Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 601
Filtrar
1.
J Environ Sci (China) ; 149: 221-233, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181637

RESUMO

Catalytic reduction of nitrate over bimetallic catalysts has emerged as a technology for sustainable treatment of nitrate-containing groundwater. However, the structure of bimetallic has been much less investigated for catalyst optimization. Herein, two main types of Pd-Cu bimetallic nanocrystal structures, heterostructure and intermetallic, were prepared and characterized using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The results show that two individual Pd and Cu nanocrystals with a mixed interface exist in the heterostructure nanocrystals, while Pd and Cu atoms are uniformly distributed across the intermetallic Pd-Cu nanocrystals. The catalytic nitrate reduction experiments were carried out in a semibatch reactor under constant hydrogen flow. The nitrate conversion rate of the heterostructure Pd-Cu nanocrystals supported on α-Al2O3, γ-Al2O3, SBA-15, and XC-72R exhibited 3.82-, 6.76-, 4.28-, 2.44-fold enhancements relative to the intermetallic nanocrystals, and the nitrogen and nitrite were the main products for the heterostructure and intermetallic Pd-Cu nanocrystals, respectively. This indicates that the catalytic nitrate reduction over Pd-Cu catalyst is sensitive to the bimetallic structures of the catalysts, and heterostructure bimetallic nanocrystals exhibit better catalytic performances on both the activity and selectivity, which may provide new insights into the design and optimization of catalysts to improve catalytic activity and selectivity for nitrate reduction in water.


Assuntos
Cobre , Nitratos , Oxirredução , Paládio , Catálise , Cobre/química , Paládio/química , Nitratos/química , Nanopartículas Metálicas/química , Nanopartículas/química , Poluentes Químicos da Água/química , Modelos Químicos
2.
Small ; : e2406424, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39319492

RESUMO

Inexpensive iron-based materials are considered promising electrocatalysts for nitrate (NO3 -) reduction, but their catalytic activity and spontaneous corrosion remain challenges. Here, the α-Fe2O3 active surface is reconstructed by gradient phosphorization to obtain FePx with higher electrochemical activity. FeP2.0 optimizes the adsorption energy of NO3 - and its reduction intermediates, meanwhile promote the generation of active hydrogen (*H) but inhibit its generation of H2. More importantly, Fe and P can serve as binding sites for NO3 - and *H, respectively, which improves the electron utilization of NO3 - deoxygenation and the efficiency of the subsequent hydrogenation for the selective synthesis of NH3. 91.7% NO3 - conversion rate is achieved for the reduction of 100 mL 200 mg L-1 NO3 --N, 99.3% ammonia (NH3 selectivity (yield of 1.79 mg h-1 cm-2), and 91.4% Faraday efficiency in 3 h. The high-purity solid NH4Cl is finally extracted by gas extraction and vacuum distillation (81.4% recovery). This study provides new insights and strategies for the conversion of NO3 - to NH3 products over iron-based electrocatalysts.

3.
Bioresour Technol ; 413: 131539, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39332696

RESUMO

Combining the light-harvesting capabilities of photosensitizers with microbial catalysis shows great potential in solar-driven biomanufacturing. However, little information is available about the effects of photosensitizers on the photoelectron transport during the dissimilatory nitrate reduction to ammonium (DNRA) process. Herein, redox carbon dots (CDs-500) were prepared from sludge via the pyrolysis-Fenton reaction and then used to construct a photosynthetic system with Shewanella oneidensis MR-1. The MR-1/CDs-500 photosynthetic system showed a 5.9-fold increase in ammonia production (4.9 mmol(NH3)·g-1(protein)·h-1) with a high selectivity of 94.0 %. The photoelectrons were found to be stored in CDs-500 and transferred into the cells. During the inward electron transport, the intracellular CDs-500 could be used as the direct photoelectron transfer stations between outer membrane cytochrome c and DNRA-related enzymes without the involvement of CymA and MtrA. This work provides a new method for converting waste into functional catalysts and increases solar-driven NH3 production to a greater extent.

4.
Nano Lett ; 24(38): 11929-11936, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39264715

RESUMO

Electrocatalytic nitrate (NO3-) reduction reaction (NO3-RR) represents a promising strategy for both wastewater treatment and ammonia (NH3) synthesis. However, it is difficult to achieve efficient NO3-RR on a single-component catalyst due to NO3-RR involving multiple reaction steps that rely on distinct catalyst properties. Here we report a facile alloying/dealloying-driven phase-separation strategy to construct a bimodal nanoporous Ag/Ag-Co tandem catalyst that exhibits a remarkable NO3-RR performance in a broad NO3- concentration range from 5 to 500 mM. In 10 and 50 mM NO3- electrolytes, the NH3 yield rates reach 3.4 and 25.1 mg h-1 mgcat.-1 with corresponding NH3 Faradaic efficiencies of 94.0% and 97.1%, respectively, outperforming most of the reported catalysts under the same NO3- concentration. The experimental results and density functional theory calculations demonstrate that Ag ligaments preferentially reduce NO3- to NO2-, while bimetallic Ag-Co ligaments catalyze the reduction of NO2- to NH3.

5.
Angew Chem Int Ed Engl ; : e202415300, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285259

RESUMO

Electrochemical nitrate reduction reaction (NO3-RR) has promising prospects for green synthesis of ammonia and environmental remediation. However, the performance of catalysts at high current density usually suffers from the high energy barrier for the nitrate (NO3-) to nitrite (NO2-) and the competitive hydrogen evolution. Herein, we proposed a two-step relay mechanism through spontaneous redox reaction followed electrochemical reaction by introducing low-valence Fe species into Ni2P nanosheets to significantly enhance the NO3-RR performance at industrial current density. The existence of low-valence Fe species bypasses the NO3- to NO2- step through the spontaneous redox with NO3- to produce NO2- and Fe2O3, regulates the electronic structure of Ni2P to reduce the barrier of NO2- to NH3, thirdly prohibits the hydrogen evolution by consuming the excess active hydrogen through reduction of Fe2O3 to recover low-valence Fe species. The triple regulations via Fe redox during the two-step relay reactions guarantee the Fe-Ni2P@NF high ammonia yield of 120.1 mg h-1 cm-2 with Faraday efficiency of more than 90% over a wide potential window and a long-term stability of more than 130 h at ~1000 mA cm-2. This work provides a new strategy to realize the design and synthesis of nitrate reduction electrocatalysts at high current densities.

6.
Angew Chem Int Ed Engl ; : e202415975, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264141

RESUMO

Electrocatalytic nitrate reduction to ammonia (NO3RR) is very attractive for nitrate removal and ammonia production in industrial processes. However, the nitrate reduction reaction is characterized by intense hydrogen competition at strong reduction potentials, which greatly limits the Faraday efficiency at strong reduction potentials. Herein, we reported an AuxCu single-atom alloy aerogels (AuxCu SAAs) with three-dimensional network structure with significant nitrate reduction performance of Faraday efficiency (FE) higher than 90% over a wide potential range (0 ~ -1 VRHE). The FE of the catalyst was close to 100% at a high reduction potential of -0.8 VRHE, accompanying with NH3 yield reaching 6.21 mmol h-1 cm-2. More importantly, the catalyst maintained a long-term operation over 400 h at 400 mA cm-2 for the NO3RR using a continuous flow system in a H-cell. Experimental and theoretical analysis demonstrate that the catalyst can lower the energy barrier for the hydrogenation reaction of *NO2, leading to a rapid consumption of the generated *H, facilitate the hydrogenation process of NO3RR, and inhibit the competitive HER at high overpotentials, which efficiently promotes the nitrate reduction reaction, especially in industrial applications.

7.
Adv Mater ; : e2407889, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39240011

RESUMO

Electrochemical nitrate reduction reaction (NO3RR) is emerging as a promising strategy for nitrate removal and ammonia (NH3) production using renewable electricity. Although great progresses have been achieved, the crystal phase effect of electrocatalysts on NO3RR remains rarely explored. Here, the epitaxial growth of unconventional 2H Cu on hexagonal close-packed (hcp) IrNi template, resulting in the formation of three IrNiCu@Cu nanostructures, is reported. IrNiCu@Cu-20 shows superior catalytic performance, with NH3 Faradaic efficiency (FE) of 86% at -0.1 (vs reversible hydrogen electrode [RHE]) and NH3 yield rate of 687.3 mmol gCu -1 h-1, far better than common face-centered cubic Cu. In sharp contrast, IrNiCu@Cu-30 and IrNiCu@Cu-50 covered by hcp Cu shell display high selectivity toward nitrite (NO2 -), with NO2 - FE above 60% at 0.1 (vs RHE). Theoretical calculations have demonstrated that the IrNiCu@Cu-20 has the optimal electronic structures for NO3RR due to the highest d-band center and strongest reaction trend with the lowest energy barriers. The high electroactivity of IrNiCu@Cu-20 originates from the abundant low coordination of Cu sites on the surface, which guarantees the fast electron transfer to accelerate the intermediate conversions. This work provides a feasible tactic to regulate the product distribution of NO3RR by crystal phase engineering of electrocatalysts.

8.
Adv Mater ; : e2408680, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258370

RESUMO

Electrochemical nitrate reduction reaction (NO3RR) is a promising approach to realize ammonia generation and wastewater treatment. However, the transformation from NO3 - to NH3 involves multiple proton-coupled electron transfer processes and by-products (NO2 -, H2, etc.), making high ammonia selectivity a challenge. Herein, a two-phase nanoflower P-Cu/Co(OH)2 electrocatalyst consisting of P-Cu clusters and P-Co(OH)2 nanosheets is designed to match the two-step tandem process (NO3 - to NO2 - and NO2 - to NH3) more compatible, avoiding excessive NO2 - accumulation and optimizing the whole tandem reaction. Focusing on the initial 2e- process, the inhibited *NO2 desorption on Cu sites in P-Cu gives rise to the more appropriate NO2 - released in electrolyte. Subsequently, P-Co(OH)2 exhibits a superior capacity for trapping and transforming the desorbed NO2 - during the latter 6e- process due to the thermodynamic advantage and contributions of active hydrogen. In 1 m KOH + 0.1 m NO3 -, P-Cu/Co(OH)2 leads to superior NH3 yield rate of 42.63 mg h- 1 cm- 2 and NH3 Faradaic efficiency of 97.04% at -0.4 V versus the reversible hydrogen electrode. Such a well-matched two-step process achieves remarkable NH3 synthesis performance from the perspective of optimizing the tandem catalytic reaction, offering a novel guideline for the design of NO3RR electrocatalysts.

9.
Chemphyschem ; : e202400738, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258742

RESUMO

The electrochemical nitrate reduction reaction (NO3-RR) is a novel green method for ammonia synthesis. The development of outstanding NO3-RR performance is based on reasonable catalyst. Metal oxides have garnered significant attention due to their exceptional electrical conductivity and catalytic properties. Doping serves as an effective strategy for enhancing catalyst performance due to its ability to change the electron cloud distribution and energy levels. In this study, we develop a heterojunction catalyst Fe doped copper oxide nanosheet and cobalt tetroxide nanowire growing on carbon cloth simultaneously (Fe-CuO@Co3O4/CC) via hydrothermal method. The well-designed Fe-CuO@Co3O4/CC has excellent NH3 yield (470.9 µmol h-1 cm-2) and Faraday efficiency (FE: 84.4%) at -1.2 V versus reversible hydrogen electrode (vs. RHE). The heterostructure increases the specific surface area of the catalyst, and the possibility of contact between the catalyst and NO3- ions, enhances the catalytic efficiency. In addition, the catalyst has excellent stability and can stably carry out the electrocatalytic nitrate reduction reaction (NO3-RR), which provides a way for further research on the high-efficiency reduction of nitrate.

10.
Heliyon ; 10(16): e35706, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39247294

RESUMO

Nitrogen (N) fertilization in paddy soils decreases arsenic mobility and methane emissions. However, it is unknown how quantity and frequency of N fertilization affects the interlinked redox reactions of iron(II)-driven denitrification, iron mineral (trans-)formation with subsequent arsenic (im-)mobilization, methane and nitrous oxide emissions, and how this links to microbiome composition. Thus, we incubated paddy soil from Vercelli, Italy, over 129 days and applied nitrate fertilizer at different concentrations (control: 0, low: ∼35, medium: ∼100, high: ∼200 mg N kg-1 soil-1) once at the beginning and after 49 days. In the high N treatment, nitrate reduction was coupled to oxidation of dissolved and solid-phase iron(II), while naturally occurring arsenic was retained on iron minerals due to suppression of reductive iron(III) mineral dissolution. In the low N treatment, 40 µg L-1 of arsenic was mobilized into solution after nitrate depletion, with 69 % being immobilized after a second nitrate application. In the non-fertilized control, concentrations of dissolved arsenic were as high as 76 µg L-1, driven by mobilization of 36 % of the initial mineral-bound arsenic. Generally, N fertilization led to 1.5-fold higher total GHG emissions (sum of CO2, CH4 and N2O as CO2 equivalents), 158-fold higher N2O, and 7.5-fold lower CH4 emissions compared to non-fertilization. On day 37, Gallionellaceae, Comamonadaceae and Rhodospirillales were more abundant in the high N treatment compared to the non-fertilized control, indicating their potential role as key players in nitrate reduction coupled to iron(II) oxidation. The findings underscore the dual effect of N fertilization, immobilizing arsenic in the short-term (low/medium N) or long-term (high N), while simultaneously increasing N2O and lowering CH4 emissions. This highlights the significance of both the quantity and frequency of N fertilizer application in paddy soils.

11.
Angew Chem Int Ed Engl ; : e202409515, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39228207

RESUMO

Gallium (Ga) with a low melting point can serve as a unique metallic solvent in the synthesis of intermetallic compounds (IMCs). The negative formation enthalpy of transition metal-Ga IMCs endows them with high catalytic stability. Meanwhile, their tunable crystal structures offer the possibility to tailor the configurations of active sites to meet the requirements for specific catalytic applications. Herein, we present a general method for preparing a range of transition metal-Ga IMCs, including Co-Ga, Ni-Ga, Pt-Ga, Pd-Ga, and Rh-Ga IMCs. The structurally ordered CoGa IMCs with body-centered cubic (bcc) structure are uniformly dispersed on the nitrogen-doped reduced graphene oxide substrate (O-CoGa/NG) and deliver outstanding nitrate reduction reaction (NO3RR) performance, making them excellent catalysts to construct highly efficient rechargeable Zn-NO3- battery. Operando studies and theoretical simulations demonstrate that the electron-rich environments around the Co atoms enhance the adsorption strength of *NO3 intermediate and simultaneously suppress the formation of hydrogen, thus improving the NO3RR activity and selectivity.

12.
Angew Chem Int Ed Engl ; : e202413033, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39229697

RESUMO

Electrocatalytic nitrate reduction reaction (NO3RR) is a process that requires the participation of eight electrons and nine protons. The regulation of active hydrogen (H*) supply and a deep understanding of related processes are necessary for improving the ammonia yield rate and Faradaic efficiency (FE). Herein, we synthesized a series of atomically precise copper-halide clusters Cu2X2(BINAP)2 (X = Cl, Br, I), among which the Cu2Cl2(BINAP)2 cluster shows the optimal ammonia FE of 94.0% and an ammonia yield rate of 373 µmol h-1 cm-2. In situ experiments and theoretical calculations reveal that halogen atoms, especially Cl in Cu2Cl2(BIANP)2, can significantly affect the distance of alkali metal-ionized water on the catalyst surface, which can promote the water dissociation to enhance the localized H* enrichment for the continues hydrogenation of nitrate to ammonia. This work explains the role of H* in the hydrogenation process of NO3RR and the importance of localized H* enrichment strategy for improving the FEs.

13.
Microbiol Resour Announc ; : e0029424, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39248562

RESUMO

Metagenome-assembled genomes (MAGs) were recovered from metagenomic assemblies from a nitrate-reducing benzene-degrading enrichment culture. Ten MAGs of high quality or functional interest to benzene degradation are reported, seven of which are single contig genomes.

14.
ACS Nano ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39292647

RESUMO

While electrocatalytic reduction of nitrate to ammonia presents a sustainable solution for addressing both the environmental and energy issues within the nitrogen cycle, it remains a great challenge to achieve high selectivity and activity due to undesired side reactions and sluggish reaction kinetics. Here, we fabricate a series of metal-N-C catalysts that feature hierarchically ordered porous structure and high-density atomically dispersed metals (HD M1/PNC). Specifically, the as-prepared HD Fe1/PNC catalyst achieves an ammonia production rate of 21.55 mol gcat-1 h-1 that is at least 1 order of magnitude enhancement compared with that of the reported metal-N-C catalysts, while maintaining a 92.5% Faradaic efficiency when run at 500 mA cm-2 for 300 h. In addition to abundant active sites, such high performance benefits from the fact that the high-density Fe can more significantly activate the adjacent N/C sites through charge redistribution for improved water adsorption/dissociation, providing sufficient active hydrogen to Fe sites for nitrate ammoniation, compared with the low-density counterpart. This finding deepens the understanding of high-density metal-N-C materials at the atomic scale and may further be used for designing other catalysts.

15.
Angew Chem Int Ed Engl ; : e202415729, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294096

RESUMO

For photoelectrocatalytic cells, a limitation exists in finding appropriate photoelectrode configurations that couple efficient extraction of high-energy electrons from absorbed photons and selective catalysis. Here we report an organic p-n junction approach to fabricate molecular photoelectrodes for conversion of solar energy and nitrate into valuable ammonia product. Solar irradiation of the photoelectrode generates charge-separated states with electrons and holes spatially separated at the n-type and p-type components, as revealed by surface photovoltage mapping, at a quantum yield of 90%. The high-flux photogenerated electrons are rapidly transferred to the catalyst for solar ammonia production from nitrate reduction at an external quantum efficiency (EQE) and an internal quantum efficiency (IQE) of 57% and 86%, respectively. Time-resolved spectroscopic studies reveal that the large IQE originates from the combined high efficiencies for photoelectron generation, catalyst activation and dark catalysis. In a flow-cell setup coupled with a silicon solar cell, the photoelectrode without bias generates photocurrent of 57 mA cm-2 and ammonia at an EQE of 52%.

16.
Proc Natl Acad Sci U S A ; 121(37): e2405236121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39226362

RESUMO

Electrochemical ammonia (NH3) synthesis from nitrate reduction (NITRR) offers an appealing solution for addressing environmental concerns and the energy crisis. However, most of the developed electrocatalysts reduce NO3- to NH3 via a hydrogen (H*)-mediated reduction mechanism, which suffers from undesired H*-H* dimerization to H2, resulting in unsatisfactory NH3 yields. Herein, we demonstrate that reversed I1Cu4 single-atom sites, prepared by anchoring iodine single atoms on the Cu surface, realized superior NITRR with a superior ammonia yield rate of 4.36 mg h-1 cm-2 and a Faradaic efficiency of 98.5% under neutral conditions via a proton-coupled electron transfer (PCET) mechanism, far beyond those of traditional Cu sites (NH3 yield rate of 0.082 mg h-1 cm-2 and Faradaic efficiency of 36.5%) and most of H*-mediated NITRR electrocatalysts. Theoretical calculations revealed that I single atoms can regulate the local electronic structures of adjacent Cu sites in favor of stronger O-end-bidentate NO3- adsorption with dual electron transfer channels and suppress the H* formation from the H2O dissociation, thus switching the NITRR mechanism from H*-mediated reduction to PCET. By integrating the monolithic I1Cu4 single-atom electrode into a flow-through device for continuous NITRR and in situ ammonia recovery, an industrial-level current density of 1 A cm-2 was achieved along with a NH3 yield rate of 69.4 mg h-1 cm-2. This study offers reversed single-atom sites for electrochemical ammonia synthesis with nitrate wastewater and sheds light on the importance of switching catalytic mechanisms in improving the performance of electrochemical reactions.

17.
ACS Nano ; 18(35): 24252-24261, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39169609

RESUMO

Electrochemical nitrate reduction reaction (NO3-RR) is a promising low-carbon and environmentally friendly approach for the production of ammonia (NH3). Herein, we develop a high-temperature quenched copper (Cu) catalyst with the aim of inducing nonequilibrium phase transformation, revealing the multiple defects (distortion, dislocations, vacancies, etc.) presented in Cu, which lead to low overpotential for NO3-RR and high efficiency for NH3 production. Further loading a low content of iridium (Ir) species on the Cu surface improves the reactivity and ammonia selectivity. The resultant CuIr electrode exhibits a Faradaic efficiency of 93% and a record yield of 6.01 mmol h-1 cm-2 at -0.22 VRHE exceeding those of state-of-the-art NO3-RR catalysts. Detailed investigations have demonstrated that the synergistic effect between multiple defects and Ir decoration effectively regulate the d-band center of copper, change the adsorption state of the catalyst surface, and promote the adsorption and reduction of intermediates and reactants. The strong H* adsorption ability of the Ir element provides more active hydrogen for the generation of ammonia, promoting the reduction of nitrate to NH3.

18.
Angew Chem Int Ed Engl ; : e202412740, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107257

RESUMO

The production of ammonia (NH3) from nitrogen sources involves competitive adsorption of different intermediates and multiple electron and proton transfers, presenting grand challenges in catalyst design. In nature nitrogenases reduce dinitrogen to NH3 using two component proteins, in which electrons and protons are delivered from Fe protein to the active site in MoFe protein for transfer to the bound N2. We draw inspiration from this structural enzymology, and design a two-component metal-sulfur-carbon (M-S-C) catalyst composed of sulfur-doped carbon-supported ruthenium (Ru) single atoms (SAs) and nanoparticles (NPs) for the electrochemical reduction of nitrate (NO3 -) to NH3. The catalyst demonstrates a remarkable NH3 yield rate of ~37 mg L-1 h-1 and a Faradaic efficiency of ~97 % for over 200 hours, outperforming those consisting solely of SAs or NPs, and even surpassing most reported electrocatalysts. Our experimental and theoretical investigations reveal the critical role of Ru SAs with the coordination of S in promoting the formation of the HONO intermediate and the subsequent reduction reaction over the NP-surface nearby. Such process results in a more energetically accessible pathway for NO3 - reduction on Ru NPs co-existing with SAs. This study proves a better understanding of how M-S-Cs act as a synthetic nitrogenase mimic during ammonia synthesis, and contributes to the future mechanism-based catalyst design.

19.
Angew Chem Int Ed Engl ; : e202410356, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107253

RESUMO

Electrocatalytic nitrate (NO3 -) reduction to ammonia (NRA) offers a promising pathway for ammonia synthesis. The interfacial electronic interactions (IEIs) can regulate the physicochemical capabilities of catalysts in electrochemical applications, while the impact of IEIs on electrocatalytic NRA remains largely unexplored in current literature. In this study, the high-efficiency electrode Ag-modified Co3O4 (Ag1.5Co/CC) is prepared for NRA in neutral media, exhibiting an impressive nitrate conversion rate of 96.86 %, ammonia Faradaic efficiency of 96.11 %, and ammonia selectivity of ~100 %. Notably, the intrinsic activity of Ag1.5Co/CC is ~81 times that of Ag nanoparticles (Ag/CC). Multiple characterizations and theoretical computations confirm the presence of IEIs between Ag and Co3O4, which stabilize the CoO6 octahedrons within Co3O4 and significantly promote the adsorption of reactants (NO3 -) as well as intermediates (NO2 - and NO), while suppressing the Heyrovsky step, thereby improving nitrate electroreduction efficiency. Furthermore, our findings reveal a synergistic effect between different active sites that enables tandem catalysis for NRA: NO3 - reduction to NO2 - predominantly occurs at Ag sites while NO2 - tends to hydrogenate to ammonia at Co sites. This study offers valuable insights for the development of high-performance NRA electrocatalysts.

20.
Angew Chem Int Ed Engl ; 63(38): e202409125, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39115054

RESUMO

Coordination engineering strategy for optimizing the catalytic performance of single-atom catalysts (SACs) has been rapidly developed over the last decade. However, previous reports on copper SACs for nitrate reduction reactions (NO3RR) have mostly focused on symmetric coordination configurations such as Cu-N4 and Cu-N3. In addition, the mechanism in terms of the regulation of coordination environment and catalytic properties of SACs has not been well demonstrated. Herein, we disrupted the local symmetric structure of copper atoms by introducing unsaturated heteroatomic coordination of Cu-O and Cu-N to achieve the coordination desymmetrization of Cu-N1O2 SACs. The Cu-N1O2 SACs exhibit an efficient nitrate-to-ammonia conversion with a high FE of ~96.5 % and a yield rate of 3120 µg NH3 h-1 cm-2 at -0.60 V vs RHE. As indicated by in situ Raman spectra, the catalysts facilitate the accumulation of NO3 - and the selective adsorption of *NO2, which were further confirmed by the theoretical study of surface dipole moment and orbital hybridization. Our work illustrated the correlation between the coordination desymmetrization and the catalytic performance of copper SACs for NO3RR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA