarios (RCP2.6, RCP4.5, and RCP8.5) provided by the Coupled Model Intercomparison Project 5 (CMIP5). We analyzed the responses of NEP at different forest age classes to the variation in meteorological factors. The NEP of Zhejiang's forests decreased from 1979 to 1985 and then increased from 1985 to 2015, with an annual increase rate of 9.66 g C·m-2·yr-1 and a cumulative NEP of 364.99 Tg·C. Forest NEP decreased from 2016 to 2079; however, the cumulative NEP continued to increase. The simulated cumulative NEP under the RCP2.6, RCP4.5, and RCP8.5 scenarios was 750 Tg·C, 866 Tg·C, and 958 Tg·C, respectively, at the end of 2079. Partial correlation analysis between forest NEP at different age stages and meteorological factors showed that temperature is the key climatic factor that affects the carbon sequestration capacity of juvenile forests (1979-1999), while precipitation is the key climatic factor that affects middle-aged forests (2000-2015) and mature forests (2016-2079). Adopting appropriate management strategies for forests, such as selective cutting of different ages, is critical for the subtropical forests to adapt to climate change and maintain their high carbon sink capacity.


Assuntos
Mudança Climática , Ecossistema , Carbono/análise , Sequestro de Carbono , China , Florestas
13.
Water Res ; 214: 118171, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35255382

RESUMO

Clarifying the influence of hydrological variations on ecological function is a topic of considerable interest in watershed ecological flow assessment and water resource management. Net ecosystem productivity (NEP) is a useful composite indicator of ecosystem function, reflecting material cycling and energy flow. However, the effects of hydrological variations on NEP, especially the influence mechanism, remain unclear due to the complex environmental characteristics in estuaries. We analysed the spatial-temporal variability of the aquatic environment and NEP through in-situ monitoring and field sampling from December 2018 to January 2020 at three outlets (Humen, Jiaomen, and Hongqimen) with different hydrological conditions in the Pearl River Estuary (PRE), China, and explored the influence mechanism of hydrological variation on NEP. The 155 groups of effective metabolism values were estimated using Odum's open-water method. The daily ecosystem respiration (ER) was higher than the gross primary production (GPP); therefore, water bodies were dominated by net heterotrophy at the three outlets. The daily NEP (-4.34 ± 1.40 mg O2 L-1d-1), O2 concentration (5.2 ± 1.02 mg L-1), and pH (7.53±0.24) were lowest at Humen, which also had the largest discharge and tide volume, deepest water depth, and widest channel. Seasonally, the NEP in the summer (-3.30 ± 1.39 mg O2 L-1d-1) and autumn (-3.19 ± 1.60 mg O2 L-1d-1) was lower than those in the spring (-1.56 ± 1.92 mg O2 L-1d-1) and winter (-2.17 ± 1.50 mg O2 L-1d-1). The inhibitory effect of increased discharge on the metabolic rate exceeded the stimulation provided by seasonal factors, such as increased temperature and solar radiation. The scour and dilution effect caused by discharge increase reduced chlorophyll a concentration; meanwhile, the increase in turbidity resulted in a decrease in the photosynthetic rate and GPP. ER was stimulated by heterotrophic microorganisms and high total suspended solids, resulting in a decrease in O2 and endogenous organics, thus causing the low NEP, hypoxia, and acidification phenomenon. Our results suggest that lengthening the discharge pulse period in summer and autumn will further decrease NEP and increase the area of hypoxia and acidification at the three outlets in the PRE.

14.
Ecol Process ; 11(1): 7, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35127311

RESUMO

BACKGROUND: Most North American temperate forests are plantation or regrowth forests, which are actively managed. These forests are in different stages of their growth cycles and their ability to sequester atmospheric carbon is affected by extreme weather events. In this study, the impact of heat and drought events on carbon sequestration in an age-sequence (80, 45, and 17 years as of 2019) of eastern white pine (Pinus strobus L.) forests in southern Ontario, Canada was examined using eddy covariance flux measurements from 2003 to 2019. RESULTS: Over the 17-year study period, the mean annual values of net ecosystem productivity (NEP) were 180 ± 96, 538 ± 177 and 64 ± 165 g C m-2 yr-1 in the 80-, 45- and 17-year-old stands, respectively, with the highest annual carbon sequestration rate observed in the 45-year-old stand. We found that air temperature (Ta) was the dominant control on NEP in all three different-aged stands and drought, which was a limiting factor for both gross ecosystem productivity (GEP) and ecosystems respiration (RE), had a smaller impact on NEP. However, the simultaneous occurrence of heat and drought events during the early growing seasons or over the consecutive years had a significant negative impact on annual NEP in all three forests. We observed a similar trend of NEP decline in all three stands over three consecutive years that experienced extreme weather events, with 2016 being a hot and dry, 2017 being a dry, and 2018 being a hot year. The youngest stand became a net source of carbon for all three of these years and the oldest stand became a small source of carbon for the first time in 2018 since observations started in 2003. However, in 2019, all three stands reverted to annual net carbon sinks. CONCLUSIONS: Our study results indicate that the timing, frequency and concurrent or consecutive occurrence of extreme weather events may have significant implications for carbon sequestration in temperate conifer forests in Eastern North America. This study is one of few globally available to provide long-term observational data on carbon exchanges in different-aged temperate plantation forests. It highlights interannual variability in carbon fluxes and enhances our understanding of the responses of these forest ecosystems to extreme weather events. Study results will help in developing climate resilient and sustainable forestry practices to offset atmospheric greenhouse gas emissions and improving simulation of carbon exchange processes in terrestrial ecosystem models.

15.
Artigo em Inglês | MEDLINE | ID: mdl-36612413

RESUMO

Net ecosystem productivity (NEP), which is considered an important indicator to measure the carbon source/sink size of ecosystems on a regional scale, has been widely studied in recent years. Since China's terrestrial NEP plays an important role in the global carbon cycle, it is of great significance to systematically examine its spatiotemporal pattern and driving factors. Based on China's terrestrial NEP products estimated by a data-driven model from 1981 to 2018, the spatial and temporal pattern of China's terrestrial NEP was analyzed, as well as its response to climate change. The results demonstrate that the NEP in China has shown a pattern of high value in the west and low value in the east over the past 40 years. NEP in China from 1981 to 2018 showed a significantly increasing trend, and the NEP change trend was quite different in two sub-periods (i.e., 1981-1999 and 2000-2018). The temporal and spatial changes of China's terrestrial NEP in the past 40 years were affected by both temperature and precipitation. However, the area affected by precipitation was larger. Our results provide a valuable reference for the carbon sequestration capacity of China's terrestrial ecosystem.


Assuntos
Mudança Climática , Ecossistema , China , Ciclo do Carbono , Sequestro de Carbono , Carbono/análise
16.
Carbon Balance Manag ; 16(1): 12, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33939031

RESUMO

BACKGROUND: Under the escalating threat to sustainable development from the global increase in carbon dioxide concentrations, the variations in carbon flux in the farmland ecosystem and their influencing factors have attracted global attention. Over the past few decades, with the development of eddy covariance technology, the carbon fluxes of farmlands have been determined in many countries. However, studies are very limited for drip irrigation maize the arid regions in northwestern China, which covers a large area where a mixed mode of agriculture and grazing is practiced. RESULTS: To study the effects of drip irrigation on the net ecosystem productivity (NEE), ecosystem respiration (ER), gross primary production (GPP) and net biome productivity (NBP) in the arid regions of northwestern China, we measured the carbon flux annually from 2014 to 2018 using an eddy covariance system. Our results showed that the maize field carbon flux exhibited single-peak seasonal patterns during the growing seasons. During 2014-2018, the NEE, ER and GPP of the drip-irrigated maize field ranged between - 407 ~ - 729 g C m-2, 485.46 ~ 975.46 g C m-2, and 1068.23 ~ 1705.30 g C m-2. In four of the 5 study years, the ER released back to the atmosphere was just over half of the carbon fixed by photosynthesis. The mean daily NEE, ER and GPP were significantly correlated with the net radiation (Rn), air temperature (Ta), leaf area index (LAI) and soil moisture (SWC). The results of path analysis showed that leaf area index is the main driving force of seasonal variation of carbon flux. When harvested removals were considered, the annual NBP was - 234 g C m-2, and the drip-irrigated maize field was a carbon source. CONCLUSIONS: This study shows the variation and influencing factors of NEE, ER and GPP in the growth period of spring maize under film drip irrigation in arid areas of northwest China. The ecosystem was a carbon sink before maize harvest, but it was converted into a carbon source considering the carbon emissions after harvest. The variation of carbon flux was influenced by both environmental and vegetation factors, and its leaf area index was the main driver that affects the seasonal variation of carbon flux.

17.
J Geophys Res Biogeosci ; 125(9): e2019JG005389, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33042720

RESUMO

In eastern North America, many deciduous forest ecosystems grow at the northernmost extent of their geographical ranges, where climate change could aid or impede their growth. This region experiences frequent extreme weather conditions, allowing us to study the response of these forests to environmental conditions, reflective of future climates. Here we determined the impact of seasonal and annual climate variations and extreme weather events on the carbon (C) uptake capacity of an oak-dominated forest in southern Ontario, Canada, from 2012 to 2016. We found that changes in meteorology during late May to mid-July were key in determining the C sink strength of the forest, impacting the seasonal and annual variability of net ecosystem productivity (NEP). Overall, higher temperatures and dry conditions reduced ecosystem respiration (RE) much more than gross ecosystem productivity (GEP), leading to higher NEP. Variability in NEP was primarily driven by changes in RE, rather than GEP. The mean annual GEP, RE, and NEP values at our site during the study were 1,343 ± 85, 1,171 ± 139, and 206 ± 92 g C m-2 yr-1, respectively. The forest was a C sink even in years that experienced heat and water stresses. Mean annual NEP at our site was within the range of NEP (69-459 g C m-2 yr-1) observed in similar North American forests from 2012 to 2016. The growth and C sequestration capabilities of our oak-dominated forest were not adversely impacted by changes in environmental conditions and extreme weather events experienced over the study period.

18.
Data Brief ; 32: 106200, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32904354

RESUMO

This dataset includes land use/cover change data with a spatial resolution of 300 m, net ecosystem productivity data based on the monthly grid data of the temperature and precipitation series data from the Climatic Research Unit, terrestrial net primary production data from MOD17 of the Central Asia that underlies the article entitled "Spatial patterns of vegetation carbon sinks and sources under water constraint in Central Asia". We explain the details of the dataset, the data harmonization procedures, and the spatial coverage. We also provide the validation result of NPP data from MOD17. We unified the spatiotemporal resolution of these data from different sources, based on re-sampling (nearest neighbor interpolation) and re-classification techniques, and combined the data from the different source datasets to form comprehensive records.

19.
Philos Trans R Soc Lond B Biol Sci ; 375(1810): 20190516, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-32892726

RESUMO

The Nordic region was subjected to severe drought in 2018 with a particularly long-lasting and large soil water deficit in Denmark, Southern Sweden and Estonia. Here, we analyse the impact of the drought on carbon and water fluxes in 11 forest ecosystems of different composition: spruce, pine, mixed and deciduous. We assess the impact of drought on fluxes by estimating the difference (anomaly) between year 2018 and a reference year without drought. Unexpectedly, the evaporation was only slightly reduced during 2018 compared to the reference year at two sites while it increased or was nearly unchanged at all other sites. This occurred under a 40 to 60% reduction in mean surface conductance and the concurrent increase in evaporative demand due to the warm and dry weather. The anomaly in the net ecosystem productivity (NEP) was 93% explained by a multilinear regression with the anomaly in heterotrophic respiration and the relative precipitation deficit as independent variables. Most of the variation (77%) was explained by the heterotrophic component. Six out of 11 forests reduced their annual NEP with more than 50 g C m-2 yr-1 during 2018 as compared to the reference year. The NEP anomaly ranged between -389 and +74 g C m-2 yr-1 with a median value of -59 g C m-2 yr-1. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.


Assuntos
Carbono/análise , Mudança Climática , Secas , Solo/química , Água/análise , Ciclo do Carbono , Florestas , Conceitos Meteorológicos , Países Escandinavos e Nórdicos , Estações do Ano
20.
Glob Chang Biol ; 26(2): 901-918, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31529736

RESUMO

Climate extremes such as heat waves and droughts are projected to occur more frequently with increasing temperature and an intensified hydrological cycle. It is important to understand and quantify how forest carbon fluxes respond to heat and drought stress. In this study, we developed a series of daily indices of sensitivity to heat and drought stress as indicated by air temperature (Ta ) and evaporative fraction (EF). Using normalized daily carbon fluxes from the FLUXNET Network for 34 forest sites in North America, the seasonal pattern of sensitivities of net ecosystem productivity (NEP), gross ecosystem productivity (GEP) and ecosystem respiration (RE) in response to Ta and EF anomalies were compared for different forest types. The results showed that warm temperatures in spring had a positive effect on NEP in conifer forests but a negative impact in deciduous forests. GEP in conifer forests increased with higher temperature anomalies in spring but decreased in summer. The drought-induced decrease in NEP, which mostly occurred in the deciduous forests, was mostly driven by the reduction in GEP. In conifer forests, drought had a similar dampening effect on both GEP and RE, therefore leading to a neutral NEP response. The NEP sensitivity to Ta anomalies increased with increasing mean annual temperature. Drier sites were less sensitive to drought stress in summer. Natural forests with older stand age tended to be more resilient to the climate stresses compared to managed younger forests. The results of the Classification and Regression Tree analysis showed that seasons and ecosystem productivity were the most powerful variables in explaining the variation of forest sensitivity to heat and drought stress. Our results implied that the magnitude and direction of carbon flux changes in response to climate extremes are highly dependent on the seasonal dynamics of forests and the timing of the climate extremes.


Assuntos
Secas , Ecossistema , Carbono , Ciclo do Carbono , Mudança Climática , Florestas , Temperatura Alta , América do Norte , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA