Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 951: 175290, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39117234

RESUMO

Ozone (O3) pollution is a severe environmental problem in China. The incomplete understanding of atmospheric photochemical reaction mechanisms prevents us from accurately understanding the chemistry of O3 production. Here, we used an improved dual-channel reaction chamber technique to measure net photochemical O3 production rate (P(O3)net) directly in Dongguan, a typical industrial city in China. The maximum P(O3)net was 46.3 ppbv h-1 during the observation period, which is at a relatively high level compared to previous observations under different environment worldwide. We employed an observation-based box model coupled with the state-of-the-art atmospheric chemical mechanism (MCM v3.3.1) to investigate the chemistry of O3 production. Under the base scenario, the modelling underestimates P(O3)net by ~30 %. Additionally considering HO2 uptake by ambient aerosols, inorganic deposition, and Cl chemistry only caused a small change (< 13 %) in the simulation of P(O3)net. Further analysis indicates that unmeasured reactive volatile organic compounds (VOCs), such as oxygenated VOCs and branched alkenes are potential contributors to the underestimation of P(O3)net. This study underscores the underestimation of P(O3)net in conventional atmospheric modelling setups, providing a crucial scientific foundation for further investigation aimed at promoting our understanding of photochemical O3 formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA