Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
CNS Neurosci Ther ; 29(7): 1785-1804, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36880283

RESUMO

BACKGROUND: Stem cells offer a promising therapeutic strategy for patients with disorders of consciousness (DOC) after severe traumatic brain injury (TBI), but the optimal transplantation sites and cells are not clear. Although the paraventricular thalamus (PVT) and claustrum (CLA) are associated with consciousness and are candidate transplantation targets, few studies have been designed to investigate this possibility. METHODS: Controlled cortical injury (CCI) was performed to establish a mouse model of DOC. CCI-DOC paradigm was established to investigate the role of excitatory neurons of PVT and CLA in disorders of consciousness. The role of excitatory neuron transplantation in promoting arousal and recovery of consciousness was determined by optogenetics, chemogenetics, electrophysiology, Western blot, RT-PCR, double immunofluorescence labeling, and neurobehavioral experiments. RESULTS: After CCI-DOC, neuronal apoptosis was found to be concentrated in the PVT and CLA. Prolonged awaking latency and cognitive decline were also seen after destruction of the PVT and CLA, suggesting that the PVT and CLA may be key nuclei in DOC. Awaking latency and cognitive performance could be altered by inhibiting or activating excitatory neurons, implying that excitatory neurons may play an important role in DOC. Furthermore, we found that the PVT and CLA function differently, with the PVT mainly involved in arousal maintenance while the CLA plays a role mainly in the generation of conscious content. Finally, we found that by transplanting excitatory neuron precursor cells in the PVT and CLA, respectively, we could facilitate awakening with recovery of consciousness, which was mainly manifested by shortened awaking latency, reduced duration of loss of consciousness (LOC), enhanced cognitive ability, enhanced memory, and improved limb sensation. CONCLUSION: In this study, we found that the deterioration in the level and content of consciousness after TBI was associated with a large reduction in glutamatergic neurons within the PVT and CLA. Transplantation of glutamatergic neuronal precursor cells could play a beneficial role in promoting arousal and recovery of consciousness. Thus, these findings have the potential to provide a favorable basis for promoting awakening and recovery in patients with DOC.


Assuntos
Lesões Encefálicas Traumáticas , Claustrum , Camundongos , Animais , Estado de Consciência , Transtornos da Consciência , Tálamo , Neurônios/fisiologia
2.
Alzheimers Dement ; 19(8): 3389-3405, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36795937

RESUMO

INTRODUCTION: Circular RNAs (circRNAs) exhibit selective expression in the brain and differential regulation in Alzheimer's disease (AD). To explore the role of circRNAs in AD, we investigated how circRNA expression varies between brain regions and with AD-related stress in human neuronal precursor cells (NPCs). METHODS: Ribosomal RNA-depleted hippocampus RNA-sequencing data were generated. Differentially regulated circRNAs in AD and related dementias were detected using CIRCexplorer3 and limma. circRNA results were validated using quantitative real-time PCR of cDNA from the brain and NPCs. RESULTS: We identified 48 circRNAs that were significantly associated with AD. We observed that circRNA expression differed by dementia subtype. Using NPCs, we demonstrated that exposure to oligomeric tau elicits downregulation of circRNA similar to that observed in the AD brain. DISCUSSION: Our study shows that differential expression of circRNA can vary by dementia subtype and brain region. We also demonstrated that circRNAs can be regulated by AD-linked neuronal stress independently from their cognate linear messenger RNAs (mRNAs).


Assuntos
Doença de Alzheimer , MicroRNAs , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Doença de Alzheimer/genética , MicroRNAs/genética , RNA Mensageiro/metabolismo , Regulação para Baixo
3.
Methods Mol Biol ; 2582: 269-280, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36370356

RESUMO

Human-induced pluripotent stem cells (hiPSCs) are useful tools to examine human neuronal maturation processes. In this chapter, we describe the maturation of human neuronal precursor cells derived from hiPSCs by cellular communication network family member 2, also known as connective tissue growth factor. We describe the (1) preparation of feeder cells for undifferentiated culture of hiPSCs, (2) undifferentiated culture of hiPSCs, (3) induction of neuronal precursor cells from hiPSCs, (4) maturation of neuronal precursor cells from hiPSCs, (5) immunofluorescent staining of neuronal cells from hiPSCs, and (6) immunofluorescence analysis.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/farmacologia , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Células Alimentadoras , Neurônios , Comunicação Celular , Diferenciação Celular
4.
Biomolecules ; 12(7)2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35883433

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder, classically associated with extensive loss of dopaminergic neurons of the substantia nigra pars compacta. The hallmark of the disease is the accumulation of pathogenic conformations of the presynaptic protein, α-synuclein (αSyn), and the formation of intraneuronal protein aggregate inclusions. Neurodegeneration of dopamine neurons leads to a prominent dopaminergic deficiency in the basal ganglia, responsible for motor disturbances. However, it is now recognized that the disease involves more widespread neuronal dysfunction, leading to early and late non-motor symptoms. The development of in vitro systems based on the differentiation of human-induced pluripotent stem cells provides us the unique opportunity to monitor alterations at the cellular and molecular level throughout the differentiation procedure and identify perturbations that occur early, even at the neuronal precursor stage. Here we aim to identify whether p.A53T-αSyn induced disturbances at the molecular level are already present in neural precursors. Towards this, we present data from transcriptomics analysis of control and p.A53T-αSyn NPCs showing altered expression in transcripts involved in axon guidance, adhesion, synaptogenesis, ion transport, and metabolism. The comparative analysis with the transcriptomics profile of p.A53T-αSyn neurons shows both distinct and overlapping pathways leading to neurodegeneration while meta-analysis with transcriptomics data from both neurodegenerative and neurodevelopmental disorders reveals that p.A53T-pathology has a significant overlap with the latter category. This is the first study showing that molecular dysregulation initiates early at the p.A53T-αSyn NPC level, suggesting that synucleinopathies may have a neurodevelopmental component.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Sinucleinopatias , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
5.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35163257

RESUMO

Fetalization associated with a delay in development and the preservation of the features of the embryonic structure of the brain dominates the ontogeny of salmonids. The aim of the present study was to comparatively analyze the distribution of the glial-type aNSC markers such as vimentin and glial fibrillar acidic protein (GFAP) and the migratory neuronal precursors such as doublecortin in the telencephalon subpallium of juvenile masu salmon, Oncorhynchus masou, in normal conditions and at 1 week after an injury to the dorsal pallium. Immunohistochemical labeling of vimentin, GFAP, and doublecortin in the pallium of intact juvenile masu salmon revealed single cells with similar morphologies corresponding to a persistent pool of neuronal and/or glial progenitors. The study of the posttraumatic process showed the presence of intensely GFAP-labeled cells of the neuroepithelial type that form reactive neurogenic zones in all areas of the subpallial zone of juvenile masu salmon. A comparative analysis of the distribution of radial glia in the dorsal, ventral, and lateral zones of the subpallium showed a maximum concentration of cells in the dorsal part of subpallium (VD) and a minimum concentration in the lateral part of subpallium VL. An essential feature of posttraumatic immunolabeling in the masu salmon subpallium is the GFAP distribution patterns that are granular intracellular in the apical periventricular zone (PVZ) and fibrillar extracellular in the subventricular (SVZ) and parenchymal zones (PZ). In contrast to those in intact animals, most of the GFAP+ granules and constitutive neurogenic niches in injured fish were localized in the basal part of the PVZ. With the traumatic injury to the subpallium, the number of Vim+ cells in the lateral and ventral regions significantly increased. At 1 week post-injury, the total immunolabeling of vimentin cells in the PVZ was replaced by the granular pattern of Vim immunodistribution spreading from the PVZ to the SVZ and deeper parenchymal layers of the brain in all areas of the subpallium. A significant increase in the number of DC+ cells was observed also in all areas of the subpallium. The number of cells increased both in the PVZ and in the SVZ, as well as in the deeper PZ. Thus, at 1 week after the injury to the dorsal pallium, the number of DC, Vim, and GFAP expressing cells of the neuroepithelial type in the subpallium of juvenile masu salmon increased, and additionally GFAP+ radial glia appeared in VD, which was absent from intact animals.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Córtex Cerebral/metabolismo , Proteínas do Domínio Duplacortina/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Oncorhynchus/metabolismo , Salmão/metabolismo , Vimentina/metabolismo , Animais , Células Ependimogliais/metabolismo , Filamentos Intermediários , Neurogênese/fisiologia , Neuroglia/metabolismo , Neurônios/metabolismo , Telencéfalo/metabolismo
6.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34884911

RESUMO

Cervical spinal cord injury (SCI) remains a devastating event without adequate treatment options despite decades of research. In this context, the usefulness of common preclinical SCI models has been criticized. We, therefore, aimed to use a clinically relevant animal model of severe cervical SCI to assess the long-term effects of neural precursor cell (NPC) transplantation on secondary injury processes and functional recovery. To this end, we performed a clip contusion-compression injury at the C6 level in 40 female Wistar rats and a sham surgery in 10 female Wistar rats. NPCs, isolated from the subventricular zone of green fluorescent protein (GFP) expressing transgenic rat embryos, were transplanted ten days after the injury. Functional recovery was assessed weekly, and FluoroGold (FG) retrograde fiber-labeling, as well as manganese-enhanced magnetic resonance imaging (MEMRI), were performed prior to the sacrifice of the animals eight weeks after SCI. After cryosectioning of the spinal cords, immunofluorescence staining was conducted. Results were compared between the treatment groups (NPC, Vehicle, Sham) and statistically analyzed (p < 0.05 was considered significant). Despite the severity of the injury, leading to substantial morbidity and mortality during the experiment, long-term survival of the engrafted NPCs with a predominant differentiation into oligodendrocytes could be observed after eight weeks. While myelination of the injured spinal cord was not significantly improved, NPC treated animals showed a significant increase of intact perilesional motor neurons and preserved spinal tracts compared to untreated Vehicle animals. These findings were associated with enhanced preservation of intact spinal cord tissue. However, reactive astrogliosis and inflammation where not significantly reduced by the NPC-treatment. While differences in the Basso-Beattie-Bresnahan (BBB) score and the Gridwalk test remained insignificant, animals in the NPC group performed significantly better in the more objective CatWalk XT gait analysis, suggesting some beneficial effects of the engrafted NPCs on the functional recovery after severe cervical SCI.


Assuntos
Neurônios Motores/fisiologia , Células-Tronco Neurais/transplante , Oligodendroglia/metabolismo , Traumatismos da Medula Espinal/terapia , Animais , Diferenciação Celular , Células Cultivadas , Vértebras Cervicais , Modelos Animais de Doenças , Feminino , Análise da Marcha , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imageamento por Ressonância Magnética , Células-Tronco Neurais/citologia , Oligodendroglia/fisiologia , Ratos , Ratos Transgênicos , Ratos Wistar , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/etiologia , Traumatismos da Medula Espinal/fisiopatologia
7.
Biomed Pharmacother ; 144: 112273, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34700232

RESUMO

Neurogenesis in the adult brain is well recognized and plays a critical role in the maintenance of brain function and homeostasis. However, whether neurogenesis also occurs in the adult peripheral nervous system remains unknown. Here, using sensory ganglia (dorsal root ganglia, DRGs) as a model, we show that neurogenesis also occurs in the peripheral nervous system, but in a manner different from that in the central nervous system. Satellite glial cells (SGCs) express the neuronal precursor markers Nestin, POU domain, class 4, transcription factor 1, and p75 pan-neurotrophin receptor. Following sciatic nerve injury, the suppression of endogenous proBDNF by proBDNF antibodies resulted in the transformation of proliferating SGCs into doublecortin-positive cells in the DRGs. Using purified SGCs migrating out from the DRGs, the inhibition of endogenous proBDNF promoted the conversion of SGCs into neuronal phenotypes in vitro. Our findings suggest that SGCs are neuronal precursors, and that proBDNF maintains the SGC phenotype. Furthermore, the suppression of proBDNF signaling is necessary for neuronal phenotype acquisition by SGCs. Thus, we propose that peripheral neurogenesis may occur via the direct conversion of SGCs into neurons, and that this process is negatively regulated by proBDNF.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Gânglios Espinais/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Neuroglia/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Precursores de Proteínas/metabolismo , Potenciais de Ação , Animais , Animais Recém-Nascidos , Fator Neurotrófico Derivado do Encéfalo/genética , Transdiferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Proteína Duplacortina/metabolismo , Feminino , Gânglios Espinais/patologia , Gânglios Espinais/fisiopatologia , Masculino , Células-Tronco Neurais/patologia , Neuroglia/patologia , Traumatismos dos Nervos Periféricos/patologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Fenótipo , Precursores de Proteínas/genética , Ratos Sprague-Dawley , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo , Transdução de Sinais
8.
Cells ; 10(9)2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34571959

RESUMO

Profilin functions have been discussed in numerous cellular processes, including actin polymerization. One puzzling aspect is the concomitant expression of more than one profilin isoform in most tissues. In neuronal precursors and in neurons, profilin 1 and profilin 2 are co-expressed, but their specific and redundant functions in brain morphogenesis are still unclear. Using a conditional knockout mouse model to inactivate both profilins in the developing CNS, we found that threshold levels of profilin are necessary for the maintenance of the neuronal stem-cell compartment and the generation of the differentiated neurons, irrespective of the specific isoform. During embryonic development, profilin 1 is more abundant than profilin 2; consequently, modulation of profilin 1 levels resulted in a more severe phenotype than depletion of profilin 2. Interestingly, the relevance of the isoforms was reversed in the postnatal brain. Morphology of mature neurons showed a stronger dependence on profilin 2, since this is the predominant isoform in neurons. Our data highlight redundant functions of profilins in neuronal precursor expansion and differentiation, as well as in the maintenance of pyramidal neuron dendritic arborization. The specific profilin isoform is less relevant; however, a threshold profilin level is essential. We propose that the common activity of profilin 1 and profilin 2 in actin dynamics is responsible for the observed compensatory effects.


Assuntos
Encéfalo/metabolismo , Neurônios/metabolismo , Profilinas/metabolismo , Animais , Diferenciação Celular/fisiologia , Camundongos , Isoformas de Proteínas/metabolismo
9.
Stem Cell Reports ; 16(8): 1953-1967, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34329598

RESUMO

The generation of inducible pluripotent stem cells (iPSCs) is a revolutionary technique allowing production of pluripotent patient-specific cell lines used for disease modeling, drug screening, and cell therapy. Integrity of nuclear DNA (nDNA) is mandatory to allow iPSCs utilization, while quality control of mitochondrial DNA (mtDNA) is rarely included in the iPSCs validation process. In this study, we performed mtDNA deep sequencing during the transition from parental fibroblasts to reprogrammed iPSC and to differentiated neuronal precursor cells (NPCs) obtained from controls and patients affected by mitochondrial disorders. At each step, mtDNA variants, including those potentially pathogenic, fluctuate between emerging and disappearing, and some having functional implications. We strongly recommend including mtDNA analysis as an unavoidable assay to obtain fully certified usable iPSCs and NPCs.


Assuntos
Diferenciação Celular/genética , Reprogramação Celular/genética , DNA Mitocondrial/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Células-Tronco Neurais/metabolismo , Adulto , Idoso de 80 Anos ou mais , Linhagem Celular , Células Cultivadas , Criança , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/genética , Mitocôndrias/metabolismo , Células-Tronco Neurais/citologia , Adulto Jovem
10.
Mol Brain ; 14(1): 98, 2021 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-34174924

RESUMO

Induced pluripotent stem cells (iPSCs) and their differentiated neurons (iPSC-neurons) are a widely used cellular model in the research of the central nervous system. However, it is unknown how well they capture age-associated processes, particularly given that pluripotent cells are only present during the earliest stages of mammalian development. Epigenetic clocks utilize coordinated age-associated changes in DNA methylation to make predictions that correlate strongly with chronological age. It has been shown that the induction of pluripotency rejuvenates predicted epigenetic age. As existing clocks are not optimized for the study of brain development, we developed the fetal brain clock (FBC), a bespoke epigenetic clock trained in human prenatal brain samples in order to investigate more precisely the epigenetic age of iPSCs and iPSC-neurons. The FBC was tested in two independent validation cohorts across a total of 194 samples, confirming that the FBC outperforms other established epigenetic clocks in fetal brain cohorts. We applied the FBC to DNA methylation data from iPSCs and embryonic stem cells and their derived neuronal precursor cells and neurons, finding that these cell types are epigenetically characterized as having an early fetal age. Furthermore, while differentiation from iPSCs to neurons significantly increases epigenetic age, iPSC-neurons are still predicted as being fetal. Together our findings reiterate the need to better understand the limitations of existing epigenetic clocks for answering biological research questions and highlight a limitation of iPSC-neurons as a cellular model of age-related diseases.


Assuntos
Relógios Biológicos/genética , Encéfalo/embriologia , Senescência Celular , Epigênese Genética , Feto/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Modelos Biológicos , Neurônios/citologia , Senescência Celular/genética , Metilação de DNA/genética , Bases de Dados Genéticas , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Gravidez , Reprodutibilidade dos Testes
11.
Brain Sci ; 10(4)2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32276413

RESUMO

A study of the lateral pallium in zebrafish and the visual tectum of the medaka revealed a population of adult neuroepithelial (NE) cells supported from the early stage of development to various postembryonic stages of ontogenesis. These data emphasize the importance of non-radial glial stem cells in the neurogenesis of adult animals, in particular fish. However, the distribution, cell cycle features, and molecular markers of NE cells and glial progenitors in fish are still poorly understood at the postembryonic stages of ontogenesis. Fetalization predominates in the ontogenetic development of salmon fish, which is associated with a delay in development and preservation of the features of the embryonic structure of the brain during the first year of life. In the present work, we studied the features of proliferation and the migration of neuronal precursors in the pallial proliferative zone of juvenile Oncorhynchus masou. The aim of the study is a comparative analysis of the distribution of glial-type aNSCs markers, such as vimentin and glial fibrillar acid protein GFAP, as well as the proliferation marker BrdU and migratory neuronal precursor doublecortin, in the pallial zone of the intact telencephalon in juvenile O. masou normal and after mechanical injury. The immunohistochemical IHC labeling with antibodies to vimentin, GFAP and doublecortin in the pallium of intact fish revealed single, small, round and oval immunopositive cells, that correspond to a persistent pool of neuronal and/or glial progenitors. After the injury, heterogeneous cell clusters, radial glia processes, single and small intensely labeled GFAP+ cells in the parenchyma of Dd and lateral part of pallium (Dl) appeared, corresponding to reactive neurogenic niches containing glial aNSCs. A multifold increase in the pool of Vim+ neuronal precursor cells (NPCs) resulting from the injury was observed. Vim+ cells of the neuroepithelial type in Dd and Dm and cells of the glial type were identified in Dl after the injury. Doublecortine (Dc) immunolabeling after the injury revealed the radial migration of neuroblasts into Dm from the neurogenic zone of the pallium. The appearance of intensely labeled Dc+ cells in the brain parenchyma might indicate the activation of resident aNSCs as a consequence of the traumatic process.

12.
Brain Sci ; 10(2)2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31991815

RESUMO

The proliferation of neural stem cells (NSCs)/neuronal precursor cells (NPCs) and the occurrence of postmitotic neuroblasts in the mesencephalic tegmentum of intact juvenile chum salmon, Oncorhynchus keta, and at 3 days after a tegmental injury, were studied by immunohistochemical labeling. BrdU+ constitutive progenitor cells located both in the periventricular matrix zone and in deeper subventricular and parenchymal layers of the brain are revealed in the tegmentum of juvenile chum salmon. As a result of traumatic damage to the tegmentum, the proliferation of resident progenitor cells of the neuroepithelial type increases. Nestin-positive and vimentin-positive NPCs and granules located in the periventricular and subventricular matrix zones, as well as in the parenchymal regions of the tegmentum, are revealed in the mesencephalic tegmentum of juvenile chum salmon, which indicates a high level of constructive metabolism and constitutive neurogenesis. The expression of vimentin and nestin in the extracellular space, as well as additionally in the NSCs and NPCs of the neuroepithelial phenotype, which do not express nestin in the control animals, is enhanced during the traumatic process. As a result of the proliferation of such cells in the post-traumatic period, local Nes+ and Vim+ NPCs clusters are formed and become involved in the reparative response. Along with the primary traumatic lesion, which coincides with the injury zone, additional Nes+ and Vim+ secondary lesions are observed to form in the adjacent subventricular and parenchymal zones of the tegmentum. In the lateral tegmentum, the number of doublecortin-positive cells is higher compared to that in the medial tegmentum, which determines the different intensities and rates of neuronal differentiation in the sensory and motor regions of the tegmentum, respectively. In periventricular regions remote from the injury, the expression of doublecortin in single cells and their groups significantly increases compared to that in the damage zone.

13.
Int J Biol Sci ; 16(2): 284-297, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31929756

RESUMO

Amyotrophic lateral sclerosis (ALS) is caused by the progressive degeneration of motor neurons in the spinal cord, the brain stem, and the motor cortex. So far, there is still a lack of effective drugs. Nicotinamide adenine dinucleotide (NAD+) takes part in redox reactions and the NAD-dependent signaling pathway. The NAD+ decline is related with many neurological diseases, leading to the accumulation of neurotoxic protein in the central nervous system. Moreover, the NAD+ supplementation is shown to promote neural stem cells/neuronal precursor cells (NSCs/NPCs) pool maintenance. Regulatory mechanisms and functions of NAD+ metabolism in ALS are still unknown. Thus, we hypothesized the aggregation of human SOD1 toxic protein and the fate of NSCs/NPCs in the ALS disease could be improved by the administration of nicotinamide riboside (NR), an NAD+ precursor. In this study, we treated SOD1G93A transgenic and wild-type mice by the oral administration of 20 mg/ml NR starting at 50 days of age. Effects of NR on the body weight, the motor function, the onset and the survival were assessed during the experiment. The expression of mutant hSOD1 protein, mitochondrial unfolded protein response (UPRmt) related protein, mitophagy markers and NAD+ metabolism related protein were detected by immunoblotting. Effects of NR on the NSCs/NPCs in neurogenic niches of brain were identified by the immunofluorescence staining. Our investigation elucidated that the NR treatment exhibited better hanging wire endurance but did not postpone the onset or extend the life span of SOD1G93A mice. Besides, we observed that the NR repletion promoted the clearance of mitochondrial hSOD1 neurotoxic protein. Meanwhile, the mitochondrial function pathway was disrupted in the brain of SOD1G93A mice. What's more, we demonstrated that the inadequate function of NAD+ salvage synthesis pathway was the primary explanation behind the decline of NAD+, and the NR treatment enhanced the proliferation and migration of NSCs/NPCs in the brain of SOD1G93A mice. At last, we found that levels of UPRmt related protein were significantly increased in the brain of SOD1G93A mice after the NR treatment. In summary, these findings reveal that the administration of NR activates UPRmt signaling, modulates mitochondrial proteostasis and improves the adult neurogenesis in the brain of SOD1G93A mice.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Niacinamida/análogos & derivados , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Niacinamida/farmacologia , Compostos de Piridínio , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase-1/metabolismo
14.
Front Neurosci ; 13: 699, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354410

RESUMO

BACKGROUND: Cranial irradiation is a common therapy for the treatment of brain tumors, but unfortunately patients suffer from side effects, particularly cognitive impairment, caused by neurodegenerative and neuroinflammatory mechanisms. Finding a therapeutic agent protecting hippocampal neurons would be beneficial. Fingolimod (FTY720), a sphingosine-1-phosphate receptor modulator approved for multiple sclerosis, is an immunosuppressant and known to enhance proliferation and differentiation of neuronal precursor cells (NPCs). OBJECTIVES: To investigate whether pre-treatment with FTY720 protects NPCs in vitro and in vivo from irradiation-induced damage. METHODS: Neuronal precursor cells were isolated from E13 C57BL/6 wildtype mice, treated at day 0 of differentiation with FTY720 and irradiated on day 6 with 1 Gy. NPCs were analyzed for markers of cell death (PI, caspase-3), proliferation (Ki67), and differentiation (DCX, ßIII-tubulin). Adult C57BL/6 wildtype mice were treated with FTY720 (1 mg/kg) and received a single dose of 6 Gy cranial irradiation at day 7. Using immunohistochemistry, we analyzed DCX and BrdU as markers of neurogenesis and Iba1, GFAP, and CD3 to visualize inflammation in the dentate gyrus (DG) and the subventricular zone (SVZ). B6(Cg)-Tyrc-2J/J DCX-luc reporter mice were used for bioluminescence imaging to evaluate the effect of FTY720 on neurogenesis in the DG and the spinal cord of naïve mice. RESULTS: FTY720 protected NPCs against irradiation induced cell death in vitro. Treatment with FTY720 dose-dependently reduced the number of PI+ cells 24 and 96 h after irradiation without effecting proliferation or neuronal differentiation. In vivo treatment resulted in a significant survival of DCX+ neurons in the DG and the SVZ 4 weeks after irradiation as well as a slight increase of proliferating cells. FTY720 inhibited microglia activation 24 h after X-ray exposure in the DG, while astrocyte activation was unaffected and no lymphocyte infiltrations were found. In naïve mice, FTY720 treatment for 4 weeks had no effect on neurogenesis. CONCLUSION: FTY720 treatment of NPCs prior to X-ray exposure and of mice prior to cranial irradiation is neuroprotective. No effects on neurogenesis were found.

15.
Exp Neurobiol ; 27(2): 112-119, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29731677

RESUMO

Aucubin is a small compound naturally found in traditional medicinal herbs with primarily anti-inflammatory and protective effects. In the nervous system, aucubin is reported to be neuroprotective by enhancing neuronal survival and inhibiting apoptotic cell death in cultures and disease models. Our previous data, however, suggest that aucubin facilitates neurite elongation in cultured hippocampal neurons and axonal regrowth in regenerating sciatic nerves. Here, we investigated whether aucubin facilitates the differentiation of neural precursor cells (NPCs) into specific types of neurons. In NPCs cultured primarily from the rat embryonic hippocampus, aucubin significantly elevated the number of GAD65/67 immunoreactive cells and the expression of GAD65/67 proteins was upregulated dramatically by more than three-fold at relatively low concentrations of aucubin (0.01 µM to 10 µM). The expression of both NeuN and vGluT1 of NPCs, the markers for neurons and glutamatergic cells, respectively, and the number of vGluT1 immunoreactive cells also increased with higher concentrations of aucubin (1 µM and 10 µM), but the ratio of the increases was largely lower than GAD expression and GAD immunoreactive cells. The GABAergic differentiation of pax6-expressing late NPCs into GABA-producing cells was further supported in cortical NPCs primarily cultured from transgenic mouse brains, which express recombinant GFP under the control of pax6 promoter. The results suggest that aucubin can be developed as a therapeutic candidate for neurodegenerative disorders caused by the loss of inhibitory GABAergic neurons.

16.
Int J Neurosci ; 128(10): 899-905, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29384407

RESUMO

PURPOSE OF THE STUDY: Aucubin (ACB) is an iridoid glycoside with various biological activities. Previously, it is reported that ACB reduces cell survival and proliferation in many human tumors, whereas it facilitates cell survival and neuroprotection in damaged neuronal cells and disease models. However, its effects on cell survival in the non-proliferating or differentiated neurons are not known. MATERIALS AND METHODS: We examined whether ACB facilitated cell survival in differentiating neural precursor cells, HiB5, compared with the proliferating HiB5 cells at various concentrations. RESULTS: The cell viabilities were evaluated by measuring MTT values, cell numbers, amounts of neurotransmittersD1 and protein amounts of neuronal markers. Here, we showed that ACB promotes cell survival in differentiated neurons (10-200 µg/mL), but reduces it in proliferating NPCs (200-400 µg/mL). Protein amounts of neurofilament proteins, NF-H, NF-M, PSD-95 in post-synaptic density, GAP-43 in growing neurites and NeuN in differentiated neurons were upregulated by addition of ACB, indicating that cell survival increased in differentiated neurons, shown by immunoblot analysis. Especially, when PDGF was added into N2 media to facilitate neuronal differentiation of HiB5 cells, the viability of differentiated HiB5 cells was significantly elevated following the increase of ACB concentration. Furthermore, ACB promoted cell survival of specific neuron types, such as GABAergic neurons and glutamatergic neurons. When differentiated neurons were immunostained with markers for specific neurons, neuronal subtypes producing GABA and GAD 65/67 were immunostained more than subtypes producing glutamate and vGluT1. CONCLUSION: These results indicate that ACB improves neuronal cell survival in differentiated cells, suggesting it may be a therapeutic compound for neurodegenerative disorders.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Glucosídeos Iridoides/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ratos
17.
J Biomed Mater Res A ; 106(1): 65-72, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28884492

RESUMO

Auditory implants stimulate the neurons by broad electrical fields, which leads to a low number of spectral channels. A reduction in the distance between the electrode and the neuronal structures might lead to better electrical transduction. The use of microstructured semiconductors offers a large number of contacts, which could attract neurons and stimulate them individually. To investigate the interaction between neurons and semiconductors, differentiated neuronal precursor cells were cultured on silicon wafers. Different structures were added on the wafers by electron beam lithography, and deep reactive ion etching in different depths (2 and 7 µm). Grooved surfaces guided the neurons and resulted in straight oriented axons, but neuronal outgrowth was impaired by the 7 µm grooves. Within the 7 µm structures, the neuronal cell body was totally encased and the nuclei were deformed from a round to an elliptical shape. On both square and cylindrical structures neuronal bridging could be detected in different forms, either between the tops of the structures or between the bottom and the top. Furthermore, neuronal bridges were established on the lateral part of the structures, and change in direction of neuronal growth was induced by the structure. Finally, it could be shown that neuronal growth cones were particularly attracted by the top of the cylinders, which might allow for the stimulation of neurons via this structure. In conclusion, study results indicate that structured semiconductors can modulate neuronal growth and its direction, offering a novel method for the development of new implants with improved neuronal stimulation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 65-72, 2018.


Assuntos
Embrião de Mamíferos/citologia , Crescimento Neuronal , Neurônios/química , Neurônios/metabolismo , Semicondutores , Animais , Orientação de Axônios , Axônios/química , Axônios/metabolismo , Camundongos , Crista Neural , Cultura Primária de Células , Silício/química , Estatísticas não Paramétricas , Propriedades de Superfície
18.
Elife ; 52016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26883496

RESUMO

During the development, tight regulation of the expansion of neural progenitor cells (NPCs) and their differentiation into neurons is crucial for normal cortical formation and function. In this study, we demonstrate that microRNA (miR)-128 regulates the proliferation and differentiation of NPCs by repressing pericentriolar material 1 (PCM1). Specifically, overexpression of miR-128 reduced NPC proliferation but promoted NPC differentiation into neurons both in vivo and in vitro. In contrast, the reduction of endogenous miR-128 elicited the opposite effects. Overexpression of miR-128 suppressed the translation of PCM1, and knockdown of endogenous PCM1 phenocopied the observed effects of miR-128 overexpression. Furthermore, concomitant overexpression of PCM1 and miR-128 in NPCs rescued the phenotype associated with miR-128 overexpression, enhancing neurogenesis but inhibiting proliferation, both in vitro and in utero. Taken together, these results demonstrate a novel mechanism by which miR-128 regulates the proliferation and differentiation of NPCs in the developing neocortex.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Proliferação de Células , Córtex Cerebral/embriologia , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Células-Tronco Neurais/fisiologia , Animais , Córtex Cerebral/citologia , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/citologia
19.
Stem Cells ; 32(2): 473-86, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23939807

RESUMO

Stroke is a leading cause of long-lasting disability in humans. However, currently there are still no effective therapies available for promoting stroke recovery. Recent studies have shown that the adult brain has the capacity to regenerate neurons after stroke. Although this neurogenic response may be functionally important for brain repair after injury, the mechanisms underlying stroke-induced neurogenesis are not known. Caspase-3 is a major executioner and has been identified as a key mediator of neuronal death in the acute stage of stroke. Recently, however, accumulating data indicate that caspase-3 also participates in various biological processes that do not cause cell death. Here, we show that cleaved caspase-3 was increased in newborn neuronal precursor cells (NPCs) in the subventricular zone (SVZ) and the dentate gyrus during the period of stroke recovery, with no evidence of apoptosis. We observed that cleaved caspase-3 was expressed by NPCs and limited its self-renewal without triggering apoptosis in cultured NPCs from the SVZ of ischemic mice. Moreover, we revealed that caspase-3 negatively regulated the proliferation of NPCs through reducing the phosphorylation of Akt. Importantly, we demonstrated that peptide inhibition of caspase-3 activity significantly promoted the proliferation and migration of SVZ NPCs and resulted in a significant increase in subsequent neuronal regeneration and functional recovery after stroke. Together, our data identify a previously unknown caspase-3-dependent mechanism that constrains stroke-induced endogenous neurogenesis and should revitalize interest in targeting caspase-3 for treatment of stroke.


Assuntos
Caspase 3/metabolismo , Regeneração Nervosa/genética , Neurônios/metabolismo , Células-Tronco/metabolismo , Acidente Vascular Cerebral/terapia , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Diferenciação Celular , Proliferação de Células , Terapia Baseada em Transplante de Células e Tecidos , Células Cultivadas , Humanos , Camundongos , Neurônios/citologia , Recuperação de Função Fisiológica , Células-Tronco/citologia , Acidente Vascular Cerebral/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA