Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioresour Technol ; 394: 130221, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38109975

RESUMO

Partial denitrification (PD) is an alternative to providing NO2- for the anaerobic ammonium oxidation (anammox) process. In this study, three upflow anaerobic sludge blankets (UASB) were used to investigate the effect of an external electric field on PD performance. The results indicated that the maximum nitrite transformation ratio (NTR) reached 76.3 %, with an average NTR of 54.1 %, in the presence of external electric field, whereas the average NTR of the control was only 49.8 %. The fitted maximum specific nitrate reduction rates of PD1, PD2, and PD3 were 83.7, 90.5, and 92.3 mg N g-1VSS h-1, respectively, according to the Haldane model analysis. Microbial community analysis demonstrated that the abundance of Thauera, Comamonas, and Accumulibacter increased with electric assistance. In summary, UASB reactor with electrodes set in the upper region was most feasible for the stable PD process, providing an alternative for developing a coupled PD-anammox process.


Assuntos
Desnitrificação , Esgotos , Anaerobiose , Nitrogênio/análise , Reatores Biológicos , Oxirredução , Nitritos
2.
Huan Jing Ke Xue ; 44(9): 5006-5016, 2023 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-37699818

RESUMO

For resolving the problems of poor nitrogen removal efficiency and substandard effluent quality in wastewater treatment plants during winter, a cold-tolerant strain Glutamicibacter sp. WS1, with heterotrophic nitrification-aerobic denitrification ability, was isolated from activated sludge. The functional genes for nitrogen conversion of strain WS1 were amplified by PCR, and the nitrogen removal characteristics of the strain were verified under different nitrogen sources at 15℃. In addition, the effects of environmental factors on the aerobic denitrification performance of the strain were explored at low temperature. Finally, a reasonable nitrogen metabolism pathway of strain WS1 was resolved based on functional genes and nitrogen balance analysis. The results showed that strain WS1 contained functional genes related to nitrogen conversion, including amoA, napA, nirS, and nirK genes. Notably, nirS and nirK genes coexisted in the strain. At the low temperature of 15℃, with NH4+-N, NO3--N, NO2--N+NO3--N, and NH4+-N+NO3--N as nitrogen sources, the corresponding removal efficiencies of strain WS1 were 100%, 98.10%, 99.87%+100%, and 100%+94.92%, respectively. The optimal denitrification performance of the strain was achieved with sodium citrate as the carbon source, C/N of 16, pH of 8, DO of 4.5-6.8 mg·L-1, and temperature of 30℃. In addition, the NO3--N removal efficiency of strain WS1 reached 92.50% under low temperature (15℃) and low C/N (10) conditions. Based on the results of PCR amplification and nitrogen balance analysis, heterotrophic nitrification-aerobic denitrification/aerobic denitrification and assimilation were the main pathways for nitrogen substrate removal by strain WS1, in which most of the inorganic nitrogen (47%-56%) was converted to gaseous nitrogen through heterotrophic nitrification-aerobic denitrification/aerobic denitrification. Strain WS1 has broad application prospects in the treatment of low-temperature nitrogenous wastewater.


Assuntos
Desnitrificação , Nitrogênio , Temperatura , Nitrificação , Bactérias
3.
Front Bioeng Biotechnol ; 11: 1159297, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37425353

RESUMO

We investigated the optimum co-culture ratio with the highest biological nitrogen removal rate, revealing that chemical oxygen demand, total nitrogen (TN), and ammoniacal nitrogen (NH3-N) removal was increased in the Chlorella pyrenoidosa and Yarrowia lipolytica co-culture system at a 3:1 ratio. Compared with the control, TN and NH3-N content in the co-incubated system was decreased within 2-6 days. We investigated mRNA/microRNA (miRNA) expression in the C. pyrenoidosa and Y. lipolytica co-culture after 3 and 5 days, identifying 9885 and 3976 differentially expressed genes (DEGs), respectively. Sixty-five DEGs were associated with Y. lipolytica nitrogen, amino acid, photosynthetic, and carbon metabolism after 3 days. Eleven differentially expressed miRNAs were discovered after 3 days, of which two were differentially expressed and their target mRNA expressions negatively correlated with each other. One of these miRNAs regulates gene expression of cysteine dioxygenase, hypothetical protein, and histone-lysine N-methyltransferase SETD1, thereby reducing amino acid metabolic capacity; the other miRNA may promote upregulation of genes encoding the ATP-binding cassette, subfamily C (CFTR/MRP), member 10 (ABCC10), thereby promoting nitrogen and carbon transport in C. pyrenoidosa. These miRNAs may further contribute to the activation of target mRNAs. miRNA/mRNA expression profiles confirmed the synergistic effects of a co-culture system on pollutant disposal.

4.
Sci Total Environ ; 893: 164855, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37331404

RESUMO

Microbial fuel cell-constructed wetlands (MFC-CWs) are attracted extensive attention due to their simultaneous removal performance during the co-occurrence of various pollutants in wastewater. This study explored the performance and mechanisms on the simultaneous removal of antibiotics and nitrogen from MFC-CWs which packed with coke (MFC-CW (C)) and quartz sand (MFC-CW (Q)) substrate. Results showed that removal of sulfamethoxazole (93.60 %), COD (77.94 %), NH4+-N (79.89 %), NO3-- N (82.67 %), and TN (70.29 %) significantly enhanced by MFC-CW (C) due to the enhancement of relative abundance of membrane transport, amino acid metabolism and carbohydrate metabolism pathways. The results indicated that coke substrate can generate more electric energy in MFC-CW. Firmicutes (18.56-30.82 %), Proteobacteria (23.33-45.76 %), and Bacteroidetes (17.1-27.85 %) were dominant phyla in the MFC-CWs. MFC-CW (C) posed significant effects on the microbial diversity and structure, which motivated the functional microbes involved in the transformation of antibiotics and nitrogen and bioelectricity generation. Given the overall performance of MFC-CW, packing with cost-effective substrate to electrode region of MFC-CWs was found to be an effective strategy for simultaneously removing antibiotics and nitrogen in the wastewater treatment.


Assuntos
Fontes de Energia Bioelétrica , Coque , Antibacterianos , Áreas Alagadas , Nitrogênio , Carbono , Eletrodos
5.
Bioresour Technol ; 382: 129189, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37196744

RESUMO

The ammonium and nitrate removal performance and metabolic pathways of a biocontrol strain, Pseudomonas fluorescens 2P24, were investigated. Strain 2P24 could completely remove 100 mg/L ammonium and nitrate, with removal rates of 8.27 mg/L/h and 4.29 mg/L/h, respectively. During these processes, most of the ammonium and nitrate were converted to biological nitrogen via assimilation, and only small amounts of nitrous oxide escaped. The inhibitor allylthiourea had no impact on ammonium transformation, and diethyl dithiocarbamate and sodium tungstate did not inhibit nitrate removal. Intracellular nitrate and ammonium were detectable during the nitrate and ammonium transformation process, respectively. Moreover, the nitrogen metabolism functional genes (glnK, nasA, narG, nirBD, nxrAB, nirS, nirK, and norB) were identified in the strain. All results highlighted that P. fluorescens 2P24 is capable of assimilatory and dissimilatory nitrate reduction, ammonium assimilation and oxidation, and denitrification.


Assuntos
Compostos de Amônio , Pseudomonas fluorescens , Nitratos/metabolismo , Compostos de Amônio/metabolismo , Pseudomonas fluorescens/metabolismo , Desnitrificação , Nitrogênio , Redes e Vias Metabólicas
6.
Sci Total Environ ; 852: 158519, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36063948

RESUMO

A novel oligotrophic heterotrophic nitrification-aerobic denitrification bacterium designated as Pseudomonas sp. N31942, was isolated from a eutrophic lake. Strain N31942 exhibits high ammonia nitrogen removal ability in oligotrophic environment as ammonia nitrogen can be efficiently (86.97 %) removed within 10 h with no accumulation of nitrite. In the nitrification process, strain N31942 can convert ammonia into nitrate in the absence of hydroxylamine oxidase and nitrite oxidoreductase. As for the denitrification process, nitrate or nitrite were reduced to ammonia and further converted into glutamate by dissimilatory nitrate reduction pathway. Transcriptomic analysis detected 2080 differentially expressed genes. Among them, the expression of the related genes in dissimilatory nitrate reduction process was all up-regulated at low ammonia concentrations, which indicates that the strain has excellent nitrogen removal efficiency for further nitrogen removal. Integrative omics analyses revealed that strain N31942 may have two possible pathways for the NH4+-N removal as direct GDH/GS-GOGAT pathway (NH4+-N → Glutamate) and indirect GDH/GS-GOGAT pathway (NH4+-N → NH2OH → NO2--N → NO3--N → NO2--N → NH4+-N → Glutamate). Moreover, strain N31942 also has excellent nitrogen removal ability for real sewage and 77.21 % total nitrogen could be removed within 48 h. The results presented here provide new insights into ammonia nitrogen removal characteristics and mechanism of heterotrophic nitrification-aerobic denitrification bacterium under oligotrophic conditions.


Assuntos
Desnitrificação , Nitrificação , Amônia/metabolismo , Nitritos/metabolismo , Esgotos/microbiologia , Nitratos/metabolismo , Dióxido de Nitrogênio , Aerobiose , Processos Heterotróficos , Nitrogênio/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Glutamatos
7.
J Environ Manage ; 303: 114118, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838388

RESUMO

This study investigated the water purification function and mechanism of biofilm in storage tank, with a view to using it as a pretreatment unit for rainwater cleaner production. Shortening the hydraulic retention time (HRT) of storage tank from 12 to 4 h improved the pollutants removal performance and reduced the suspended bacteria counts. The accumulation of abundant taxa and succession of rare taxa were observed with biofilm development. Positive correlations within and across different bacterial taxa were dominant in the network, and some rare genera (Ralstonia and Micropruina) were identified as hub bacteria. Candidatus Nitrospira nitrosa and Nitrospira sp. ENR4 were two identified complete ammonia oxidizers. Denitrifying bacteria tended to enrich and formed more complex interactions over time. The main nitrogen metabolism pathways may be ammonia assimilatory, complete denitrification and dissimilatory/assimilatory nitrate reduction. HRT was negatively correlated with most dominant genera, and contributed 20.35% to the variation of functional taxa. This study highlights the self-purification function and micro-ecology of storage tank, and provides a new insight for its role in rainwater cleaner production process.


Assuntos
Bactérias , Melhoria de Qualidade , Amônia , Bactérias/genética , Biofilmes , Reatores Biológicos , Desnitrificação , Nitrogênio , Qualidade da Água
8.
J Basic Microbiol ; 62(2): 124-134, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34796543

RESUMO

A strain was isolated from an activated sludge system and identified as Halomonas piezotolerans HN2 in this study, which is the first strain in H. piezotolerans with the capability of heterotrophic nitrification and aerobic denitrification. Strain HN2 showed the maximum nitrogen removal rate of 9.10 mg/L/h by utilizing ammonium at the salinity of 3.0%. Under saline environment, HN2 could remove nitrogen efficiently in neutral and slightly alkaline environments, with the carbon sources of sodium succinate and sodium citrate and the C/N ratio of 15-20, and the maximum removal efficiencies of ammonium, nitrite, and nitrate were 100%, 96.35%, and 99.7%, respectively. The genomic information revealed the presence of amoA, napA, and nosZ genes in strain HN2, and the target bands of nirS were obtained via a polymerase chain reaction. Therefore, we inferred that ammonium was mainly utilized for the growth of strain HN2 through assimilation, and another part of the initial ammonium was converted into nitrate through nitrification, and then into gaseous nitrogen through denitrification. This report indicated the potential application of strain HN2 and other nitrifying and denitrifying Halomonas strains in the removal of nitrogen pollution in marine-related environments and also implies the important role of Halomonas in the nitrogen cycle process of the ocean.


Assuntos
Compostos de Amônio , Halomonas , Aerobiose , Desnitrificação , Halomonas/genética , Processos Heterotróficos , Nitrificação , Nitritos , Nitrogênio
9.
J Hazard Mater ; 384: 121376, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31611016

RESUMO

Extensive use of titanium dioxide nanoparticles (TiO2 NPs) in various products has increased the release of these particles into wastewater, posing potential environmental risks. As an ecological wastewater treatment facility, constructed wetland (CW) is an important sink of NPs. However, little is known about the effects of NPs on microbial nitrogen transformation and related genes in CWs. In this study, short-term (5 days) and long-term (60 days) exposure experiments were conducted to investigate the effect of TiO2 NPs (0, 1, and 50 mg/L) on microbial nitrogen removal in CWs. The results showed that nitrogen removal efficiency was decreased by 35%-51% after long-term exposure to TiO2 NPs. Metagenomic analysis further confirmed that TiO2 NPs declined the relative abundance of functional genes and those enzyme encoding genes involved in the nitrogen metabolism pathway and glycolysis metabolism process. Furthermore, our data proved that the indigent glycolysis metabolism process resulted in the shortage of electron (NADH) and energy sources (ATP), causing inefficient nitrogen removal. Overall, these results revealed that the accumulation of TiO2 NPs altered the genetic expression of biofilm in CWs, which had significant impacts on biological nitrogen transformation.


Assuntos
Metagenoma/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Nanopartículas/toxicidade , Nitrogênio/metabolismo , Titânio/toxicidade , Poluentes Químicos da Água/toxicidade , Áreas Alagadas , Microbiota/genética , Modelos Teóricos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Águas Residuárias/microbiologia
10.
Rev Environ Contam Toxicol ; 242: 183-217, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27734212

RESUMO

Increased use of nitrogenous (N) fertilizers in agriculture has significantly altered the global N-cycle because they release nitrogenous gases of environmental concerns. The emission of nitrous oxide (N2O) contributes to the global greenhouse gas accumulation and the stratospheric ozone depletion. In addition, it causes nitrate leaching problem deteriorating ground water quality. The nitrate toxicity has been reported in a number of studies showing the health hazards like methemoglobinemia in infants and is a potent cause of cancer. Despite these evident negative environmental as well as health impacts, consumption of N fertilizer cannot be reduced in view of the food security for the teeming growing world population. Various agronomic and genetic modifications have been practiced to tackle this problem. Some agronomic techniques adopted include split application of N, use of slow-release fertilizers, nitrification inhibitors and encouraging the use of organic manure over chemical fertilizers. As a matter of fact, the use of chemical means to remediate nitrate from the environment is very difficult and costly. Particularly, removal of nitrate from water is difficult task because it is chemically non-reactive in dilute aqueous solutions. Hence, the use of biological means for nitrate remediation offers a promising strategy to minimize the ill effects of nitrates and nitrites. One of the important goals to reduce N-fertilizer application can be effectively achieved by choosing N-efficient genotypes. This will ensure the optimum uptake of applied N in a balanced manner and exploring the molecular mechanisms for their uptake as well as metabolism in assimilatory pathways. The objectives of this paper are to evaluate the interrelations which exist in the terrestrial ecosystems between the plant type and characteristics of nutrient uptake and analyze the global consumption and demand for fertilizer nitrogen in relation to cereal production, evaluate the various methods used to determine nitrogen use efficincy (NUE), determine NUE for the major cereals grown across large agroclimatic regions, determine the key factors that control NUE, and finally analyze various strategies available to improve the use efficiency of fertilizer nitrogen.


Assuntos
Recuperação e Remediação Ambiental , Nitratos/toxicidade , Óxidos de Nitrogênio/toxicidade , Agricultura , Fertilizantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA