Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
J Med Imaging Radiat Oncol ; 68(6): 659-666, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39123308

RESUMO

INTRODUCTION: Early-stage lung cancer diagnosis through detection of nodules on computed tomography (CT) remains integral to patient survivorship, promoting national screening programmes and diagnostic tools using artificial intelligence (AI) convolutional neural networks (CNN); the software of AI-Rad Companion™ (AIRC), capable of self-optimising feature recognition. This study aims to demonstrate the practical value of AI-based lung nodule detection in a clinical setting; a limited body of research. METHODS: One hundred and eighty-three non-contrast CT chest studies from a single centre were assessed for AIRC software analysis. Prospectively collected data from AIRC detection and characterisation of lung nodules (size: ≥3 mm) were assessed against the reference standard; reported findings of a blinded consultant radiologist. RESULTS: One hundred and sixty-seven CT chest studies were included; 52% indicated for nodule or lung cancer surveillance. Of 289 lung nodules, 219 (75.8%) nodules (mean size: 10.1 mm) were detected by both modalities, 28 (9.7%) were detected by AIRC alone and 42 (14.5%) by radiologist alone. Solid nodules missed by AIRC were larger than those missed by radiologist (11.5 mm vs 4.7 mm, P < 0.001). AIRC software sensitivity was 87.3%, with significant false positive and negative rates demonstrating 12.5% specificity (PPV 0.6, NPV 0.4). CONCLUSION: In a population of high nodule prevalence, AIRC lung nodule detection software demonstrates sensitivity comparable to that of consultant radiologist. The clinical significance of larger sized nodules missed by AIRC software presents a barrier to current integration in practice. We consider this research highly relevant in providing focus for ongoing software development, potentiating the future success of AI-based tools within diagnostic radiology.


Assuntos
Neoplasias Pulmonares , Redes Neurais de Computação , Software , Nódulo Pulmonar Solitário , Tomografia Computadorizada por Raios X , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Nódulo Pulmonar Solitário/diagnóstico por imagem , Austrália , Sensibilidade e Especificidade , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Estudos Prospectivos , Adulto , Idoso de 80 Anos ou mais
2.
J Med Imaging (Bellingham) ; 11(4): 044507, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39119067

RESUMO

Purpose: Synthetic datasets hold the potential to offer cost-effective alternatives to clinical data, ensuring privacy protections and potentially addressing biases in clinical data. We present a method leveraging such datasets to train a machine learning algorithm applied as part of a computer-aided detection (CADe) system. Approach: Our proposed approach utilizes clinically acquired computed tomography (CT) scans of a physical anthropomorphic phantom into which manufactured lesions were inserted to train a machine learning algorithm. We treated the training database obtained from the anthropomorphic phantom as a simplified representation of clinical data and increased the variability in this dataset using a set of randomized and parameterized augmentations. Furthermore, to mitigate the inherent differences between phantom and clinical datasets, we investigated adding unlabeled clinical data into the training pipeline. Results: We apply our proposed method to the false positive reduction stage of a lung nodule CADe system in CT scans, in which regions of interest containing potential lesions are classified as nodule or non-nodule regions. Experimental results demonstrate the effectiveness of the proposed method; the system trained on labeled data from physical phantom scans and unlabeled clinical data achieves a sensitivity of 90% at eight false positives per scan. Furthermore, the experimental results demonstrate the benefit of the physical phantom in which the performance in terms of competitive performance metric increased by 6% when a training set consisting of 50 clinical CT scans was enlarged by the scans obtained from the physical phantom. Conclusions: The scalability of synthetic datasets can lead to improved CADe performance, particularly in scenarios in which the size of the labeled clinical data is limited or subject to inherent bias. Our proposed approach demonstrates an effective utilization of synthetic datasets for training machine learning algorithms.

3.
J Clin Med ; 13(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39124715

RESUMO

Background: Video-assisted thoracic surgery (VATS) has become the gold-standard approach for lung resections. Given the impossibility of digital palpation, we witnessed the progressive development of peri-centimetric and deeply located pulmonary nodule alternative detection techniques. Intra-operative lung ultrasound is an increasingly effective diagnostic method, although only a few small studies have evaluated its accuracy. This study analyzed the effectiveness and sensitivity of uniportal VATS with intra-operative lung ultrasound (ILU), in comparison to multiportal VATS, for visualizing solitary and deep-sited pulmonary nodules. Methods: Patient data from October 2021 to October 2023, from a single center, were retrospectively gathered and analyzed. In total, 31 patients who received ILU-aided uniportal VATS (Group A) were matched for localization time, operative time, sensitivity, and post-operative complications, with 33 undergoing nodule detection with conventional techniques, such as manual or instrumental palpation, in multiportal VATS (Group B). Surgeries were carried out by the same team and ILU was performed by a certified operator. Results: Group A presented a significantly shorter time for nodule detection [median (IQR): 9 (8-10) vs. 14 (12.5-15) min; p < 0.001] and operative time [median (IQR): 33 (29-38) vs. 43 (39-47) min; p < 0.001]. All nodules were correctly localized and resected in Group A (sensitivity 100%), while three were missed in Group B (sensitivity 90.9%). Two patients in Group B presented with a prolonged air leak that was conservatively managed, compared to none in Group A, resulting in a post-operative morbidity rate of 6.1% vs. 0% (p = 0.16). Conclusions: ILU-aided uniportal VATS was faster and more effective than conventional techniques in multiportal VATS for nodule detection.

4.
Int J Comput Assist Radiol Surg ; 19(10): 1991-2000, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39003437

RESUMO

PURPOSE: Many large radiographic datasets of lung nodules are available, but the small and hard-to-detect nodules are rarely validated by computed tomography. Such difficult nodules are crucial for training nodule detection methods. This lack of difficult nodules for training can be addressed by artificial nodule synthesis algorithms, which can create artificially embedded nodules. This study aimed to develop and evaluate a novel cost function for training networks to detect such lesions. Embedding artificial lesions in healthy medical images is effective when positive cases are insufficient for network training. Although this approach provides both positive (lesion-embedded) images and the corresponding negative (lesion-free) images, no known methods effectively use these pairs for training. This paper presents a novel cost function for segmentation-based detection networks when positive-negative pairs are available. METHODS: Based on the classic U-Net, new terms were added to the original Dice loss for reducing false positives and the contrastive learning of diseased regions in the image pairs. The experimental network was trained and evaluated, respectively, on 131,072 fully synthesized pairs of images simulating lung cancer and real chest X-ray images from the Japanese Society of Radiological Technology dataset. RESULTS: The proposed method outperformed RetinaNet and a single-shot multibox detector. The sensitivities were 0.688 and 0.507 when the number of false positives per image was 0.2, respectively, with and without fine-tuning under the leave-one-case-out setting. CONCLUSION: To our knowledge, this is the first study in which a method for detecting pulmonary nodules in chest X-ray images was evaluated on a real clinical dataset after being trained on fully synthesized images. The synthesized dataset is available at https://zenodo.org/records/10648433 .


Assuntos
Neoplasias Pulmonares , Nódulo Pulmonar Solitário , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Nódulo Pulmonar Solitário/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Radiografia Torácica/métodos , Algoritmos , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Redes Neurais de Computação
5.
Int J Comput Assist Radiol Surg ; 19(10): 2089-2099, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39044036

RESUMO

PURPOSE: The current study explores the application of 3D U-Net architectures combined with Inception and ResNet modules for precise lung nodule detection through deep learning-based segmentation technique. This investigation is motivated by the objective of developing a Computer-Aided Diagnosis (CAD) system for effective diagnosis and prognostication of lung nodules in clinical settings. METHODS: The proposed method trained four different 3D U-Net models on the retrospective dataset obtained from AIIMS Delhi. To augment the training dataset, affine transformations and intensity transforms were utilized. Preprocessing steps included CT scan voxel resampling, intensity normalization, and lung parenchyma segmentation. Model optimization utilized a hybrid loss function that combined Dice Loss and Focal Loss. The model performance of all four 3D U-Nets was evaluated patient-wise using dice coefficient and Jaccard coefficient, then averaged to obtain the average volumetric dice coefficient (DSCavg) and average Jaccard coefficient (IoUavg) on a test dataset comprising 53 CT scans. Additionally, an ensemble approach (Model-V) was utilized featuring 3D U-Net (Model-I), ResNet (Model-II), and Inception (Model-III) 3D U-Net architectures, combined with two distinct patch sizes for further investigation. RESULTS: The ensemble of models obtained the highest DSCavg of 0.84 ± 0.05 and IoUavg of 0.74 ± 0.06 on the test dataset, compared against individual models. It mitigated false positives, overestimations, and underestimations observed in individual U-Net models. Moreover, the ensemble of models reduced average false positives per scan in the test dataset (1.57 nodules/scan) compared to individual models (2.69-3.39 nodules/scan). CONCLUSIONS: The suggested ensemble approach presents a strong and effective strategy for automatically detecting and delineating lung nodules, potentially aiding CAD systems in clinical settings. This approach could assist radiologists in laborious and meticulous lung nodule detection tasks in CT scans, improving lung cancer diagnosis and treatment planning.


Assuntos
Imageamento Tridimensional , Neoplasias Pulmonares , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Estudos Retrospectivos , Imageamento Tridimensional/métodos , Nódulo Pulmonar Solitário/diagnóstico por imagem , Aprendizado Profundo , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
6.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(3): 503-510, 2024 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-38932536

RESUMO

Automatic detection of pulmonary nodule based on computer tomography (CT) images can significantly improve the diagnosis and treatment of lung cancer. However, there is a lack of effective interactive tools to record the marked results of radiologists in real time and feed them back to the algorithm model for iterative optimization. This paper designed and developed an online interactive review system supporting the assisted diagnosis of lung nodules in CT images. Lung nodules were detected by the preset model and presented to doctors, who marked or corrected the lung nodules detected by the system with their professional knowledge, and then iteratively optimized the AI model with active learning strategy according to the marked results of radiologists to continuously improve the accuracy of the model. The subset 5-9 dataset of the lung nodule analysis 2016(LUNA16) was used for iteration experiments. The precision, F1-score and MioU indexes were steadily improved with the increase of the number of iterations, and the precision increased from 0.213 9 to 0.565 6. The results in this paper show that the system not only uses deep segmentation model to assist radiologists, but also optimizes the model by using radiologists' feedback information to the maximum extent, iteratively improving the accuracy of the model and better assisting radiologists.


Assuntos
Algoritmos , Diagnóstico por Computador , Neoplasias Pulmonares , Tomografia Computadorizada por Raios X , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Diagnóstico por Computador/métodos , Nódulo Pulmonar Solitário/diagnóstico por imagem , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Aprendizado de Máquina
7.
Comput Biol Med ; 173: 108361, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569236

RESUMO

Deep learning plays a significant role in the detection of pulmonary nodules in low-dose computed tomography (LDCT) scans, contributing to the diagnosis and treatment of lung cancer. Nevertheless, its effectiveness often relies on the availability of extensive, meticulously annotated dataset. In this paper, we explore the utilization of an incompletely annotated dataset for pulmonary nodules detection and introduce the FULFIL (Forecasting Uncompleted Labels For Inexpensive Lung nodule detection) algorithm as an innovative approach. By instructing annotators to label only the nodules they are most confident about, without requiring complete coverage, we can substantially reduce annotation costs. Nevertheless, this approach results in an incompletely annotated dataset, which presents challenges when training deep learning models. Within the FULFIL algorithm, we employ Graph Convolution Network (GCN) to discover the relationships between annotated and unannotated nodules for self-adaptively completing the annotation. Meanwhile, a teacher-student framework is employed for self-adaptive learning using the completed annotation dataset. Furthermore, we have designed a Dual-Views loss to leverage different data perspectives, aiding the model in acquiring robust features and enhancing generalization. We carried out experiments using the LUng Nodule Analysis (LUNA) dataset, achieving a sensitivity of 0.574 at a False positives per scan (FPs/scan) of 0.125 with only 10% instance-level annotations for nodules. This performance outperformed comparative methods by 7.00%. Experimental comparisons were conducted to evaluate the performance of our model and human experts on test dataset. The results demonstrate that our model can achieve a comparable level of performance to that of human experts. The comprehensive experimental results demonstrate that FULFIL can effectively leverage an incomplete pulmonary nodule dataset to develop a robust deep learning model, making it a promising tool for assisting in lung nodule detection.


Assuntos
Aprendizado Profundo , Neoplasias Pulmonares , Nódulo Pulmonar Solitário , Humanos , Nódulo Pulmonar Solitário/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Pulmão/diagnóstico por imagem
8.
Med Biol Eng Comput ; 62(7): 1991-2004, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38429443

RESUMO

Detection of suspicious pulmonary nodules from lung CT scans is a crucial task in computer-aided diagnosis (CAD) systems. In recent years, various deep learning-based approaches have been proposed and demonstrated significant potential for addressing this task. However, existing deep convolutional neural networks exhibit limited long-range dependency capabilities and neglect crucial contextual information, resulting in reduced performance on detecting small-size nodules in CT scans. In this work, we propose a novel end-to-end framework called LGDNet for the detection of suspicious pulmonary nodules in lung CT scans by fusing local features and global representations. To overcome the limited long-range dependency capabilities inherent in convolutional operations, a dual-branch module is designed to integrate the convolutional neural network (CNN) branch that extracts local features with the transformer branch that captures global representations. To further address the issue of misalignment between local features and global representations, an attention gate module is proposed in the up-sampling stage to selectively combine misaligned semantic data from both branches, resulting in more accurate detection of small-size nodules. Our experiments on the large-scale LIDC dataset demonstrate that the proposed LGDNet with the dual-branch module and attention gate module could significantly improve the nodule detection sensitivity by achieving a final competition performance metric (CPM) score of 89.49%, outperforming the state-of-the-art nodule detection methods, indicating its potential for clinical applications in the early diagnosis of lung diseases.


Assuntos
Neoplasias Pulmonares , Redes Neurais de Computação , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico , Aprendizado Profundo , Diagnóstico por Computador/métodos , Nódulo Pulmonar Solitário/diagnóstico por imagem , Algoritmos , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
9.
J Imaging Inform Med ; 37(1): 196-208, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38343213

RESUMO

Lung cancer is the leading cause of cancer death. Since lung cancer appears as nodules in the early stage, detecting the pulmonary nodules in an early phase could enhance the treatment efficiency and improve the survival rate of patients. The development of computer-aided analysis technology has made it possible to automatically detect lung nodules in Computed Tomography (CT) screening. In this paper, we propose a novel detection network, TiCNet. It is attempted to embed a transformer module in the 3D Convolutional Neural Network (CNN) for pulmonary nodule detection on CT images. First, we integrate the transformer and CNN in an end-to-end structure to capture both the short- and long-range dependency to provide rich information on the characteristics of nodules. Second, we design the attention block and multi-scale skip pathways for improving the detection of small nodules. Last, we develop a two-head detector to guarantee high sensitivity and specificity. Experimental results on the LUNA16 dataset and PN9 dataset showed that our proposed TiCNet achieved superior performance compared with existing lung nodule detection methods. Moreover, the effectiveness of each module has been proven. The proposed TiCNet model is an effective tool for pulmonary nodule detection. Validation revealed that this model exhibited excellent performance, suggesting its potential usefulness to support lung cancer screening.

10.
Phys Med Biol ; 69(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38382097

RESUMO

Objective. Accurate and automatic detection of pulmonary nodules is critical for early lung cancer diagnosis, and promising progress has been achieved in developing effective deep models for nodule detection. However, most existing nodule detection methods merely focus on integrating elaborately designed feature extraction modules into the backbone of the detection network to extract rich nodule features while ignore disadvantages of the structure of detection network itself. This study aims to address these disadvantages and develop a deep learning-based algorithm for pulmonary nodule detection to improve the accuracy of early lung cancer diagnosis.Approach. In this paper, an S-shaped network called S-Net is developed with the U-shaped network as backbone, where an information fusion branch is used to propagate lower-level details and positional information critical for nodule detection to higher-level feature maps, head shared scale adaptive detection strategy is utilized to capture information from different scales for better detecting nodules with different shapes and sizes and the feature decoupling detection head is used to allow the classification and regression branches to focus on the information required for their respective tasks. A hybrid loss function is utilized to fully exploit the interplay between the classification and regression branches.Main results. The proposed S-Net network with ResSENet and other three U-shaped backbones from SANet, OSAF-YOLOv3 and MSANet (R+SC+ECA) models achieve average CPM scores of 0.914, 0.915, 0.917 and 0.923 on the LUNA16 dataset, which are significantly higher than those achieved with other existing state-of-the-art models.Significance. The experimental results demonstrate that our proposed method effectively improves nodule detection performance, which implies potential applications of the proposed method in clinical practice.


Assuntos
Neoplasias Pulmonares , Nódulo Pulmonar Solitário , Humanos , Redes Neurais de Computação , Nódulo Pulmonar Solitário/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Imageamento Tridimensional/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Pulmão
11.
Med Phys ; 51(3): 1687-1701, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224306

RESUMO

BACKGROUND: Lung cancer is the deadliest and second most common cancer in the United States due to the lack of symptoms for early diagnosis. Pulmonary nodules are small abnormal regions that can be potentially correlated to the occurrence of lung cancer. Early detection of these nodules is critical because it can significantly improve the patient's survival rates. Thoracic thin-sliced computed tomography (CT) scanning has emerged as a widely used method for diagnosing and prognosis lung abnormalities. PURPOSE: The standard clinical workflow of detecting pulmonary nodules relies on radiologists to analyze CT images to assess the risk factors of cancerous nodules. However, this approach can be error-prone due to the various nodule formation causes, such as pollutants and infections. Deep learning (DL) algorithms have recently demonstrated remarkable success in medical image classification and segmentation. As an ever more important assistant to radiologists in nodule detection, it is imperative ensure the DL algorithm and radiologist to better understand the decisions from each other. This study aims to develop a framework integrating explainable AI methods to achieve accurate pulmonary nodule detection. METHODS: A robust and explainable detection (RXD) framework is proposed, focusing on reducing false positives in pulmonary nodule detection. Its implementation is based on an explanation supervision method, which uses nodule contours of radiologists as supervision signals to force the model to learn nodule morphologies, enabling improved learning ability on small dataset, and enable small dataset learning ability. In addition, two imputation methods are applied to the nodule region annotations to reduce the noise within human annotations and allow the model to have robust attributions that meet human expectations. The 480, 265, and 265 CT image sets from the public Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) dataset are used for training, validation, and testing. RESULTS: Using only 10, 30, 50, and 100 training samples sequentially, our method constantly improves the classification performance and explanation quality of baseline in terms of Area Under the Curve (AUC) and Intersection over Union (IoU). In particular, our framework with a learnable imputation kernel improves IoU from baseline by 24.0% to 80.0%. A pre-defined Gaussian imputation kernel achieves an even greater improvement, from 38.4% to 118.8% from baseline. Compared to the baseline trained on 100 samples, our method shows less drop in AUC when trained on fewer samples. A comprehensive comparison of interpretability shows that our method aligns better with expert opinions. CONCLUSIONS: A pulmonary nodule detection framework was demonstrated using public thoracic CT image datasets. The framework integrates the robust explanation supervision (RES) technique to ensure the performance of nodule classification and morphology. The method can reduce the workload of radiologists and enable them to focus on the diagnosis and prognosis of the potential cancerous pulmonary nodules at the early stage to improve the outcomes for lung cancer patients.


Assuntos
Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Nódulo Pulmonar Solitário , Humanos , Pulmão , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Nódulo Pulmonar Solitário/diagnóstico por imagem
12.
Phys Med Biol ; 69(4)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38237183

RESUMO

Recent developments in x-ray image based pulmonary nodule detection have achieved remarkable results. However, existing methods are focused on transferring off-the-shelf coarse-grained classification models and fine-grained detection models rather than developing a dedicated framework optimized for nodule detection. In this paper, we propose PN-DetX, which as we know is the first dedicated pulmonary nodule detection framework. PN-DetX incorporates feature fusion and self-attention into x-ray based pulmonary nodule detection tasks, achieving improved detection performance. Specifically, PN-DetX adopts CSPDarknet backbone to extract features, and utilizes feature augmentation module to fuse features from different levels followed by context aggregation module to aggregate semantic information. To evaluate the efficacy of our method, we collect aLArge-scalePulmonaryNOduleDetection dataset,LAPNOD, comprising 2954 x-ray images along with expert-annotated ground truths. As we know, this is the first large-scale chest x-ray pulmonary nodule detection dataset. Experiments demonstrates that our method outperforms baseline by 3.8% mAP and 5.1%AP0.5. The generality of our approach is also evaluated on the publicly available dataset NODE21. We aspire for our method to serve as an inspiration for future research in the field of pulmonary nodule detection. The dataset and codes will be made in public.


Assuntos
Neoplasias Pulmonares , Nódulo Pulmonar Solitário , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Nódulo Pulmonar Solitário/diagnóstico por imagem , Raios X , Tomografia Computadorizada por Raios X/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
13.
J Thorac Oncol ; 19(1): 94-105, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37595684

RESUMO

INTRODUCTION: With global adoption of computed tomography (CT) lung cancer screening, there is increasing interest to use artificial intelligence (AI) deep learning methods to improve the clinical management process. To enable AI research using an open-source, cloud-based, globally distributed, screening CT imaging data set and computational environment that are compliant with the most stringent international privacy regulations that also protect the intellectual properties of researchers, the International Association for the Study of Lung Cancer sponsored development of the Early Lung Imaging Confederation (ELIC) resource in 2018. The objective of this report is to describe the updated capabilities of ELIC and illustrate how this resource can be used for clinically relevant AI research. METHODS: In this second phase of the initiative, metadata and screening CT scans from two time points were collected from 100 screening participants in seven countries. An automated deep learning AI lung segmentation algorithm, automated quantitative emphysema metrics, and a quantitative lung nodule volume measurement algorithm were run on these scans. RESULTS: A total of 1394 CTs were collected from 697 participants. The LAV950 quantitative emphysema metric was found to be potentially useful in distinguishing lung cancer from benign cases using a combined slice thickness more than or equal to 2.5 mm. Lung nodule volume change measurements had better sensitivity and specificity for classifying malignant from benign lung nodules when applied to solid lung nodules from high-quality CT scans. CONCLUSIONS: These initial experiments revealed that ELIC can support deep learning AI and quantitative imaging analyses on diverse and globally distributed cloud-based data sets.


Assuntos
Aprendizado Profundo , Enfisema , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Inteligência Artificial , Detecção Precoce de Câncer , Pulmão/patologia , Enfisema/patologia
14.
Med Biol Eng Comput ; 62(2): 563-573, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37945795

RESUMO

With the advancement of artificial intelligence, CNNs have been successfully introduced into the discipline of medical data analyzing. Clinically, automatic pulmonary nodules detection remains an intractable issue since those nodules existing in the lung parenchyma or on the chest wall are tough to be visually distinguished from shadows, background noises, blood vessels, and bones. Thus, when making medical diagnosis, clinical doctors need to first pay attention to the intensity cue and contour characteristic of pulmonary nodules, so as to locate the specific spatial locations of nodules. To automate the detection process, we propose an efficient architecture of multi-task and dual-branch 3D convolution neural networks, called DBPNDNet, for automatic pulmonary nodule detection and segmentation. Among the dual-branch structure, one branch is designed for candidate region extraction of pulmonary nodule detection, while the other incorporated branch is exploited for lesion region semantic segmentation of pulmonary nodules. In addition, we develop a 3D attention weighted feature fusion module according to the doctor's diagnosis perspective, so that the captured information obtained by the designed segmentation branch can further promote the effect of the adopted detection branch mutually. The experiment has been implemented and assessed on the commonly used dataset for medical image analysis to evaluate our designed framework. On average, our framework achieved a sensitivity of 91.33% false positives per CT scan and reached 97.14% sensitivity with 8 FPs per scan. The results of the experiments indicate that our framework outperforms other mainstream approaches.


Assuntos
Inteligência Artificial , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Pulmão/diagnóstico por imagem , Redes Neurais de Computação , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
15.
Thorac Surg Clin ; 33(4): 401-409, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37806742

RESUMO

Recent advances in artificial intelligence and machine learning (AI/ML) hold substantial promise to address some of the current challenges in lung cancer screening and improve health equity. This article reviews the status and future directions of AI/ML tools in the lung cancer screening workflow, focusing on determining screening eligibility, radiation dose reduction and image denoising for low-dose chest computed tomography (CT), lung nodule detection, lung nodule classification, and determining optimal screening intervals. AI/ML tools can assess for chronic diseases on CT, which creates opportunities to improve population health through opportunistic screening.


Assuntos
Detecção Precoce de Câncer , Neoplasias Pulmonares , Humanos , Inteligência Artificial , Neoplasias Pulmonares/diagnóstico por imagem , Aprendizado de Máquina , Tomografia Computadorizada por Raios X
16.
Quant Imaging Med Surg ; 13(10): 6929-6941, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37869302

RESUMO

Background: Computer-aided diagnosis (CAD) systems can help reduce radiologists' workload. This study assessed the value of a CAD system for the detection of lung nodules on chest computed tomography (CT) images. Methods: The study retrospectively analyzed the CT images of patients who underwent routine health checkups between August 2019 and November 2019 at 3 hospitals in China. All images were first assessed by 2 radiologists manually in a blinded manner, which was followed by assessment with the CAD system. The location and classification of the lung nodules were determined. The final diagnosis was made by a panel of experts, including 2 associate chief radiologists and 1 chief radiologist at the radiology department. The sensitivity for nodule detection and false-positive nodules per case were calculated. Results: A total of 1,002 CT images were included in the study, and the process was completed for 999 images. The sensitivity of the CAD system and manual detection was 90.19% and 49.88% (P<0.001), respectively. Similar sensitivity was observed between manual detection and the CAD system in lung nodules >15 mm (P=0.08). The false-positive nodules per case for the CAD system were 0.30±0.84 and those for manual detection were 0.24±0.68 (P=0.12). The sensitivity of the CAD system was higher than that of the radiologists, but the increase in the false-positive rate was only slight. Conclusions: In addition to reducing the workload for medical professionals, a CAD system developed using a deep-learning model was highly effective and accurate in detecting lung nodules and did not demonstrate a meaningfully higher the false-positive rate.

17.
Cancers (Basel) ; 15(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37686557

RESUMO

In the last two decades, robotic-assisted thoracoscopic surgery (RATS) has gained popularity as a minimally invasive surgical (MIS) alternative to multi- and uniportal video-assisted thoracoscopic surgery (VATS). With this approach, the surgeon obviates the known drawbacks of conventional MIS, such as the reduced in-depth perception, hand-eye coordination, and freedom of motion of the instruments. Previous studies have shown that a robotic approach for operable lung cancer has treatment outcomes comparable to other MIS techniques such as multi-and uniportal VATS, but with less blood loss, a lower conversion rate to open surgery, better lymph node dissection rates, and improved ergonomics for the surgeon. The thoracic surgeon of the future is expected to perform more complex procedures. More patients will enter a multimodal treatment scheme making surgery more difficult due to severe inflammation. Furthermore, due to lung cancer screening programs, the number of patients presenting with operable smaller lung nodules in the periphery of the lung will increase. This, combined with the fact that segmentectomy is becoming an increasingly popular treatment for small peripheral lung lesions, indicates that the future thoracic surgeons need to have profound knowledge of segmental resections. New imaging techniques will help them to locate these lesions and to achieve a complete oncologic resection. Current robotic techniques exist to help the thoracic surgeon overcome these challenges. In this review, an update of the latest MIS approaches and nodule detection techniques will be given.

18.
BMC Med Imaging ; 23(1): 121, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697262

RESUMO

OBJECTIVE: Few studies have explored the clinical feasibility of using deep-learning reconstruction to reduce the radiation dose of CT. We aimed to compare the image quality and lung nodule detectability between chest CT using a quarter of the low dose (QLD) reconstructed with vendor-agnostic deep-learning image reconstruction (DLIR) and conventional low-dose (LD) CT reconstructed with iterative reconstruction (IR). MATERIALS AND METHODS: We retrospectively collected 100 patients (median age, 61 years [IQR, 53-70 years]) who received LDCT using a dual-source scanner, where total radiation was split into a 1:3 ratio. QLD CT was generated using a quarter dose and reconstructed with DLIR (QLD-DLIR), while LDCT images were generated using a full dose and reconstructed with IR (LD-IR). Three thoracic radiologists reviewed subjective noise, spatial resolution, and overall image quality, and image noise was measured in five areas. The radiologists were also asked to detect all Lung-RADS category 3 or 4 nodules, and their performance was evaluated using area under the jackknife free-response receiver operating characteristic curve (AUFROC). RESULTS: The median effective dose was 0.16 (IQR, 0.14-0.18) mSv for QLD CT and 0.65 (IQR, 0.57-0.71) mSv for LDCT. The radiologists' evaluations showed no significant differences in subjective noise (QLD-DLIR vs. LD-IR, lung-window setting; 3.23 ± 0.19 vs. 3.27 ± 0.22; P = .11), spatial resolution (3.14 ± 0.28 vs. 3.16 ± 0.27; P = .12), and overall image quality (3.14 ± 0.21 vs. 3.17 ± 0.17; P = .15). QLD-DLIR demonstrated lower measured noise than LD-IR in most areas (P < .001 for all). No significant difference was found between QLD-DLIR and LD-IR for the sensitivity (76.4% vs. 72.2%; P = .35) or the AUFROCs (0.77 vs. 0.78; P = .68) in detecting Lung-RADS category 3 or 4 nodules. Under a noninferiority limit of -0.1, QLD-DLIR showed noninferior detection performance (95% CI for AUFROC difference, -0.04 to 0.06). CONCLUSION: QLD-DLIR images showed comparable image quality and noninferior nodule detectability relative to LD-IR images.


Assuntos
Aprendizado Profundo , Neoplasias Pulmonares , Humanos , Pessoa de Meia-Idade , Redução da Medicação , Neoplasias Pulmonares/diagnóstico por imagem , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
19.
Comput Biol Med ; 165: 107437, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37717526

RESUMO

CAD systems for lung cancer diagnosis and detection can significantly offer unbiased, infatiguable diagnostics with minimal variance, decreasing the mortality rate and the five-year survival rate. Lung segmentation and lung nodule detection are critical steps in the lung cancer CAD system pipeline. Literature on lung segmentation and lung nodule detection mostly comprises techniques that process 3-D volumes or 2-D slices and surveys. However, surveys that highlight 2.5D techniques for lung segmentation and lung nodule detection still need to be included. This paper presents a background and discussion on 2.5D methods to fill this gap. Further, this paper also gives a taxonomy of 2.5D approaches and a detailed description of the 2.5D approaches. Based on the taxonomy, various 2.5D techniques for lung segmentation and lung nodule detection are clustered into these 2.5D approaches, which is followed by possible future work in this direction.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Tórax , Pulmão/diagnóstico por imagem , Tomografia Computadorizada por Raios X
20.
Comput Methods Programs Biomed ; 241: 107748, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37598474

RESUMO

BACKGROUND AND OBJECTIVE: Pulmonary nodule detection and segmentation are currently two primary tasks in analyzing chest computed tomography (Chest CT) in order to detect signs of lung cancer, thereby providing early treatment measures to reduce mortality. Even though there are many proposed methods to reduce false positives for obtaining effective detection results, distinguishing between the pulmonary nodule and background region remains challenging because their biological characteristics are similar and varied in size. The purpose of our work is to propose a method for automatic nodule detection and segmentation in Chest CT by enhancing the feature information of pulmonary nodules. METHODS: We propose a new UNet-based backbone with multi-branch attention auxiliary learning mechanism, which contains three novel modules, namely, Projection module, Fast Cascading Context module, and Boundary Enhancement module, to further enhance the nodule feature representation. Based on that, we build MANet, a lung nodule localization network that simultaneously detects and segments precise nodule positions. Furthermore, our MANet contains a Proposal Refinement step which refines initially generated proposals to effectively reduce false positives and thereby produce the segmentation quality. RESULTS: Comprehensive experiments on the combination of two benchmarks LUNA16 and LIDC-IDRI show that our proposed model outperforms state-of-the-art methods in the tasks of nodule detection and segmentation tasks in terms of FROC, IoU, and DSC metrics. Our method reports an average FROC score of 88.11% in lung nodule detection. For the lung nodule segmentation, the results reach an average IoU score of 71.29% and a DSC score of 82.74%. The ablation study also shows the effectiveness of the new modules which can be integrated into other UNet-based models. CONCLUSIONS: The experiments demonstrated our method with multi-branch attention auxiliary learning ability are a promising approach for detecting and segmenting the pulmonary nodule instances compared to the original UNet design.


Assuntos
Aprendizagem , Neoplasias Pulmonares , Humanos , Benchmarking , Pulmão , Neoplasias Pulmonares/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA