Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Basic Microbiol ; 64(9): e2400046, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38934516

RESUMO

Actinobacteria are renowned for their prolific production of diverse bioactive secondary metabolites. In recent years, there has been an increasing focus on exploring "rare" genera within this phylum for biodiscovery purposes, notably the Nocardiopsis genus, which will be the subject of the present study. Recognizing the absence of articles describing the research process of finding bioactive molecules from the genus Nocardiopsis in North African environments. We, therefore, present a historical overview of the discoveries of bioactive molecules of the genus Nocardiopsis originating from the region, highlighting their biological activities and associated reported molecules, providing a snapshot of the current state of the field, and offering insights into future opportunities and challenges for drug discovery. Additionally, we present a genome mining analysis of three genomes deposited in public databases that have been reported to be bioactive. A total of 36 biosynthetic gene clusters (BGCs) were identified, including those known to encode bioactive molecules. Notably, a substantial portion of the BGCs showed little to no similarity to those previously described, suggesting the possibility that the analyzed strains could be potential producers of new compounds. Further research on these genomes is essential to fully uncovering their biotechnological potential. Moving forward, we discuss the experimental designs adopted in the reported studies, as well as new avenues to guide the exploration of the Nocardiopsis genus in North Africa.


Assuntos
Genoma Bacteriano , Família Multigênica , Filogenia , Actinomycetales/genética , Actinomycetales/metabolismo , Actinomycetales/classificação , África do Norte , Produtos Biológicos/metabolismo , Vias Biossintéticas/genética , Simulação por Computador , Descoberta de Drogas , Genoma Bacteriano/genética , Metabolismo Secundário/genética
2.
Microorganisms ; 11(10)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37894198

RESUMO

The emergence of multidrug-resistant pathogens creates public health challenges, prompting a continuous search for effective novel antimicrobials. This study aimed to isolate marine actinomycetes from South Africa, evaluate their in vitro antimicrobial activity against Listeria monocytogenes and Shiga toxin-producing Escherichia coli, and characterize their mechanisms of action. Marine actinomycetes were isolated and identified by 16S rRNA sequencing. Gas chromatography-mass spectrometry (GC-MS) was used to identify the chemical constituents of bioactive actinomycetes' secondary metabolites. Antibacterial activity of the secondary metabolites was assessed by the broth microdilution method, and their mode of actions were predicted using computational docking. While five strains showed antibacterial activity during primary screening, only Nocardiopsis dassonvillei strain SOD(B)ST2SA2 exhibited activity during secondary screening for antibacterial activity. GC-MS identified five major bioactive compounds: 1-octadecene, diethyl phthalate, pentadecanoic acid, 6-octadecenoic acid, and trifluoroacetoxy hexadecane. SOD(B)ST2SA2's extract demonstrated minimum inhibitory concentration and minimum bactericidal concentration, ranging from 0.78-25 mg/mL and 3.13 to > 25 mg/mL, respectively. Diethyl phthalate displayed the lowest bacterial protein-binding energies (kcal/mol): -7.2, dihydrofolate reductase; -6.0, DNA gyrase B; and -5.8, D-alanine:D-alanine ligase. Thus, marine N. dassonvillei SOD(B)ST2SA2 is a potentially good source of antibacterial compounds that can be used to control STEC and Listeria monocytogenes.

3.
Environ Sci Pollut Res Int ; 30(36): 86244-86254, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37402921

RESUMO

This study investigated the combined effects of citric acid (CA) and Nocardiopsis sp. RA07 on the phytoremediation potential of lead (Pb)- and copper (Cu)-contaminated soils by Sorghum bicolor L. The strain RA07 was able to tolerate Pb and Cu, and exhibited plant growth-promoting features like siderophore production, indole-3-acetic acid (IAA) synthesis, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity and phosphate solubilization. The combined application of CA and strain RA07 significantly increased S. bicolor growth, chlorophyll content and antioxidant enzymatic activity, and decreased oxidative stress (hydrogen peroxide and malondialdehyde content) under Pb and Cu stress circumstances as compared to individual treatments (i.e., CA and strain RA07). Furthermore, the combined application of CA and RA07 significantly enhanced S. bicolor ability to accumulate Pb and Cu by 64.41% and 60.71% in the root and 188.39% and 125.56% in the shoot, respectively, as compared to the corresponding uninoculated plants. Our results indicate that inoculation of Nocardiopsis sp. together with CA could be a useful practical approach to mitigate Pb and Cu stress on plant growth and increase the effectiveness of phytoremediation in Pb- and Cu-polluted soils.


Assuntos
Poluentes do Solo , Sorghum , Biodegradação Ambiental , Nocardiopsis , Ácido Cítrico/farmacologia , Chumbo/farmacologia , Solo , Poluentes do Solo/farmacologia , Raízes de Plantas
4.
Mar Drugs ; 21(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36827168

RESUMO

Antarctic krill (Euphausia superba) of the Euphausiidae family comprise one of the largest biomasses in the world and play a key role in the Antarctic marine ecosystem. However, the study of E. superba-derived microbes and their secondary metabolites has been limited. Chemical investigation of the secondary metabolites of the actinomycetes Nocardiopsis sp. LX-1 (in the family of Nocardiopsaceae), isolated from E. superba, combined with molecular networking, led to the identification of 16 compounds a-p (purple nodes in the molecular network) and the isolation of one new pyrroline, nocarpyrroline A (1), along with 11 known compounds 2-12. The structure of the new compound 1 was elucidated by extensive spectroscopic investigation. Compound 2 exhibited broad-spectrum antibacterial activities against A. hydrophila, D. chrysanthemi, C. terrigena, X. citri pv. malvacearum and antifungal activity against C. albicans in a conventional broth dilution assay. The positive control was ciprofloxacin with the MIC values of <0.024 µM, 0.39 µM, 0.39 µM, 0.39 µM, and 0.20 µM, respectively. Compound 1 and compounds 7, 10, and 11 displayed antifungal activities against F. fujikuroi and D. citri, respectively, in modified agar diffusion test. Prochloraz was used as positive control and showed the inhibition zone radius of 17 mm and 15 mm against F. fujikuroi and D. citri, respectively. All the annotated compounds a-p by molecular networking were first discovered from the genus Nocardiopsis. Nocarpyrroline A (1) features an unprecedented 4,5-dihydro-pyrrole-2-carbonitrile substructure, and it is the first pyrroline isolated from the genus Nocardiopsis. This study further demonstrated the guiding significance of molecular networking in the research of microbial secondary metabolites.


Assuntos
Actinobacteria , Euphausiacea , Animais , Nocardiopsis , Euphausiacea/química , Actinomyces , Antifúngicos , Ecossistema , Pirróis , Regiões Antárticas
5.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769145

RESUMO

Lipid-lowering is one of the most effective methods of prevention and treatment for cardiovascular diseases. However, most clinical lipid-lowering drugs have adverse effects and cannot achieve the desired efficacy in some complex hyperlipidemia patients, so it is of great significance to develop safe and effective novel lipid-lowering drugs. In the course of our project aimed at discovering the chemical novelty and bioactive natural products of marine-derived actinomycetes, we found that the organic crude extracts (OCEs) of Nocardiopsis sp. ZHD001 exhibited strong in vivo efficacies in reducing weight gain, lowering LDL-C, TC, and TG levels, and improving HDL-C levels in high-fat-diet-fed mice models. Chemical investigations of the active OCEs led to identifying two new sphydrofuran-derived compounds (1-2) and one known 2-methyl-4-(1-glycerol)-furan (3). Their structures were elucidated by the analysis of HRESIMS, 1D and 2D NMR spectroscopic data, and ECD calculations. Among these compounds, compound 1 represents a novel rearranged sphydrofuran-derived derivative. Bioactivity evaluations of these pure compounds showed that all the compounds exhibited significant lipid-lowering activity with lower cytotoxicity in vitro compared to simvastatin. Our results demonstrate that sphydrofuran-derived derivatives might be promising candidates for lipid-lowering drugs.


Assuntos
Glicerol , Nocardiopsis , Camundongos , Animais , Hipolipemiantes/uso terapêutico , Extratos Vegetais/química , Lipídeos
6.
Nat Prod Res ; 36(11): 2917-2922, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34039169

RESUMO

Cancer is a hazard life-threatening disease, which affect huge population worldwide. Marine actinomycetes are considered as promising source for potential chemotherapeutic agents. In our study, we carried out metabolic profiling for Nocardia sp. UR 86 and Nocardiopsis sp. UR 92 that were cultivated from the Red Sea sponge Amphimedon sp. to investigate their chemical diversity using different media conditions. The crude culture extracts were subjected to high-resolution mass spectrometry (HRMS) analysis. The chemical profiles of the different extracts of Nocardia sp. UR 86 and Nocardiopsis sp. UR 92 revealed their richness in diverse metabolites and consequently twenty compounds (1-20) were annotated. Moreover, the obtained extracts of the differently cultivated Nocardia sp. UR 86 and Nocardiopsis sp. UR 92 were investigated against three cell lines HepG2, MCF-7 and CACO2 and revealed the targeted cytotoxicity of Nocardia sp. and Nocardiopsis sp. metabolites against the three cell lines.


Assuntos
Actinobacteria , Antineoplásicos , Nocardia , Poríferos , Actinobacteria/química , Actinomyces , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Células CACO-2 , Humanos , Nocardia/química , Nocardiopsis
7.
J Adv Pharm Technol Res ; 13(Suppl 1): S88-S92, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36643151

RESUMO

To extract the melanin pigment from marine microbes and their biological potential, the present study was done. Isolation and identification of the melanin-producing Nocardiopsis sp. were obtained from the sediment samples. Zone of inhibition and minimal inhibitory concentration test was performed using melanin. Melanin was extracted from sediment-associated marine Nocardiopsis sp. In the present study, marine actinobacterium was identified by the conventional method, and the isolate was identified as Nocardiopsis sp. Melanin was extracted, and antibacterial activities were performed against different pathogens and the highest zone of inhibition is more in the E. coli while related to another two species. From previous observation done by Fu et al., they have said that marine actinobacteria have the ability of antimicrobial activity, which is very much helpful in producing the potential antimicrobial drugs this was similar to our study that marine actinobacteria have the capability to produce melanin pigment, and at the same time, it helps as to show the antibacterial activity. We concluded that melanin is produced by the Nocardiopsis sp. We also found that melanin extracted from the Nocardiopsis sp. of marine actinobacterium also has an antibacterial effect.

8.
J Basic Microbiol ; 61(11): 993-1001, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34520075

RESUMO

The utilization of microorganisms like bacteria in the biological synthesis of silver nanoparticles (AgNPs) has attracted widespread attention due to their ability to synthesize different shape sizes, states, and morphology nanoparticles. In the current study, the green synthesis of AgNPs by Nocardiopsis sp. 16S ribosomal RNA analysis was used to characterize the Nocardiopsis sp. The synthesized AgNPs were characterized through multi-instrument platforms such as transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), UV-Vis spectroscopy, scanning electron microscope (SEM), and X-ray diffraction analysis (XRD). The antimicrobial activity of the synthesized AgNPs was determined by the agar plate diffusion method. The UV-Vis absorbance analysis of the synthesized AgNPs has a significant absorbance at 384 nm, confirming the AgNPs' surface plasmon resonance. The SEM and TEM characterizations indicate that the particle size ranges from 2 to 10 nm and is spherical. Additionally, the FTIR spectra revealed bands from 476 to 3819cm-1 , respectively. The XRD planes study pronounced strong bands ranging are between 111 and 311 corresponding to cubic face-center of the silver. Also, the antimicrobial activity of AgNPs indicated the biogenic AgNPs could control the growth of the clinical isolates. The AgNPs produced by Nocardiopsis sp. supernatant could be used in different nanomedicinal applications.


Assuntos
Antibacterianos/metabolismo , Nanopartículas Metálicas/química , Nocardiopsis/metabolismo , Prata/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Humanos , Testes de Sensibilidade Microbiana , Nocardiopsis/genética , Nocardiopsis/isolamento & purificação , Tamanho da Partícula , Filogenia , RNA Ribossômico 16S/genética , Prata/química , Prata/farmacologia
9.
3 Biotech ; 11(8): 386, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34350091

RESUMO

Growth of human population leads to many global and medical problems. The problems include the crisis of health, antibiotic resistance, drug discovery, etc. Increasing antimicrobial resistance of microorganisms results in the need to screen natural products (incl. antibiotics and antimicrobial peptides) and their producers in different ecological niches. The purpose of this study was to estimate antibiotic activity and biotechnological potential of rare actinobacteria Nocardiopsis sp. The strain was isolated from Okhotnichya cave located in Siberia. Here, we cultivated the strain at 3 temperature modes (13 °C, 28 °C, 37 °C) in 11 liquid nutrient (rich and poor) media. Using modern assays of liquid chromatography and high-resolution mass spectrometry, we estimated the content and number of produced natural products, distribution of their masses, and potential rate of novel secondary metabolites. We demonstrated that minimal nutrient media with l-asparagine and SM25 media with malt extract were less productive at current experimental parameters. As it was shown, this strain was characterized by antibiotic properties against Bacillus subtilis when cultivated at 28 °C. Also, weak antibiotic activity of crude extracts was found in strain cultivation at 13 °C. Also, we detected a high number of novel amphiphilic and hydrophobic NPs produced by this strain. We demonstrated both the influence of the nutrient media composition and cultivation temperature on biosynthetic capabilities of rare strain Nocardiopsis sp. Finally, high level of natural products that were predicted as novel confirms high biotechnological value of rare genera of Actinobacteria that could be explained by the evolution of microorganisms in the isolated environment of cave ecosystem.

10.
Appl Biochem Biotechnol ; 191(4): 1695-1710, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32206967

RESUMO

We evaluated various agricultural lignocellulosic biomass and variety of fungi to produce cellulolytic enzymes cocktail to yield high amount of reducing sugars. Solid-state fermentation was performed using water hyacinth, paddy straw, corn straw, soybean husk/tops, wheat straw, and sugarcane bagasse using fungi like Nocardiopsis sp. KNU, Trichoderma reesei, Trichoderma viride, Aspergillus flavus, and Phanerochaete chrysosporium alone and in combination to produce cellulolytic enzymes. Water hyacinth produced (U ml-1) endoglucanase (51.13) and filter paperase (0.55), and corn straw produced (U ml-1) ß-glucosidase (4.65), xylanase (113.32), and glucoamylase (41.27) after 7-day incubation using Nocardiopsis sp. KNU. Production of cellulolytic enzymes was altered due to addition of various nitrogen sources, metal ions, vitamins, and amino acids. The maximum cellulolytic enzymes were produced by P. chrysosporium (endoglucanase; 166.32 U ml-1 and exoglucanase; 12.20 U ml-1), and by T. viride (filter paperase; 1.57 U ml-1). Among all, co-culture of T. reesei, T. viride, A. flavus, and P. chrysosporium showed highest ß-glucosidase (17.05 U ml-1). The highest xylanase (1129 U ml-1) was observed in T. viride + P. chrysosporium co-culture. This study revealed the dependency on substrate and microorganism to produce good quality enzyme cocktail to obtain maximum reducing sugars.


Assuntos
Aspergillus niger/enzimologia , Celulase/biossíntese , Proteínas Fúngicas/biossíntese , Microbiologia Industrial/métodos , Lignina/química , Biomassa , Celulose , Fermentação , Hidrólise , Hypocreales/enzimologia , Phanerochaete/enzimologia , Saccharum , Triticum , beta-Glucosidase/biossíntese
11.
Nat Prod Res ; 34(15): 2219-2224, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31184497

RESUMO

Strain HT88 was isolated from the fresh stems of Mallotus nudiflorus L, and it was identified as Nocardiopsis sp. by analyzing its morphology and the 16S rRNA sequence. The extracts of fermented HT88 showed potent antimicrobial activities. Bioassay guided separation of extracts led to eight proline (or hydroxyproline, Hyp)-containing cyclic dipeptides. Their structures were determined by 1D and 2D NMR spectroscopy and ESI mass spectrometry and further comparison with existing 1H and 13C NMR, melting points and specific rotation data. The eight 2,5-diketopiperazines (DKPs) were identified as cyclo(L-Pro-L-Leu) (1), cyclo(Pro-Leu) (2), cyclo(L-trans-Hyp-L-Leu) (3), cyclo(D-trans-Hyp-D-Leu) (4), and cyclo(D-Pro-L-Phe) (5), cyclo(L-Pro-L-Phe) (6), and cyclo(D-cis-Hyp-L-Phe) (7), cyclo(L-trans-Hyp-L-Phe) (8), respectively. Up to date, this is the first isolation of four pairs of proline based DKPs from Nocardiopsis sp.


Assuntos
Dipeptídeos/isolamento & purificação , Mallotus (Planta)/microbiologia , Nocardia/química , Prolina , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Dicetopiperazinas/química , Dicetopiperazinas/isolamento & purificação , Dipeptídeos/química , Dipeptídeos/farmacologia , Hidroxiprolina , Testes de Sensibilidade Microbiana , Peptídeos Cíclicos
12.
J Basic Microbiol ; 59(3): 288-301, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30604885

RESUMO

Antagonistic haloalkaliphilic Nocardiopsis sp. AJ1 (GenBank JX575136.1), isolated and identified from the saline soil of Kovalam solar salterns was able to produce antimicrobial secondary metabolites and effectively suppressed several bacterial and fungal pathogens. The metabolite extracted from ethyl acetate precipitation suppressed the bacterial and fungal pathogens to the range between 2.14 and 20.14 mm and also controlled the shrimp killer virus WSSV by 83% than the control and significantly (p < 0.05) differed. GC-MS analysis revealed that, the ethyl acetate precipitation contains pyrrolo (1,2-A(pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl)-) and actinomycin C2. Non ribosomal peptide synthetase (NRPS) was amplified by PCR with the amplicon size of 750-800 bp length and further predicted the secondary structure by Iterative Threading Assembly Refinement (I-TASSER) bioinformatics approach. I-TASSER prediction helped to find out the secondary, 3-D structure, and ligand binding sites. The top ten modelling concluded that, the NRPS gene is closely similar to surfactin synthesizing gene, surfactin A synthetase C (SRFA-C). The findings revealed that, the active compounds from the secondary metabolites effectively suppressed the pathogenic bacteria, fungi, and virus and useful to develop antimicrobials.


Assuntos
Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Nocardia/química , Nocardia/isolamento & purificação , Vírus/efeitos dos fármacos , Acetatos/química , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Dactinomicina/análogos & derivados , Dactinomicina/química , Testes de Sensibilidade Microbiana , Modelos Moleculares , Nocardia/classificação , Nocardia/genética , Peptídeo Sintases/química , Peptídeo Sintases/genética , Filogenia , Pirazinas/química , Pirróis/química , RNA Ribossômico 16S/genética , Salinidade , Microbiologia do Solo
13.
Molecules ; 23(2)2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29385078

RESUMO

Terretonin N (1), a new highly oxygenated and unique tetracyclic 6-hydroxymeroterpenoid, was isolated together with seven known compounds from the ethyl acetate extract of a solid-state fermented culture of Nocardiopsis sp. Their structures were elucidated by spectroscopic analysis. The structure and absolute configuration of 1 were unambiguously determined by X-ray crystallography. The isolation and taxonomic characterization of Nocardiopsis sp. is reported. The antimicrobial activity and cytotoxicity of the strain extract and compound 1 were studied using different microorganisms and a cervix carcinoma cell line, respectively.


Assuntos
Actinobacteria/química , Monoterpenos/química , Monoterpenos/isolamento & purificação , Cristalografia por Raios X , Estrutura Molecular
14.
3 Biotech ; 7(2): 115, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28567627

RESUMO

Novel and potential antimicrobial compounds are essential to tackle the frequently emerging multidrug-resistant pathogens and also to develop environment friendly agricultural practices. In the current study, endophytic actinomycetes from rhizome of Zingiber officinale were explored in terms of its diversity and bioactive properties. Fourteen different organisms were isolated, identified and screened for activity against Pythium myriotylum and human clinical pathogens. Among these, Nocardiopsis sp. ZoA1 was found to have highest inhibition with excellent antibacterial effects compared to standard antibiotics. Remarkable antibiofilm property was also shown by the extract of ZoA1. Its antifungal activity against Pythium and other common phytopathogens was also found to be promising as confirmed by scanning electron microscopic analysis. By PCR-based sequence analysis of phz E gene, the organism was confirmed for the genetic basis of phenazine biosynthesis. Further GC-MS analysis of Nocardiopsis sp. revealed the presence of various compounds including Phenol, 2,4-bis (1,1-dimethylethyl) and trans cinnamic acid which can have significant role in the observed result. The current study is the first report on endophytic Nocardiopsis sp. from ginger with promising applications. In vivo treatment of Nocardiopsis sp. on ginger rhizome has revealed its inhibition towards the colonization of P. myriotylum which makes the study to have promises to manage the severe diseases in ginger like rhizome rot.

15.
3 Biotech ; 7(3): 163, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28660456

RESUMO

Nocardiopsis sp. KNU was found to degrade various lignocellulosic waste materials, namely, sorghum husk, sugarcane tops and leaves, wheat straw, and rice husk very efficiently. The strain was found to produce high amounts of cellulase and hemicellulase. Augmentation of cotton seed cake as an organic nitrogen source revealed inductions in activities of endoglucanase, glucoamylase, and xylanase up to 70.03, 447.89, and 275.10 U/ml, respectively. Nonionic surfactant Tween-80 addition was found to enhance the activity of endoglucanase enzyme. Cellulase produced by Nocardiopsis sp. KNU utilizing sorghum husk as a substrate was found to retain its stability in various surfactants up to 90%. The produced enzyme was further tested for saccharification of mild alkali pretreated rice husk. The changes in morphology and functional group were analyzed using scanning electron microscopy and Fourier transform infrared spectroscopy. Enzymatic saccharification confirmed the hydrolytic potential of crude cellulase. The hydrolysate products were analyzed by high-performance thin layer chromatography.

16.
J Ind Microbiol Biotechnol ; 44(4-5): 589-594, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28181080

RESUMO

Since the discovery of the first antibiotic, natural products have played an important role in chemistry, biology and medicine. To explore the potential of bioactive compounds from microbes isolated from the southeast of Tibet, China, a crude extract library was constructed and screened against Staphylococcus aureus. The strain Nocardiopsis sp. LS150010 was scaled up and subjected to further chemical studies, resulting in the identification of N-salicyloyl-2-aminopropan-1,3-diol (2) and its rare aziridine derivative, madurastatin B3 (1). Their structures were determined by detailed analysis of 1D, 2D NMR and HRMS data. Compounds 1 and 2 displayed significant inhibitory activity against S. aureus and methicillin resistant S. aureus, with MIC values of 6.25 µg/mL. Compound 1 also showed potent inhibitory activity against Bacillus subtilis and Escherichia coli, as well as activity in a Mycobacterium tuberculosis Bacillus Calmette-Guérin infected THP-1 cell model.


Assuntos
Actinomycetales/química , Antituberculosos/química , Aziridinas/química , Actinomycetales/classificação , Actinomycetales/isolamento & purificação , Antituberculosos/farmacologia , Aziridinas/farmacologia , Bacillus subtilis/efeitos dos fármacos , China , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Microbiologia do Solo
17.
Int J Biol Macromol ; 70: 292-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25014636

RESUMO

A Nocardiopsis sp. stain B2 with an ability to produce stable α-amylase was isolated from marine sediments. The characterization of microorganism was done by biochemical tests and 16S rDNA sequencing. The α-amylase was purified by gel filtration chromatography by using sephadex G-75. The molecular mass of the amylase was found to be 45 kDa by SDS-PAGE and gel filtration chromatography. The isolated α-amylase was immobilized by ionotropic gelation technique using gellan gum (GG). These microspheres were spherical with average particle size of 375.62±21.76 to 492.54±32.18 µm. The entrapment efficiency of these α-amylase loaded GG microspheres was found 74.76±1.32 to 87.64±1.52%. Characterization of α-amylase-gellan gum microspheres was confirmed using FTIR and SEM analysis. The in vitro amylase release kinetic have been studied by various mathematical models that follow the Korsmeyer-Peppas model (R2=0.9804-0.9831) with anomalous (non-Fickian) diffusion release mechanism.


Assuntos
Actinobacteria/enzimologia , Enzimas Imobilizadas , Microesferas , Polissacarídeos Bacterianos/química , alfa-Amilases/química , Actinobacteria/crescimento & desenvolvimento , Ativação Enzimática/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Cinética , Tamanho da Partícula , Cloreto de Sódio/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , alfa-Amilases/isolamento & purificação
18.
J Basic Microbiol ; 53(7): 608-16, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23864545

RESUMO

Feather waste, generated in large quantities as a byproduct of commercial poultry processing, is nearly pure keratin protein, and keratin in its native state is not degradable by common proteolytic enzymes. The aim of the study was to find a potent feather degrading actinobacteria from feather waste soil. Out of 91 actinobacterial isolates recorded from feather waste soil in Tiruchirappalli and Nammakkal District, Tamil Nadu, India, isolate SD5 was selected for characterization because it exhibited significant keratinolytic activity. On the basis of the phenotypic, biochemical characterization and 16S rRNA gene-sequencing studies, the isolate was identified as Nocardiopsis sp. SD5. Protease and keratinase activity of Nocardiopsis sp. SD5 were analyzed. The enzyme was more stable over the neutral pH and the temperature of 40 °C. The optimum temperature and pH for both proteolytic and keratinolytic activity was determined at 50 °C and pH 9, respectively. Enzyme inhibitors, detergents and chelator declined the enzyme activity with increasing concentration. Nondenaturing polyacrylamide gel electrophoresis and zymogram elucidated the presence of 30 and 60 kDa protease enzymes. These findings indicated that thermo alkaliphilic feather degrading strain Nocardiopsis sp. SD5 could be used to control the feather waste pollution and to convert keratin rich feather waste into useful feedstock for poultry industry.


Assuntos
Plumas/microbiologia , Nocardia/isolamento & purificação , Animais , Plumas/química , Concentração de Íons de Hidrogênio , Índia , Resíduos Industriais , Queratinas/metabolismo , Nocardia/classificação , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Aves Domésticas/microbiologia , Temperatura
19.
Braz. j. microbiol ; 42(2): 543-553, Apr.-June 2011. graf, tab
Artigo em Inglês | LILACS | ID: lil-590001

RESUMO

The response of two marine actinomycetes such as Streptomyces sp. MADO2 and Nocardiopsis sp. MADO3 to osmotic stress in minimal medium M63 and in glycerol-asparagine medium (ISP5) was studied. The two strains were moderately halophilic and the behavior of the strain Streptomyces sp. MADO2 and Nocardiopsis sp. MADO3 towards the salt stress was varied depends on the media composition and the salinity concentration. The strain Streptomyces sp. was more sensitive to salt stress than Nocardiopsis sp. The growth of both Streptomyces sp. and Nocardiopsis sp. were inhibited at 1 M NaCl irrespective of the medium used. The Nocardiopsis sp. acquired osmoadaptation on ISP5 medium whereas the Streptomyces sp. showed poor growth on M63 medium. Glycine betaine (GB), proline and trehalose played a critical role in osmotic adaptation at high osmolarity whereas at low osmolarity they showed an inhibitory effect on the bacterial growth. The present findings confirmed that GB was the powerful osmoprotectant for Streptomyces sp. and Nocardiopsis sp. grown at 1 M NaCl both in M63 and ISP5 media.

20.
Braz J Microbiol ; 42(2): 543-53, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24031666

RESUMO

The response of two marine actinomycetes such as Streptomyces sp. MADO2 and Nocardiopsis sp. MADO3 to osmotic stress in minimal medium M63 and in glycerol-asparagine medium (ISP5) was studied. The two strains were moderately halophilic and the behavior of the strain Streptomyces sp. MADO2 and Nocardiopsis sp. MADO3 towards the salt stress was varied depends on the media composition and the salinity concentration. The strain Streptomyces sp. was more sensitive to salt stress than Nocardiopsis sp. The growth of both Streptomyces sp. and Nocardiopsis sp. were inhibited at 1 M NaCl irrespective of the medium used. The Nocardiopsis sp. acquired osmoadaptation on ISP5 medium whereas the Streptomyces sp. showed poor growth on M63 medium. Glycine betaine (GB), proline and trehalose played a critical role in osmotic adaptation at high osmolarity whereas at low osmolarity they showed an inhibitory effect on the bacterial growth. The present findings confirmed that GB was the powerful osmoprotectant for Streptomyces sp. and Nocardiopsis sp. grown at 1 M NaCl both in M63 and ISP5 media.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA