Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Antioxidants (Basel) ; 12(9)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37759997

RESUMO

Choroideremia (CHM) is a rare X-linked chorioretinal dystrophy, affecting the photoreceptors, retinal pigment epithelium (RPE) and choroid, with no approved therapy. CHM is caused by mutations in the CHM gene, which encodes the ubiquitously expressed Rab escort protein 1 (REP1). REP1 is involved in prenylation, a post-translational modification of Rab proteins, and plays an essential role in intracellular trafficking. In this study, we examined oxidative and endoplasmic reticulum (ER) stress pathways in chmru848 zebrafish and CHMY42X patient fibroblasts, and screened a number of neuroprotectants for their ability to reduce stress. The expression of the oxidative stress markers txn, cat and sod3a, and the ER stress markers bip, atf4 and atf6, were dysregulated in chmru848 fish. The expression of SOD2 was also reduced in CHMY42X fibroblasts, along with reduced BIP and increased CHOP expression. The lack of REP1 is associated with defects in vesicular trafficking, photoreceptor outer segment phagocytosis and melanosome transport, leading to increased levels of stress within the retina and RPE. Drugs targeting oxidative and ER stress pathways represent novel therapeutic avenues.

2.
Eur J Pharmacol ; 951: 175801, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37207969

RESUMO

INTRODUCTION: DL-3-n-butylphthalide (NBP) and edaravone dexborneol (Eda-Dex) are two promising reagents for stroke treatment. However, the impacts of NBP and Eda-Dex on poststroke mental deficits are still poorly understood. In this study, we aimed to investigate and compare the influences of NBP and Eda-Dex on neurological function and cognitive behavior in rats with ischemic stroke. METHODS: An ischemic stroke model was established by middle cerebral artery occlusion (MCAO). After peritoneal administration of the drugs, the rats were subjected to neurological deficit evaluation, cerebral blood flow (CBF) assays, cerebral infarct area evaluations or behavioral tests. Brain tissues were collected and further analyzed by enzyme-linked immunosorbent assay (ELISA), western blotting or immunohistochemistry. RESULTS: NBP and Eda-Dex significantly decreased the neurological score, reduced the cerebral infarct area and improved CBF. Behavioral changes as assessed in the sucrose preference test, novel object recognition test, and social interaction test were significantly alleviated by NBP and Eda-Dex in rats with ischemic stroke. Moreover, NBP and Eda-Dex significantly suppressed inflammation by targeting the nuclear factor kappa-B/inducible nitric oxide synthase (NF-κB/iNOS) pathway and significantly inhibited oxidative stress by targeting the kelch-1ike ECH-associated protein l/nuclear factor erythroid 2-related factor 2 (Keap1/Nrf2) pathway. In addition, NBP and Eda-Dex distinctly suppressed the activation of microglia and astrocytes and improved neuronal viability in the ischemic brain. CONCLUSIONS: NBP and Eda-Dex improved neurological function and alleviated cognitive disorders in rats with ischemic stroke by synergistically inhibiting inflammation and oxidative stress.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Ratos , Animais , Edaravone/farmacologia , Edaravone/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Proteína 1 Associada a ECH Semelhante a Kelch , AVC Isquêmico/complicações , AVC Isquêmico/tratamento farmacológico , Fator 2 Relacionado a NF-E2 , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológico , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , NF-kappa B , Inflamação/tratamento farmacológico , Isquemia Encefálica/complicações , Isquemia Encefálica/tratamento farmacológico
4.
J Peripher Nerv Syst ; 28(2): 179-190, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36995049

RESUMO

BACKGROUND AND AIMS: The expanding use of chemotherapy in curative cancer treatment has simultaneously resulted in a substantial and growing cohort of cancer survivors with prolonged disability from chemotherapy-induced peripheral neuropathy (CIPN). CIPN is associated with several commonly prescribed chemotherapeutics, including taxanes, platinum-based drugs, vinca alkaloids, bortezomib and thalidomide. These distinct classes of chemotherapeutics, with their varied neurotoxic mechanisms, often cause patients to suffer from a broad profile of neuropathic symptoms including chronic numbness, paraesthesia, loss of proprioception or vibration sensation and neuropathic pain. Decades of investigation by numerous research groups have provided substantial insights describing this disease. Despite these advances, there is currently no effective curative or preventative treatment option for CIPN and only the dual serotonin-norepinephrine reuptake inhibitor Duloxetine is recommended by clinical guidelines for the symptomatic treatment of painful CIPN. METHODS: In this review, we examine current preclinical models, with our analysis focused on translational relevance and value. RESULTS: Animal models have been pivotal in achieving a better understanding of the pathogenesis of CIPN. However, it has been challenging for researchers to develop appropriate preclinical models that are effective vehicles for the discovery of translatable treatment options. INTERPRETATION: Further development of preclinical models targeting translational relevance will promote value for preclinical outcomes in CIPN studies.


Assuntos
Antineoplásicos , Neoplasias , Neuralgia , Alcaloides de Vinca , Animais , Antineoplásicos/toxicidade , Neoplasias/tratamento farmacológico , Neuralgia/tratamento farmacológico , Modelos Animais de Doenças
5.
3 Biotech ; 13(1): 22, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36568496

RESUMO

The present study evaluates the potential of neuroprotective phytochemicals-rutin (R), resveratrol (Res), 17ß-estradiol (17ß-E2), and their different combinations against chronic immobilization stress (CIS)-induced depression-like behaviour in male albino mice. Here, the mice were exposed to stress via immobilization of their four limbs under a restrainer for 6 h daily until 7 days of the induction after 30 min of respective drug treatment in different mice groups. The result found the protective effect of these phytoconstituents and their combinations against CIS-induced depression due to their ability to suppress oxidative stress, restore mitochondria, HPA-axis modulation, neurotransmitter level, stress hormones, and inflammatory markers. Also, the combination drug regimens of these phytoconstituents showed synergistic results in managing the physiological and biochemical features of depression. Thus, these neuroprotective could be utilized well in combination to manage depression-like symptoms during episodic stress. Furthermore, such results could be well justified when administered in polyherbal formulation with these neuroprotective as major components. In addition, an advanced study can be designed at the molecular and epigenetics level using a formulation based on these neuroprotective.

6.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35890136

RESUMO

The present article reviewed the pharmacologic therapies of traumatic brain injury (TBI), including current and potential treatments. Pharmacologic therapies are an essential part of TBI care, and several agents have well-established effects in TBI care. In the acute phase, tranexamic acid, antiepileptics, hyperosmolar agents, and anesthetics are the mainstay of pharmacotherapy, which have proven efficacies. In the post-acute phase, SSRIs, SNRIs, antipsychotics, zolpidem and amantadine, as well as other drugs, have been used to manage neuropsychological problems, while muscle relaxants and botulinum toxin have been used to manage spasticity. In addition, increasing numbers of pre-clinical and clinical studies of pharmaceutical agents, including potential neuroprotective nutrients and natural therapies, are being carried out. In the present article, we classify the treatments into established and potential agents based on the level of clinical evidence and standard of practice. It is expected that many of the potential medicines under investigation will eventually be accepted as standard practice in the care of TBI patients.

7.
Neural Regen Res ; 17(9): 1885-1892, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35142663

RESUMO

Ionizing radiation caused by medical treatments, nuclear events or even space flights can irreversibly damage structure and function of brain cells. That can result in serious brain damage, with memory and behavior disorders, or even fatal oncologic or neurodegenerative illnesses. Currently used treatments and drugs are mostly targeting biochemical processes of cell apoptosis, radiation toxicity, neuroinflammation, and conditions such as cognitive-behavioral disturbances or others that result from the radiation insult. With most drugs, the side effects and potential toxicity are also to be considered. Therefore, many agents have not been approved for clinical use yet. In this review, we focus on the latest and most effective agents that have been used in animal and also in the human research, and clinical treatments. They could have the potential therapeutical use in cases of radiation damage of central nervous system, and also in prevention considering their radioprotecting effect of nervous tissue.

8.
Front Pharmacol ; 13: 987293, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36712684

RESUMO

Currently, the recovery of cognitive function has become an essential part of stroke rehabilitation. DL-3-n-butylphthalide (NBP) is a neuroprotective reagent and has been used in stroke treatment. Clinical studies have confirmed that NBP can achieve better cognitive outcomes in ischemic stroke patients than in healthy controls. In this study, we aimed to investigate the influences of NBP on cognitive function in an ischemic reperfusion (I/R) rat model. Our results showed that NBP profoundly decreased neurological scores, reduced cerebral infarct areas and enhanced cerebral blood flow (CBF). NBP potently alleviated poststroke cognitive impairment (PSCI) including depression-like behavior and learning, memory and social cognition impairments, in I/R rats. NBP distinctly suppressed the activation of microglia and astrocytes and improved neuron viability in the ischemic brain. NBP inhibited the expression of inflammatory cytokines, including interleukin-6 (IL-6), interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α), by targeting the nuclear factor kappa B/inducible nitric oxide synthase (NF-κB/iNOS) pathway and decreased cerebral oxidative stress factors, including reactive oxygen species (ROS) and malondialdehyde (MDA), by targeting the kelch like ECH associated protein 1/nuclear factor-erythroid 2 p45-related factor 2 (Keap1/Nrf2) pathway in the ischemic brain. The current study revealed that NBP treatment improved neurological function and ameliorated cognitive impairment in I/R rats, possibly by synergistically suppressing inflammation and oxidative stress.

9.
Elife ; 102021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34184634

RESUMO

Retinitis pigmentosa (RP) and associated inherited retinal diseases (IRDs) are caused by rod photoreceptor degeneration, necessitating therapeutics promoting rod photoreceptor survival. To address this, we tested compounds for neuroprotective effects in multiple zebrafish and mouse RP models, reasoning drugs effective across species and/or independent of disease mutation may translate better clinically. We first performed a large-scale phenotypic drug screen for compounds promoting rod cell survival in a larval zebrafish model of inducible RP. We tested 2934 compounds, mostly human-approved drugs, across six concentrations, resulting in 113 compounds being identified as hits. Secondary tests of 42 high-priority hits confirmed eleven lead candidates. Leads were then evaluated in a series of mouse RP models in an effort to identify compounds effective across species and RP models, that is, potential pan-disease therapeutics. Nine of 11 leads exhibited neuroprotective effects in mouse primary photoreceptor cultures, and three promoted photoreceptor survival in mouse rd1 retinal explants. Both shared and complementary mechanisms of action were implicated across leads. Shared target tests implicated parp1-dependent cell death in our zebrafish RP model. Complementation tests revealed enhanced and additive/synergistic neuroprotective effects of paired drug combinations in mouse photoreceptor cultures and zebrafish, respectively. These results highlight the value of cross-species/multi-model phenotypic drug discovery and suggest combinatorial drug therapies may provide enhanced therapeutic benefits for RP patients.


Photoreceptors are the cells responsible for vision. They are part of the retina: the light-sensing tissue at the back of the eye. They come in two types: rods and cones. Rods specialise in night vision, while cones specialise in daytime colour vision. The death of these cells can cause a disease, called retinitis pigmentosa, that leads to vision loss. Symptoms often start in childhood with a gradual loss of night vision. Later on, loss of cone photoreceptors can lead to total blindness. Unfortunately, there are no treatments available that protect photoreceptor cells from dying. Research has identified drugs that can protect photoreceptors in animal models, but these drugs have failed in humans. The classic way to look for new treatments is to find drugs that target molecules implicated in a disease, and then test them to see if they are effective. Unfortunately, many drugs identified in this way fail in later stages of testing, either because they are ineffective, or because they have unacceptable side effects. One way to reverse this trend is to first test whether a drug is effective at curing a disease in animals, and later determining what it does at a molecular level. This could reveal whether drugs can protect photoreceptors before research to discover their molecular targets begins. Tests like this across different species could maximise the chances of finding a drug that works in humans, because if a drug works in several species, it is more likely to have shared target molecules across species. Applying this reasoning, Zhang et al. tested around 3,000 drug candidates for treating retinitis pigmentosa in a strain of zebrafish that undergoes photoreceptor degeneration similar to the human disease. Most of these drug candidates already have approval for use in humans, meaning that if they were found to be effective for treating retinitis pigmentosa, they could be fast-tracked for use in people. Zhang et al. found three compounds that helped photoreceptors survive both in zebrafish and in retinas grown in the laboratory derived from a mouse strain with degeneration similar to retinitis pigmentosa. Tests to find out how these three compounds worked at the molecular level revealed that they interfered with a protein that can trigger cell death. The tests also found other promising compounds, many of which offered increased protection when combined in pairs. Worldwide there are between 1.5 and 2.5 million people with retinitis pigmentosa. With this disease, loss of vision happens slowly, so identifying drugs that could slow or stop the process could help many people. These results suggest that placing animal testing earlier in the drug discovery process could complement traditional target-based methods. The compounds identified here, and the information about how they work, could expand potential treatment research. The next step in this research is to test whether the drugs identified by Zhang et al. protect mammals other than mice from the degeneration seen in retinitis pigmentosa.


Assuntos
Fármacos Neuroprotetores/farmacologia , Retinose Pigmentar/tratamento farmacológico , Animais , Animais Geneticamente Modificados , Células Cultivadas/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Mutação , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/efeitos dos fármacos , Peixe-Zebra
10.
Bull Math Biol ; 83(6): 72, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33982158

RESUMO

Neural inflammation immediately follows the onset of ischemic stroke. During this process, microglial cells can be activated into two different phenotypes: the M1 phenotype, which can worsen brain injury by producing pro-inflammatory cytokines; or the M2 phenotype, which can aid in long term recovery by producing anti-inflammatory cytokines. In this study, we formulate a nonlinear system of differential equations to model the activation of microglia post-ischemic stroke, which includes bidirectional switching between the microglia phenotypes, as well as the interactions between these cells and the cytokines that they produce. Further, we explore neuroprotectant-based modeling strategies to suppress the activation of the detrimental M1 phenotype, while promoting activation of the beneficial M2 phenotype. Through use of global sensitivity techniques, we analyze the effects of the model parameters on the ratio of M1 to M2 microglia and the total number of activated microglial cells in the system over time. Results demonstrate the significance of bidirectional microglia phenotype switching on the ratio of M1 to M2 microglia, in both the absence and presence of neuroprotectant terms. Simulations further suggest that early inhibition of M1 activation and support of M2 activation leads to a decreased minimum ratio of M1 to M2 microglia and allows for a larger number of M2 than M1 cells for a longer time period.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Humanos , Inflamação , Conceitos Matemáticos , Microglia
11.
Expert Opin Investig Drugs ; 30(5): 571-577, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33641585

RESUMO

INTRODUCTION: Retinal neurodegeneration causes irreversible vision loss, impairing quality of life. By targeting neurotoxic conditions, such as oxidative stress and ischemia, neuroprotectants can slow or stop sight loss resulting from eye disease. Despite limimted clinical use of neuroprotectants, there are several promising compounds in early clinical trials (pre-phase III) which may fulfil new therapeutic roles. Search terms relating to neuroprotection and eye disease were used on ClinicalTrials.gov to identify neuroprotective candidates. AREAS COVERED: Research supporting neuroprotection in eye diseases is focused on, ranging from preclinical to phase II, according to the ClinicalTrials.gov database. The compounds discussed are explored in terms of future clinical applications. EXPERT OPINION: The major challenge in neuroprotection research is translation from basic research to the clinic. A number of potential neuroprotectants have progressed to ophthalmology clinical trials in recent years, with defined mechanisms of action - saffron and CoQ10 - targeting mitochondria, and both CNTF and NGF showing anti-apoptotic effects. Enhancements in trial design and patient cohorts in proof-of-concept trials with enriched patient populations and surrogate endpoints should accelerate drug development. A further important consideration is optimising drug delivery to improve individualised management and patient compliance. Progress in these areas means that neuroprotective strategies have a much improved chance of translational success.


Assuntos
Desenvolvimento de Medicamentos , Fármacos Neuroprotetores/farmacologia , Doenças Retinianas/tratamento farmacológico , Animais , Sistemas de Liberação de Medicamentos , Drogas em Investigação/administração & dosagem , Drogas em Investigação/farmacologia , Humanos , Fármacos Neuroprotetores/administração & dosagem , Qualidade de Vida , Projetos de Pesquisa , Doenças Retinianas/fisiopatologia
12.
Curr Pharm Des ; 27(5): 687-694, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33185158

RESUMO

Hypoxic-ischemic encephalopathy (HIE) remains to be a major cause of morbidity, mortality and severe neurodevelopmental disability in term neonates. Moderate whole body hypothermia is an established, effective neuroprotective therapy to reduce mortality and long-term disability associated with HIE, however, research for adjunct therapies is still warranted to complement the effect of hypothermia. In the last decade, molecular hydrogen emerged as a simple, available, inexpensive substance with advantageous pharmacokinetics to ameliorate hypoxic-ischemic cellular damage. The present review examines the preclinical studies employing hydrogen to combat the deleterious consequences of hypoxic-ischemic insults in rodent and piglet HIE models. Hydrogen exerted unequivocal neuroprotective actions shown by preserved neurovascular function, neuronal viability, and neurocognitive functions in virtually all model species and hypoxic-ischemic insult types tested. Administration of hydrogen started in most studies after the hypoxic-ischemic insult enhancing the translational value of the findings. Among the explored mechanisms of hydrogen-induced neuroprotection, antioxidant, anti- apoptotic and anti-inflammatory effects appeared to be dominant. Unfortunately, the additive neuroprotective effect of hydrogen and therapeutic hypothermia has not yet been demonstrated, thus such studies are warranted to promote the clinical testing of molecular hydrogen as an adjunct neuroprotective treatment of HIE.


Assuntos
Hipotermia Induzida , Hipóxia-Isquemia Encefálica , Fármacos Neuroprotetores , Animais , Humanos , Hidrogênio , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Recém-Nascido , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Suínos
13.
Prog Brain Res ; 257: 119-140, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32988468

RESUMO

With the increasing global burden of glaucoma-caused blindness there is a significant need to develop therapies that both enable early detection of retinal neurodegeneration, and help protect cells from the neurodegenerative processes of glaucoma. In this chapter, we discuss potential neuroprotective agents that are present naturally and examine their role and suitability as therapies in glaucoma. These agents have been found to have anti-apoptotic and anti-inflammatory mechanisms of action which may aid the resilience of retinal ganglion cells and enable them to withstand potential insults that trigger cell death. We highlight how these properties could be translated into clinical practice and the barriers needing to be overcome in order to achieve this.


Assuntos
Glaucoma , Fármacos Neuroprotetores , Cegueira , Humanos , Fármacos Neuroprotetores/uso terapêutico , Células Ganglionares da Retina
14.
Neural Regen Res ; 15(7): 1266-1273, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31960812

RESUMO

Cattle encephalon glycoside and ignotin (CEGI) injection is a compound preparation formed by a combination of muscle extract from healthy rabbits and brain gangliosides from cattle, and it is generally used as a neuroprotectant in the treatment of central and peripheral nerve injuries. However, there is still a need for high-level clinical evidence from large samples to support the use of CEGI. We therefore carried out a prospective, multicenter, randomized, double-blind, parallel-group, placebo-controlled study in which we recruited 319 patients with acute cerebral infarction from 16 centers in China from October 2013 to May 2016. The patients were randomized at a 3:1 ratio into CEGI (n = 239; 155 male, 84 female; 61.2 ± 9.2 years old) and placebo (n = 80; 46 male, 34 female; 63.2 ± 8.28 years old) groups. All patients were given standard care once daily for 14 days, including a 200 mg aspirin enteric-coated tablet and 20 mg atorvastatin calcium, both taken orally, and intravenous infusion of 250-500 mL 0.9% sodium chloride containing 40 mg sodium tanshinone IIA sulfonate. Based on conventional treatment, patients in the CEGI and placebo groups were given 12 mL CEGI or 12 mL sterile water, respectively, in an intravenous drip of 250 mL 0.9% sodium chloride (2 mL/min) once daily for 14 days. According to baseline National Institutes of Health Stroke Scale scores, patients in the two groups were divided into mild and moderate subgroups. Based on the modified Rankin Scale results, the rate of patients with good outcomes in the CEGI group was higher than that in the placebo group, and the rate of disability in the CEGI group was lower than that in the placebo group on day 90 after treatment. In the CEGI group, neurological deficits were decreased on days 14 and 90 after treatment, as measured by the National Institutes of Health Stroke Scale and the Barthel Index. Subgroup analysis revealed that CEGI led to more significant improvements in moderate stroke patients. No drug-related adverse events occurred in the CEGI or placebo groups. In conclusion, CEGI may be a safe and effective treatment for acute cerebral infarction patients, especially for moderate stroke patients. This study was approved by the Ethical Committee of Peking University Third Hospital, China (approval No. 2013-068-2) on May 20, 2013, and registered in the Chinese Clinical Trial Registry (registration No. ChiCTR1800017937).

15.
Saudi J Ophthalmol ; 34(1): 45-49, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33542987

RESUMO

Presently the management of glaucoma is limited to lowering of intra-ocular pressure (IOP). Since this modality does not appear to be successful in all cases there is increasing focus on non-IOP lowering medications. Coenzyme Q is a naturally occurring compound similar to vitamins. There are a few reports suggesting the neuroprotective efficacy of this agent in glaucoma models. The present systematic review was undertaken to study the pharmacology, physiology, metabolism and role of Coenzyme Q in glaucoma. An English-language search for relevant items was undertaken using PubMed, Google Scholar, Scopus and other databases. The present review found a positive outcome of Coenzyme Q as a neuroprotectant being reported in all studies. However, the review also found that the majority of studies on Coenzyme Q have been reported by a single group of researchers. In order to have a more wide-ranging impact regarding the efficacy of Coenzyme Q in glaucoma, it would be useful to undertake further multi- center trials.

16.
Neurochem Int ; 127: 56-63, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30391509

RESUMO

MicroRNAs, a subset of non-coding RNAs, are present in virtually all tissues including body fluids and are global regulators of the transcriptome. In view of the expanding number of microRNAs and the large number of gene targets that each microRNA can potentially regulate, they have been compared to hormones in the scope of their effects. MicroRNA have been implicated as biomarkers for several diseases including stroke, as well as chronic conditions that are associated with stroke. Recent research has focused on manipulating miRNA to improve stroke outcomes. Although several miRNAs have been shown to have neuroprotective properties, the overwhelming majority of these studies have employed only male animals. This review will focus on two miRNAs, Let7f and mir363-3p, whose effectiveness as a stroke neuroprotectant is sex-specific.


Assuntos
Isquemia Encefálica/terapia , MicroRNAs/uso terapêutico , Caracteres Sexuais , Acidente Vascular Cerebral/terapia , Animais , Biomarcadores , Isquemia Encefálica/genética , Humanos , MicroRNAs/genética , Fármacos Neuroprotetores/uso terapêutico , Acidente Vascular Cerebral/genética
17.
J Clin Neurosci ; 55: 116-121, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30041898

RESUMO

To investigate the role of venous infusion of endothelial progenitor cells (EPCs) in the reendothelialization of acute focal cerebral ischemia model in rats. And explore the mechanism of VEGF to promote angiogenesis of functional recovery in focal cerebral ischemia of rat. A model of middle cerebral artery occlusion (MCAo) was used to mimic ischemia following EPCs extraction from the same donor rats. EPCs were characterized by CD34, CD45 and CD133 expressions, and confirmed by uptake of fluorescently labeled Dil-ac-LDL and FITC-UEA-1 and flow cytometry analysis. EPCs were expanded in vitro and injected into the jugular vein of the same donor animals daily for 5 days after ischemia surgery. EPC-treated animals received approximately 1 × 106 cells, while control animals received PBS. Animals were evaluated the functional recovery, endothelial cell proliferation, vascular distribution, and VEGF levels. The EPC-treated group showed lower infarct volume and a significant recovery of neurological function. We also observed increased vascular distribution through bromodeoxyuridine (BrdU) staining and high plasma VEGF levels in the EPC-treated group compared to control groups. Our results provided direct evidence that auto-graft EPCs can improve neurological outcome and revascularization after ischemic stroke and indicated an important role of VEGF in this process. Our study suggested that EPCs may have potential therapeutic applications for the ischemic cerebrovascular disease.


Assuntos
Isquemia Encefálica/patologia , Células Progenitoras Endoteliais/transplante , Neovascularização Fisiológica/fisiologia , Recuperação de Função Fisiológica/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Isquemia Encefálica/metabolismo , Células Progenitoras Endoteliais/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
18.
Trials ; 19(1): 375, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30005644

RESUMO

BACKGROUND: The potential of neuroprotective agents should be revisited in the era of endovascular thrombectomy (EVT) for acute large-artery occlusion because their preclinical effects have been optimized for ischemia and reperfusion injury. Neu2000, a derivative of sulfasalazine, is a multi-target neuroprotectant. It selectively blocks N-methyl-D-aspartate receptors and scavenges for free radicals. This trial aimed to determine whether neuroprotectant administration before EVT is safe and leads to a more favorable outcome. METHODS: This trial is a phase-II, multicenter, three-arm, randomized, double-blinded, placebo-controlled, blinded-endpoint drug trial that enrolled participants aged ≥ 19 years undergoing an EVT attempt less than 8 h from symptom onset, with baseline National Institutes of Health Stroke Scale (NIHSS) score ≥ 8, Alberta Stroke Program Early CT score ≥ 6, evidence of large-artery occlusion, and at least moderate collaterals on computed tomography angiography. EVT-attempted patients are randomized into control, low-dose (2.75 g), and high-dose (5.25 g) Neu2000KWL over 5 days. Seventy participants per group are enrolled for 90% power, assuming that the treatment group has a 28.4% higher proportion of participants with functional independence than the placebo group. The primary outcome, based on intention-to-treat criteria is the improvement of modified Rankin Scale (mRS) scores at 3 months using a dichotomized model. Safety outcomes include symptomatic intracranial hemorrhage within 5 days. Secondary outcomes are distributional change of mRS, mean differences in NIHSS score, proportion of NIHSS score 0-2, and Barthel Index > 90 at 1 and 4 weeks, and 3 months. DISCUSSION: The trial results may provide information on new therapeutic options as multi-target neuroprotection might mitigate reperfusion injury in patients with acute ischemic stroke before EVT. TRIAL REGISTRATION: ClinicalTrials.gov, ID: NCT02831088 . Registered on 13 July 2016.


Assuntos
Isquemia Encefálica/terapia , Procedimentos Endovasculares , Fluorbenzenos/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Salicilatos/uso terapêutico , Acidente Vascular Cerebral/terapia , Trombectomia/métodos , meta-Aminobenzoatos/uso terapêutico , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/fisiopatologia , Ensaios Clínicos Fase II como Assunto , Avaliação da Deficiência , Método Duplo-Cego , Procedimentos Endovasculares/efeitos adversos , Fluorbenzenos/efeitos adversos , Humanos , Estudos Multicêntricos como Assunto , Fármacos Neuroprotetores/efeitos adversos , Estudos Prospectivos , Ensaios Clínicos Controlados Aleatórios como Assunto , Recuperação de Função Fisiológica , República da Coreia , Salicilatos/efeitos adversos , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/fisiopatologia , Trombectomia/efeitos adversos , Fatores de Tempo , Resultado do Tratamento , meta-Aminobenzoatos/efeitos adversos
19.
Pharm Res ; 35(5): 93, 2018 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-29532174

RESUMO

PURPOSE: To investigate the blood-to-retina verapamil transport at the blood-retinal barrier (BRB). METHODS: EverFluor FL Verapamil (EFV) was adopted as the fluorescent probe of verapamil, and its transport across the BRB was investigated with common carotid artery infusion in rats. EFV transport at the inner and outer BRB was investigated with TR-iBRB2 cells and RPE-J cells, respectively. RESULTS: The signal of EFV was detected in the retinal tissue during the weak signal of cell impermeable compound. In TR-iBRB2 cells, the localization of EFV differed from that of LysoTracker® Red, a lysosomotropic agent, and was not altered by acute treatment with NH4Cl. In RPE-J cells, the punctate distribution of EFV was partially observed, and this was reduced by acute treatment with NH4Cl. EFV uptake by TR-iBRB2 cells was temperature-dependent and membrane potential- and pH-independent, and was significantly reduced by NH4Cl treatment during no significant effect obtained by different extracellular pH and V-ATPase inhibitor. The EFV uptake by TR-iBRB2 cells was inhibited by cationic drugs, and inhibited by verapamil in a concentration-dependent manner with an IC50 of 98.0 µM. CONCLUSIONS: Our findings provide visual evidence to support the significance of carrier-mediated transport in the blood-to-retina verapamil transport at the BRB.


Assuntos
Barreira Hematorretiniana/metabolismo , Verapamil/farmacocinética , Animais , Bloqueadores dos Canais de Cálcio , Linhagem Celular , Corantes Fluorescentes/química , Masculino , Microscopia Confocal , Microscopia de Fluorescência , Modelos Animais , Permeabilidade , Ratos , Ratos Wistar , Epitélio Pigmentado da Retina , Verapamil/administração & dosagem , Verapamil/química
20.
FASEB J ; 32(5): 2381-2394, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29269399

RESUMO

Stroke continues to be a leading cause of death and disability worldwide, yet effective treatments are lacking. Previous studies have indicated that stem-cell transplantation could be an effective treatment. However, little is known about the direct impact of transplanted cells on injured brain tissue. We wanted to help fill this knowledge gap and investigated effects of hematopoietic stem/progenitor cells (HSPCs) on the cerebral microcirculation after ischemia-reperfusion injury (I/RI). Treatment of HSPCs in I/RI for up to 2 wk after cerebral I/RI led to decreased mortality rate, decreased infarct volume, improved functional outcome, reduced microglial activation, and reduced cerebral leukocyte adhesion. Confocal microscopy and fluorescence-activated cell sorting analyses showed transplanted HSPCs emigrate preferentially into ischemic cortex brain parenchyma. We isolated migrated HSPCs from the brain; using RNA sequencing to investigate the transcriptome, we found metallothionein (MT, particularly MT-I) transcripts were dramatically up-regulated. Finally, to confirm the significance of MT, we exogenously administered MT-I after cerebral I/RI and found that it produced neuroprotection in a manner similar to HSPC treatment. These findings provide novel evidence that the mechanism through which HSPCs promote repair after stroke maybe via direct action of HSPC-derived MT-I and could therefore be exploited as a useful therapeutic strategy for stroke.-Smith, H. K., Omura, S., Vital, S. A., Becker, F., Senchenkova, E. Y., Kaur, G., Tsunoda, I., Peirce, S. M., Gavins, F. N. E. Metallothionein I as a direct link between therapeutic hematopoietic stem/progenitor cells and cerebral protection in stroke.


Assuntos
Circulação Cerebrovascular , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Metalotioneína/biossíntese , Microcirculação , Acidente Vascular Cerebral , Animais , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/patologia , Masculino , Camundongos , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA