Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
Asian Pac J Cancer Prev ; 25(7): 2539-2550, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39068589

RESUMO

OBJECTIVE: Colorectal cancer is a significant global health concern with high mortality rates. Silibinin is a compound derived from milk thistle with anticancer properties and may be a potential treatment option for colorectal cancer. Its poor solubility limits its clinical application, but various strategies, such as nanoparticle encapsulation, have shown promise. In this study, a PEGylated niosomal drug delivery system was used to enhance the solubility of silibinin, and its anti-proliferative effects were evaluated against human colorectal cancer cell lines. METHODS: The silibinin-loaded PEGylated niosomal nanoparticles (NIO-SIL) were fabricated using the thin-film hydration method and characterized with dialysis bag, AFM, SEM, DLS, and FTIR systems. Finally, the cancerous cells and human normal cells were treated with NIO-SIL and pure silibinin. The proliferation, apoptosis, and cell cycle of these cells were evaluated. Subsequently, the expression of Bax, Bcl-2, p53, and cyclin D1 genes was measured using real-time PCR. RESULT: The drug release profile, size, morphology, and chemical interactions of the synthesized PEGylated niosomal nanoparticles were suitable for use as a drug delivery system. Both pure silibinin and NIO-SIL could reduce the proliferation of cancerous cells, induce apoptosis, and cause cell cycle arrest, with no significant negative effects reported on human normal cells. Both pure silibinin and NIO-SIL reduced the expression of the Bcl-2 and cyclin D1 genes while increasing the expression of Bax and p53. (p-value < 0.05 *). CONCLUSION: The outcomes of this study indicate the high potential of PEGylated niosomal nanoparticles for encapsulation and delivery of silibinin to cancer cells, with no negative effects on normal cells.


Assuntos
Apoptose , Proliferação de Células , Nanopartículas , Polietilenoglicóis , Silibina , Humanos , Silibina/farmacologia , Silibina/química , Apoptose/efeitos dos fármacos , Nanopartículas/química , Proliferação de Células/efeitos dos fármacos , Polietilenoglicóis/química , Lipossomos/química , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Ciclo Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Células Tumorais Cultivadas , Linhagem Celular Tumoral
2.
BMC Biotechnol ; 24(1): 47, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978013

RESUMO

The threat of methicillin-resistant Staphylococcus aureus (MRSA) is increasing worldwide, making it significantly necessary to discover a novel way of dealing with related infections. The quick spread of MRSA isolates among infected individuals has heightened public health concerns and significantly limited treatment options. Vancomycin (VAN) can be applied to treat severe MRSA infections, and the indiscriminate administration of this antimicrobial agent has caused several concerns in medical settings. Owing to several advantageous characteristics, a niosomal drug delivery system may increase the potential of loaded antimicrobial agents. This work aims to examine the antibacterial and anti-biofilm properties of VAN-niosome against MRSA clinical isolates with emphasis on cytotoxicity and stability studies. Furthermore, we aim to suggest an effective approach against MRSA infections by investigating the inhibitory effect of formulated niosome on the expression of the biofilm-associated gene (icaR). The thin-film hydration approach was used to prepare the niosome (Tween 60, Span 60, and cholesterol), and field emission scanning electron microscopy (FE-SEM), an in vitro drug release, dynamic light scattering (DLS), and entrapment efficiency (EE%) were used to investigate the physicochemical properties. The physical stability of VAN-niosome, including hydrodynamic size, polydispersity index (PDI), and EE%, was analyzed for a 30-day storage time at 4 °C and 25 °C. In addition, the human foreskin fibroblast (HFF) cell line was used to evaluate the cytotoxic effect of synthesized niosome. Moreover, minimum inhibitory and bactericidal concentrations (MICs/MBCs) were applied to assess the antibacterial properties of niosomal VAN formulation. Also, the antibiofilm potential of VAN-niosome was investigated by microtiter plate (MTP) and real-time PCR methods. The FE-SEM result revealed that synthesized VAN-niosome had a spherical morphology. The hydrodynamic size and PDI of VAN-niosome reported by the DLS method were 201.2 nm and 0.301, respectively. Also, the surface zeta charge of the prepared niosome was - 35.4 mV, and the EE% ranged between 58.9 and 62.5%. Moreover, in vitro release study revealed a sustained-release profile for synthesized niosomal formulation. Our study showed that VAN-niosome had acceptable stability during a 30-day storage time. Additionally, the VAN-niosome had stronger antibacterial and anti-biofilm properties against MRSA clinical isolates compared with free VAN. In conclusion, the result of our study demonstrated that niosomal VAN could be promising as a successful drug delivery system due to sustained drug release, negligible toxicity, and high encapsulation capacity. Also, the antibacterial and anti-biofilm studies showed the high capacity of VAN-niosome against MRSA clinical isolates. Furthermore, the results of real-time PCR exhibited that VAN-niosome could be proposed as a powerful strategy against MRSA biofilm via down-regulation of icaR gene expression.


Assuntos
Antibacterianos , Biofilmes , Sistemas de Liberação de Medicamentos , Lipossomos , Staphylococcus aureus Resistente à Meticilina , Vancomicina , Biofilmes/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Vancomicina/farmacologia , Vancomicina/química , Antibacterianos/farmacologia , Antibacterianos/química , Lipossomos/química , Humanos , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Liberação Controlada de Fármacos
3.
Sci Rep ; 14(1): 16692, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030347

RESUMO

In this study, zinc oxide nanoparticles (Zn-NPs) were prepared by the green synthesis method and loaded inside niosomes as a drug release system and their physicochemical and biological properties were determined. Zn-NPs were prepared by the eco-friendly green strategy, the structure, and morphological properties were studied and loaded into niosomes. Subsequently, different formulations of niosomes containing Zn-NPs were prepared and the optimal formulation was used for biological studies. Scanning electron microscope (SEM) and dynamic light scattering (DLS) were used to investigate the morphology and size of nanoparticles. Fourier transform infrared spectroscopy (FTIR) and UV-Vis were used to confirm the synthesis of Zn-NPs. Energy dispersive X-ray spectrometer (EDS) determined the elemental analysis of the Zn-NPs synthesis solution and the crystalline structure of Zn-NPs was analysed by XRD (X-Ray diffraction). Furthermore, Zn-NPs were loaded inside the niosomes, and their structural characteristics, entrapment efficiency (EE%), the release profile of Zn-NPs, and their stability also were assessed. Moreover, its antimicrobial properties against some microbial pathogens, its effect on the expression of biofilm genes, and its anticancer activity on the breast cancer cell lines were also determined. To study the cytocompatibility, exposure of niosomes against normal HEK-293 cells was carried out. In addition, the impact of niosomes on the expression of genes involved in the apoptosis (Bcl2, Casp3, Casp9, Bax) at the mRNA level was measured. Our findings revealed that the Zn-NPs have a round shape and an average size of 27.60 nm. Meanwhile, UV-Vis, FTIR, and XRD results confirmed the synthesis of Zn-NPs. Also, the EE% and the size of the optimized niosomal formulation were 31.26% and 256.6 ± 12 nm, respectively. The release profile showed that within 24 h, 26% of Zn-NPs were released from niosomes, while in the same period, 99% of free Zn-NPs were released, which indicates the slow release of Zn-NPs from niosomes. Antimicrobial effects exhibited that niosomes containing Zn-NPs had more significant antimicrobial and anti-biofilm effects than Zn-NPs alone, the antimicrobial and anti-biofilm effects increased 2 to 4 times. Cytotoxic effects indicated that when Zn-NPs are loaded into niosomes, the anticancer activity increases compared to Zn-NPs alone and has low cytotoxicity on cancer cells. Niosomes containing ZnNPs increased the apoptosis-related gene expression level and reduced the Bcl2 genes. In general, the results show that niosomes can increase the biological effects of free Zn-NPs and therefore can be a suitable carrier for targeted delivery of Zn-NPs.


Assuntos
Lipossomos , Nanopartículas Metálicas , Óxido de Zinco , Humanos , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Lipossomos/química , Nanopartículas Metálicas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Biofilmes/efeitos dos fármacos , Tamanho da Partícula , Linhagem Celular Tumoral , Células MCF-7 , Apoptose/efeitos dos fármacos , Células HEK293 , Espectroscopia de Infravermelho com Transformada de Fourier , Sobrevivência Celular/efeitos dos fármacos , Composição de Medicamentos/métodos
4.
Biomed Mater ; 19(5)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38953496

RESUMO

Colon cancer (CC) is one of the most prevalent cancers in the world, and chemotherapy is widely applied to combat it. However, chemotherapy drugs have severe side effects and emergence of multi drug resistance (MDR) is common. This bottleneck can be overcome by niosome nanocarriers that minimize drug dose/toxicity meanwhile allow co-loading of incompatible drugs for combination therapy. In this research, silibinin (Sil) as a hydrophobic drug was loaded into the lipophilic part, and methotrexate (MTX) into the hydrophilic part of niosome by the thin film hydration (TFH) method to form Nio@MS NPs for CT26 colon cancer therapyin vitro. Our results indicated synthesis of ideal niosome nanoparticles (NPs) with spherical morphology, size of ∼100 nm, and a zeta potential of -10 mV. The IC50value for Nio@MS was determined ∼2.6 µg ml-1, which was significantly lower than MTX-Sil (∼6.86 µg ml-1), Sil (18.46 µg ml-1), and MTX (9.8 µg ml-1). Further, Nio@MS significantly reduced cell adhesion density, promoted apoptosis and increased gene expression level of caspase 3 and BAX while promoted significant downregulation of BCL2. In conclusion, the design and application of niosome to co-administer Sil and MTX can increase the drugs cytotoxicity, reduce their dose and improve anti-cancer potential by combating MDR.


Assuntos
Apoptose , Neoplasias do Colo , Metotrexato , Silibina , Metotrexato/química , Metotrexato/farmacologia , Silibina/farmacologia , Silibina/química , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Níquel/química , Lipossomos/química , Humanos , Animais , Nanopartículas/química , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Camundongos , Portadores de Fármacos/química
5.
Int J Ophthalmol ; 17(6): 1028-1035, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38895680

RESUMO

AIM: To evaluate the effect of auraptene (AUR) treatment in forms of free and encapsulated in niosome nanoparticles by investigating the mRNA expression level of vascular endothelium growth factor (VEGF)-A and platelet-derived growth factors (PDGFs) in human retinal pigment epithelium (RPE) cell line. METHODS: Niosome nanocarriers were produced using two surfactants Span 60 and Tween 80. RPE cell line was treated with both free AUR and niosome-encapsulated. Optimum dosage of treatments was calculated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Expression of VEGF-A and PDGF-A, PDGF-B, PDGF-C, PDGF-D genes was measured after total RNA extraction and cDNA synthesis, using real-time polymerase chain reaction (RT-PCR). RESULTS: The highest entrapment efficiency (EE) was achieved by Span 60:cholesterol (1:1) with 64.3%. The half maximal inhibitory concentration (IC50) of free and niosome-encapsulated AUR were 38.5 and 27.78 µg/mL, respectively. Release study revealed that niosomal AUR had more gradual delivery to the cells. RT-PCR results showed reduced expression levels of VEGF-A, PDGF-A, PDGF-B, PDGF-C, and PDGF-D after treatment with both free and niosomal AUR. CONCLUSION: Niosomal formulation of Span 60: cholesterol (1:1) is an effective drug delivery approach to transfer AUR to RPE cells. VEGF-A, PDGF-A, PDGF-B, PDGF-C, and PDGF-D are four angiogenic factors, inhibiting which by niosomal AUR may be effective in age-related macular degeneration.

6.
Curr Drug Deliv ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38840405

RESUMO

BACKGROUND: The regeneration of tissue damage involves a series of molecular and cellular events that can be mediated by various natural compounds. Recent studies have highlighted the anti-inflammatory, anti-ulcer, and skin-protecting properties of Cydonia oblonga (Quince), which are mainly attributed to phenolic compounds. These compounds may have some drawbacks when targeting wound applications, including low bioavailability at the wound site. Moreover, to overcome these limitations, surfactant-based nanovesicular systems have been developed as carriers of such compounds for wound healing. OBJECTIVE: This study aimed to highlight the possible therapeutic potential of niosome-based hydrogel from Quince extract to stabilize and deliver the related bioactive compounds to full-thickness wounds in rats. METHODS: The niosomal hydrogel was prepared using a thin-film hydration method with the fruit extract (70% methanol). The formulation was optimized by evaluating size, zeta potential, dispersion index, and drug encapsulation efficiency. Full-thickness wounds were created on the dorsal cervical area of Wistar rats, and histopathological analysis of biopsy specimens was conducted on the 12th day of treatment. RESULTS: Under the study conditions, niosomal hydrogel displayed good physicochemical stability. Histopathological findings demonstrated that niosomal gel promoted angiogenesis, fibroblast maturation, collagen deposition, keratinization, and epidermal layer formation more effectively than control and hydrogel base. Furthermore, niosomal gel treatment markedly reduced inflammation. The total phenol concentration was determined to be 13.34 ± 0.90 mg gallic acid equivalents per gram of dried extract. CONCLUSION: The niosomal hydrogel containing C. oblonga extract shows potential as a novel approach for wound healing, warranting further investigation in this field.

7.
Molecules ; 29(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38930908

RESUMO

BACKGROUND: This work proposes the development of new vesicular systems based on anesthetic compounds (lidocaine (LID) and capsaicin (CA)) and antimicrobial agents (amino acid-based surfactants from phenylalanine), with a focus on physicochemical characterization and the evaluation of antimicrobial and cytotoxic properties. METHOD: Phenylalanine surfactants were characterized via high-performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR). Different niosomal systems based on capsaicin, lidocaine, cationic phenylalanine surfactants, and dipalmitoyl phosphatidylcholine (DPPC) were characterized in terms of size, polydispersion index (PI), zeta potential, and encapsulation efficiency using dynamic light scattering (DLS), transmitted light microscopy (TEM), and small-angle X-ray scattering (SAXS). Furthermore, the interaction of the pure compounds used to prepare the niosomal formulations with DPPC monolayers was determined using a Langmuir balance. The antibacterial activity of the vesicular systems and their biocompatibility were evaluated, and molecular docking studies were carried out to obtain information about the mechanism by which these compounds interact with bacteria. RESULTS: The stability and reduced size of the analyzed niosomal formulations demonstrate their potential in pharmaceutical applications. The nanosystems exhibit promising antimicrobial activity, marking a significant advancement in pharmaceutical delivery systems with dual therapeutic properties. The biocompatibility of some formulations underscores their viability. CONCLUSIONS: The proposed niosomal formulations could constitute an important advance in the pharmaceutical field, offering delivery systems for combined therapies thanks to the pharmacological properties of the individual components.


Assuntos
Lipossomos , Tensoativos , Lipossomos/química , Tensoativos/química , Tensoativos/farmacologia , Aminoácidos/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Simulação de Acoplamento Molecular , Anestésicos/química , Anestésicos/farmacologia , Composição de Medicamentos , Testes de Sensibilidade Microbiana
8.
Artigo em Inglês | MEDLINE | ID: mdl-38884856

RESUMO

In the present study, we present a pyranopyrazole-TiO2 which is encapsulated with a niosome as nanocarrier for delivery of curcumin into breast cancer cells. Nanocarrier porous TiO2 is biocompatible and with a high specific surface area and a large pore volume and was used to carry pyranopyrazole, which has been reported as an anti-cancer. Niosome in the outer layer, helpful for loading curcumin into the niosomal layer, demonstrates a pH-dependent release and can be effective for cancer treatment. Entrapment efficiency of curcumin was found at 81.02% in carriers. The results of MTT and flow cytometry revealed that apoptosis is notably enhanced by loading curcumin on pyranopyrazole-TiO2@niosome. Also, there was high biocompatibility with MCF-10A, while exhibiting significant anti-cancer and anti-metastatic effects on MCF-7, whose cell viability was 38.79% in the loaded curcumin on carrier and was more than other samples even, than free curcumin (42.82%). Furthermore, the regulation of gene expression in cancer cells decreased the regulation of MMP-2 and MMP-9 genes and increased the expression of caspase-3 and caspase-9 genes. Finally, fluorescence activity in MCF-7 significantly increased after treatment with samples.

9.
J Pharm Sci ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38801974

RESUMO

Vorinostat (VST) is a chemotherapeutic agent administrated for various types of cancers. However, it suffers from side effects and chemoresistance that reduce its application. Different nanoniosomes comprised Span 20, 60, 65 and 80 were prepared by the thin film hydration method and loaded with VST. The nanoniosomes were physicochemically characterized using particle size analysis and field emission scanning electron microscopy. The best formulation that was prepared using Span 65 (VST-NN-S65) included vesicle size of 127 nm with a narrow size distribution. VST-NN-S65 had an entrapment efficiency and loading capacity of 81.3 ± 5.1 and 32.0 ± 3.9 %, respectively. Drug release rate measurements showed that 90 % of VST was liberated within 1 h. Cytotoxicity assessments of VST-NN-S65 in HeLa and MCF7 cells indicated significant improvement in the effectiveness of VST, compared to the VST suspension. For VST-NN-S65, IC50 values of 26.3 and 6.6 µg mL-1 were obtained for HeLa and MCF7 cell lines, respectively. In situ apoptosis detection by the TUNEL assay revealed that apoptosis mainly occurred in the cell lines.

10.
J Biomed Phys Eng ; 14(2): 159-168, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628892

RESUMO

Background: Docetaxel (DXL) is an antineoplastic agent for cancer treatment, the therapeutic efficiency of which is limited due to low solubility, hydrophobicity, and tissue specificity. Objective: In this study, nano-niosomes were introduced for improving therapeutic index of DXL. Material and Methods: In this experimental study, two nano-niosomes were synthesized using Span 20® and Span 80® and a thin film hydration method with DXL loading (DXL-Span20 and DXL-Span80). Characterization, in-vitro cytotoxicity and bioavailability of the nano-niosomes was also evaluated via in-vivo experiments. Results: DXL-Span20 and DXL-Span80 have vesicles size in a range of 84-90 nm and negative zeta potentials. DXL entrapment efficiencies were obtained as 69.6 and 74.0% for DXL-Span20 and DXL-Span80, respectively; with an in-vitro sustained release patterns. Cytotoxicity assays were performed against MDA-MB-231, Calu-6, and AsPC-1 cell lines, and the results indicated that DXL loading into nano-niosomes led to decrement in values of half-maximal inhibitory concentration (IC50) at least 2.5 times and at most 6.5 times, compared to free DXL. Moreover, the rat blood bioavailability of DXL after intraperitoneal administration and the pharmacokinetic parameters indicated higher DXL plasma level and the higher effectiveness of DXL-Span80 compared to DXL-Span20. Conclusion: Carrying DXL by the nano-niosomes led to enhanced cytotoxicity (and lower IC50 values) and higher efficacy with enhanced pharmacokinetic parameters.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38630254

RESUMO

We aimed to perform a comprehensive study on the development and characterization of silymarin (Syl)-loaded niosomes as potential drug delivery systems. The results demonstrate significant novelty and promising outcomes in terms of morphology, size distribution, encapsulation efficiency, in vitro release behavior, free energy profiles of Syl across the niosome bilayer, hydrogen bonding interactions, antimicrobial properties, cytotoxicity, and in vivo evaluations. The physical appearance, size, and morphology assessment of free niosomes and Syl-loaded niosomes indicated stable and well-formed vesicular structures suitable for drug delivery. Transmission electron microscopy (TEM) analysis revealed spherical shapes with distinct sizes for each formulation, confirming uniform distribution. Dynamic light scattering (DLS) analysis confirmed the size distribution results with higher polydispersity index for Syl-loaded niosomes. The encapsulation efficiency of Syl in the niosomes was remarkable at approximately 91%, ensuring protection and controlled release of the drug. In vitro release studies showed a sustained release profile for Syl-loaded niosomes, enhancing therapeutic efficacy over time. Free energy profiles analysis identified energy barriers hindering Syl permeation through the niosome bilayer, emphasizing challenges in drug delivery system design. Hydrogen bonding interactions between Syl and niosome components contributed to energy barriers, impacting drug permeability. Antimicrobial assessments revealed significant differences in inhibitory effects against S. aureus and E. coli. Cytotoxicity evaluations demonstrated the superior tumor-killing potential of Syl-loaded niosomes compared to free Syl. In vivo studies indicated niosome formulations' safety profiles in terms of liver and kidney parameters compared to bulk Syl, showcasing potential for clinical applications. Overall, this research highlights the promising potential of Syl-loaded niosomes as effective drug delivery systems with enhanced stability, controlled release, and improved therapeutic outcomes.

12.
J Mycol Med ; 34(2): 101478, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582029

RESUMO

INTRODUCTION: Since the drug resistance in Candida species is becoming a serious clinical challenge, novel alternative therapeutic options, particularly herbal medicine, have attracted increasing interest. This study aimed to pinpoint the potential antifungal activity of crocin (Cro), the efficacy of the niosomal formulation of Cro (NCro), and the synergistic activity of both formulations in combination with fluconazole (FLC) against susceptible and resistant C. albicans isolates. MATERIAL AND METHODS: NCro was formulated using the heating method. The in vitro antimycotic activity of Cro, NCro, and FLC was evaluated. Checkerboard and isobologram assays evaluated the interaction between both formulations of Cro and FLC. Necrotic and apoptotic effects of different agents were analyzed using the flow cytometry method. In silico study was performed to examine the interactions between Lanosterol 14 alpha-demethylase and Cro as a part of our screening compounds with antifungal properties. RESULTS: NCro exhibited high entrapment efficiency up to 99.73 ± 0.54, and the mean size at 5.224 ± 0.618 µm (mean ± SD, n = 3). Both formulations of Cro were shown to display good anticandidal activity against isolates. The synergistic effect of the NCro in combination with FLC is comparable to Cro (P-value =0.03). Apoptotic indicators confirmed that tested compounds caused cell death in isolates. The docking study indicated that Cro has interactivity with the protein residue of 14α-demethylase. CONCLUSION: The results showed a remarkable antifungal effect by NCro combined with FLC. Natural compounds, particularly nano-sized carrier systems, can act as an effective therapeutic option for further optimizing fungal infection treatment.


Assuntos
Antifúngicos , Candida albicans , Carotenoides , Sinergismo Farmacológico , Fluconazol , Lipossomos , Testes de Sensibilidade Microbiana , Candida albicans/efeitos dos fármacos , Antifúngicos/farmacologia , Carotenoides/farmacologia , Fluconazol/farmacologia , Humanos , Simulação por Computador , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Farmacorresistência Fúngica/efeitos dos fármacos , Simulação de Acoplamento Molecular
13.
ACS Appl Bio Mater ; 7(5): 2951-2965, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38602218

RESUMO

There is a growing appeal for engineering drug delivery systems for controlled and local drug delivery. Conjugation of antibodies on the nanocarriers for targeted chemotherapeutic drugs has always been one of the main techniques. This work aims to develop a polycaprolactone/chitosan electrospun mat incorporated with paclitaxel/Fe3O4-loaded niosomes (SPNs) decorated with trastuzumab (TbNs) for cancer therapy. SPNs and TbNs were analyzed by DLS, zeta potential, scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy. Fabricated mats with distinct concentrations of TbNs were classified into four groups (G0 (0), G1 (1), G2 (2.5), and G3 (5%)) and were studied physicochemically, mechanically, and biologically. Paclitaxel release was also studied for 7 days under an alternative magnetic field (AMF). The optimized mat was nominated for an in vivo study to evaluate its tumor growth inhibition. Based on the results, the TbNs had a spherical core and shell morphology with a smooth surface. The zeta potential and the mean size of TbNs were equal to -14.7 mV and 221 nm. TbNs did not affect the morphology and quality of nanofibers, but in general, the presence of TbNs increased the elastic modulus, water uptake, and degradation. Regarding the release study, AMF showed a significant increase in accelerating paclitaxel release from mats, and most releases belonged to the mat with 5% of TbNs. Results from the in vivo study showed the effective and synergistic effects of AMF on drug release and significant tumor growth inhibition. To summarize, the proposed nanocarrier under AMF can be a good candidate for cancer therapy.


Assuntos
Neoplasias da Mama , Paclitaxel , Tamanho da Partícula , Trastuzumab , Paclitaxel/química , Paclitaxel/farmacologia , Paclitaxel/administração & dosagem , Trastuzumab/química , Trastuzumab/farmacologia , Trastuzumab/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Animais , Humanos , Teste de Materiais , Camundongos , Lipossomos/química , Polietilenoglicóis/química , Materiais Biocompatíveis/química , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Camundongos Endogâmicos BALB C , Sistemas de Liberação de Medicamentos , Sobrevivência Celular/efeitos dos fármacos
14.
Pharmaceutics ; 16(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38543291

RESUMO

BACKGROUND: Although its immunomodulatory properties make thymopentin (TP5) appealing, its rapid metabolism and inactivation in the digestive system pose significant challenges for global scientists. PEGylated niosomal nanocarriers are hypothesized to improve the physicochemical stability of TP5, and to enhance its intestinal permeability for oral administration. METHODS: TP5-loaded PEGylated niosomes were fabricated using the thin film hydration method. Co-cultured Caco-2 and HT29 cells with different ratios were screened as in vitro intestinal models. The cytotoxicity of TP5 and its formulations were evaluated using an MTT assay. The cellular uptake and transport studies were investigated in the absence or presence of variable inhibitors or enhancers, and their mechanisms were explored. RESULTS AND DISCUSSION: All TP5 solutions and their niosomal formulations were nontoxic to Caco-2 and HT-29 cells. The uptake of TP5-PEG-niosomes by cells relied on active endocytosis, exhibiting dependence on time, energy, and concentration, which has the potential to significantly enhance its cellular uptake compared to TP5 in solution. Nevertheless, cellular transport rates were similar between TP5 in solution and its niosomal groups. The cellular transport of TP5 in solution was carried out mainly through MRP5 endocytosis and a passive pathway and effluxed by MRP5 transporters, while that of TP5-niosomes and TP5-PEG-niosomes was carried out through adsorptive- and clathrin-mediated endocytosis requiring energy. The permeability and transport rate was further enhanced when EDTA and sodium taurocholate were used as the penetration enhancers. CONCLUSIONS: This research has illustrated that PEG-niosomes were able to enhance the cellular uptake and maintain the cellular transport of TP5. This study also shows this formulation's potential to serve as an effective carrier for improving the oral delivery of peptides.

15.
Heliyon ; 10(5): e26486, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38463865

RESUMO

Objective: Niosomes have gained attention as a promising drug delivery system for enhancing the antimicrobial and anti-biofilm effects of natural compounds. Oregano essential oil has demonstrated potent antimicrobial and anti-biofilm properties against food-borne pathogens. Methods: In this study, researchers aimed to explore the use of niosomes as a delivery system to improve the efficacy of oregano essential oil against food-borne pathogens. The structural and morphological properties of different niosome formulations were examined. Different formulations of niosomes were prepared and their structural and morphological properties were examined. The antimicrobial and anti-biofilm effects of niosomes containing oregano essential oil were evaluated using microbroth-dilution and microtiter-plate methods, respectively. The biocompatibility of the synthesized niosomes was assessed using the MTT method on human foreskin fibroblasts normal cell line (HFF). Results: The optimal formulation of niosomes had an average size of 219 nm and an encapsulation efficiency of 61.22%. The release study demonstrated that 58% of the essential oil was released from niosomes, while 100% was released from free essential oil. Furthermore, the antimicrobial and anti-biofilm effects of the essential oil were found to be 2-4 times higher when loaded in niosomes. The biocompatibility test confirmed that the synthesized empty niosomes had no cytotoxic effects on HFF cell line. Conclusion: Niosomes encapsulating oregano essential oil demonstrated the capacity to inhibit the activity of genes associated with biofilm formation in pathogenic bacteria. This study highlights the significant antimicrobial and anti-biofilm effects of niosomes containing oregano essential oil, suggesting their potential as a suitable drug delivery system.

16.
Int J Pharm X ; 7: 100237, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38516198

RESUMO

In this study, we present a targeted and pH-sensitive niosomal (pHSN) formulation, incorporating quantum dot (QD)-labeled Trastuzumab (Trz) molecules for the specific delivery of Palbociclib (Pal) to cells overexpressing human epidermal growth factor receptor 2 (HER2). FTIR analyses confirmed the successful preparation of the pHSNs and their bioconjugation. The labeled Trz-conjugated Pal-pHSNs (Trz-Pal-pHSNs) exhibited a size of approximately 170 nm, displaying a spherical shape with a neutral surface charge of -1.2 mV. Pal encapsulation reached ∼86%, and the release pattern followed a two-phase pH-dependent mechanism. MTT assessments demonstrated enhanced apoptosis induction, particularly in HER2-positive cells, by Trz-Pal-pHSNs. Fluorescence imaging further validated the internalization of particles into cells. In conclusion, Trz-Pal-pHSNs emerge as a promising platform for personalized medicine in the treatment of HER2-positive breast cancer.

17.
EXCLI J ; 23: 212-263, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487088

RESUMO

Niosomes are drug delivery systems with widespread applications in pharmaceutical research and the cosmetic industry. Niosomes are vesicles of one or more bilayers made of non-ionic surfactants, cholesterol, and charge inducers. Because of their bilayer characteristics, similar to liposomes, niosomes can be loaded with lipophilic and hydrophilic cargos. Therefore, they are more stable and cheaper in preparation than liposomes. They can be classified into four categories according to their sizes and structures, namely small unilamellar vesicles (SUVs), large unilamellar vesicles (LUVs,), multilamellar vesicles (MLVs), and multivesicular vesicles (MVVs). There are many methods for niosome preparation, such as thin-film hydration, solvent injection, and heating method. The current study focuses on the preparation methods and pharmacological effects of niosomes loaded with natural and chemical anti-inflammatory compounds in kinds of literature during the past decade. We found that most research was carried out to load anti-inflammatory agents like non-steroidal anti-inflammatory drugs (NSAIDs) into niosome vesicles. The studies revealed that niosomes could improve anti-inflammatory agents' physicochemical properties, including solubility, cellular uptake, stability, encapsulation, drug release and liberation, efficiency, and oral bioavailability or topical absorption. See also the graphical abstract(Fig. 1).

18.
J Colloid Interface Sci ; 662: 342-356, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38354561

RESUMO

This paper presents, for the first time, evidence for vesicle destruction and payload loss at the stage of purification of niosome dispersions by centrifugation, an important operation in the assembly of vesicular materials. The ability of niosomes of different compositions to reassemble, i.e., to restore the vesicular structure after destruction in the field of centrifugal forces, was demonstrated by dynamic light scattering and fluorescence spectroscopy. The kinetics of reassembly of vesicular structures is determined by the strength of the centrifugal field and the composition of niosomes. In contrast to ternary compositions, where particle size and modality are essentially unchanged after redispersion of the precipitate resulting from centrifugation, niosome dispersions containing anionic dicetyl phosphate includes micron-sized particles after redispersion, which vary in size over a wide range throughout the observation period. The reassembly process is complicated by the presence of charge on the surface of the niosomes. Elastic niosomes - ethosomes have been synthesised which, due to the high deformability of the shells, are less susceptible to destruction in the centrifugal field and retain the contents of the aqueous core. Using the "energy landscape" approximation, it is shown that vesicular structures assembled during hydration and reassembled after their centrifugation occupy different positions in the energetic pathway of their preparation. The results obtained should also be taken into account when determining the entrapment efficiency, since this procedure uses centrifugation to separate the load. It is important to note that the physical stability of niosomes, which is usually considered in terms of the functional activity of particles, is manifest and should be considered at the material preparation stage.

19.
Pharmaceutics ; 16(2)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38399321

RESUMO

This review focuses on nanovesicular carriers for enhanced delivery of molecules into and across the skin, from their design to recent emerging technologies. During the last four decades, several approaches have been used aiming to design new nanovesicles, some of them by altering the properties of the classic phospholipid vesicle, the liposome. Phospholipid nanovesicular systems, including the phospholipid soft vesicles as well as the non-phospholipid vesicular carries, are reviewed. The altered nanovesicles have served in the manufacture of various cosmetic products and have been investigated and used for the treatment of a wide variety of skin conditions. The evolution and recent advances of these nanovesicular technologies are highlighted in this review.

20.
Pharm Nanotechnol ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38317468

RESUMO

BACKGROUND: Paraquat (PQ) is an effective herbicide which is widely used around the world to remove weeds in agriculture. As a water-soluble carotenoid, crocin is a pharmacologically active constituent of C. sativus L. (saffron). OBJECTIVES: In the present study, we investigated the effects of crocin-loaded niosomes (Cro-NIO) compared to free crocin on PQ-induced toxicity in the eukaryotic human embryonic kidney (HEK293) cell line. METHODS: The Cro-NIO was synthesized and characterized. Cell viability was determined using the MTT assay in PQ-exposed HEK293 cell lines. The activities of biochemical markers were quantitatively determined to reveal the potential mechanism of PQ-induced oxidative stress in HEK293 cell line. RESULTS: The particle size, zeta potential, polydispersity index (PDI), DL, and EE of Cro-NIO were 145.4 ± 19.5 nm, -22.3 ± 3.11 mV, 0.3 ± 0.03, 1.74 ± 0.01%, and 55.3 ± 7.1%, respectively. PQtreated HEK293 cell lines decreased cell viability. The results of oxidative status showed that PQ significantly could increase ROS accumulation, accompanied by a decreasing antioxidant defense system. However, treatment with Cro-NIO, compared to crocin, not only did dose-dependently improve the cell viability but also significantly attenuated the ROS accumulation and increased antioxidant markers. CONCLUSION: According to these results, Cro-NIO, compared to crocin, was superior to ameliorating PQ-induced cytotoxicity and oxidative damage in HEK293 cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA