Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Hum Genomics ; 18(1): 73, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956677

RESUMO

Knockout of GAS2 (growth arrest-specific protein 2), causes disorganization and destabilization of microtubule bundles in supporting cells of the cochlear duct, leading to hearing loss in vivo. However, the molecular mechanism through which GAS2 variant results in hearing loss remains unknown. By Whole-exome sequencing, we identified a novel heterozygous splicing variant in GAS2 (c.616-2 A > G) as the only candidate mutation segregating with late-onset and progressive nonsyndromic hearing loss (NSHL) in a large dominant family. This splicing mutation causes an intron retention and produces a C-terminal truncated protein (named GAS2mu). Mechanistically, the degradation of GAS2mu via the ubiquitin-proteasome pathway is enhanced, and cells expressing GAS2mu exhibit disorganized microtubule bundles. Additionally, GAS2mu further promotes apoptosis by increasing the Bcl-xS/Bcl-xL ratio instead of through the p53-dependent pathway as wild-type GAS2 does, indicating that GAS2mu acts as a toxic molecule to exacerbate apoptosis. Our findings demonstrate that this novel variant of GAS2 promotes its own protein degradation, microtubule disorganization and cellular apoptosis, leading to hearing loss in carriers. This study expands the spectrum of GAS2 variants and elucidates the underlying pathogenic mechanisms, providing a foundation for future investigations of new therapeutic strategies to prevent GAS2-associated progressive hearing loss.


Assuntos
Surdez , Linhagem , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Apoptose/genética , Surdez/genética , Surdez/patologia , População do Leste Asiático/genética , Sequenciamento do Exoma , Genes Dominantes , Microtúbulos/genética , Microtúbulos/metabolismo , Mutação/genética
2.
Genes (Basel) ; 15(5)2024 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-38790272

RESUMO

CHARGE syndrome, characterized by a distinct set of clinical features, has been linked primarily to mutations in the CHD7 gene. Initially defined by specific clinical criteria, including coloboma, heart defects, choanal atresia, delayed growth, and ear anomalies, CHARGE syndrome's diagnostic spectrum has broadened since the identification of CHD7. Variants in this gene exhibit considerable phenotypic variability, leading to the adoption of the term "CHD7 disorder" to encompass a wider range of associated symptoms. Recent research has identified CHD7 variants in individuals with isolated features such as autism spectrum disorder or gonadotropin-releasing hormone deficiency. In this study, we present three cases from two different families exhibiting audiovestibular impairment as the primary manifestation of a CHD7 variant. We discuss the expanding phenotypic variability observed in CHD7-related disorders, highlighting the importance of considering CHD7 in nonsyndromic hearing loss cases, especially when accompanied by inner ear malformations on MRI. Additionally, we underscore the necessity of genetic counseling and comprehensive clinical evaluation for individuals with CHD7 variants to ensure appropriate management of associated health concerns.


Assuntos
Síndrome CHARGE , DNA Helicases , Proteínas de Ligação a DNA , Humanos , Síndrome CHARGE/genética , Síndrome CHARGE/diagnóstico , DNA Helicases/genética , Masculino , Proteínas de Ligação a DNA/genética , Feminino , Mutação , Criança , Adulto , Fenótipo , Linhagem , Pré-Escolar , Adolescente
3.
BMC Med Genomics ; 17(1): 55, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378613

RESUMO

BACKGROUND: Gene variants are responsible for more than half of hearing loss, particularly in nonsyndromic hearing loss (NSHL). The most common pathogenic variant in SLC26A4 gene found in East Asian populations is c.919-2A > G followed by c.2168A > G (p.H723R). This study was to evaluate their variant frequencies in patients with NSHL from special education schools in nine different areas of Southwest China's Yunnan. METHODS: We performed molecular characterization by PCR-products directly Sanger sequencing of the SLC26A4 c.919-2AG and c.2168 A > G variants in 1167 patients with NSHL including 533 Han Chinese and 634 ethnic minorities. RESULTS: The SLC26A4 c.919-2A > G variant was discovered in 8 patients with a homozygous state (0.69%) and twenty-five heterozygous (2.14%) in 1167 patients with NSHL. The total carrier rate of the c.919-2A > G variant was found in Han Chinese patients with 4.50% and ethnic minority patients with 1.42%. A significant difference existed between the two groups (P < 0.05). The c.919-2A > G allele variant frequency was ranged from 3.93% in Kunming to zero in Lincang and Nvjiang areas of Yunnan. We further detected the SLC26A4 c.2168 A > G variant in this cohort with one homozygotes (0.09%) and seven heterozygotes (0.60%), which was detected in Baoshan, Honghe, Licang and Pu`er areas. Between Han Chinese group (0.94%) and ethnic minority group (0.47%), there was no statistical significance (P > 0.05). Three Han Chinese patients (0.26%) carried compound heterozygosity for c.919-2A > G and c.2168 A > G. CONCLUSION: These data suggest that the variants in both SLC26A4 c.919-2A > G and c.2168 A > G were relatively less frequencies in this cohort compared to the average levels in most regions of China, as well as significantly lower than that in Han-Chinese patients. These results broadened Chinese population genetic information resources and provided more detailed information for regional genetic counselling for Yunnan.


Assuntos
Surdez , Etnicidade , Proteínas de Membrana Transportadoras , Humanos , Etnicidade/genética , Mutação , Proteínas de Membrana Transportadoras/genética , Grupos Minoritários , China/epidemiologia , Conexinas/genética , Transportadores de Sulfato/genética
4.
Audiol Neurootol ; 29(3): 216-223, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38253033

RESUMO

INTRODUCTION: Despite the high genetic heterogeneity of hearing loss, mutations in the GJB2 gene are a major cause of autosomal recessive nonsyndromic hearing loss (NSHL) worldwide. However, the mutation profile of GJB2 in NSHL is under-investigated in Morocco, especially among simplex cases. This study aimed to identify the spectrum and frequency of GJB2 mutations in the Moroccan population among simplex and multiplex families with NSHL. METHODS: Moroccan families with NSHL were selected according to well-defined criteria. Selected families were screened for GJB2 gene variants using direct sequencing of the entire coding region of GJB2. RESULTS: A total of 145 affected individuals from 115 families with NSHL were included in this study (49 simplex, 66 multiplex). Mutations in the GJB2 gene were noted in 28.69% of the families (33/115), of which 75.75% were multiplex families and 24.24% were simplex. In total, seven different mutations were detected: c.35delG(p.G12fs), c.551G>A(p.R184Q), c.139G>T(p.E47X), c.109G>A(p.V37I), c.167delT(p.L56fs), c.617A>G(p.N206S), c.94C>T(p.R32C). The last three mutations have not previously been reported in Morocco. The most common GJB2 mutation was c.35delG (21.73%), followed by p.V37I (2.60%) and p.E47X (1.73%). CONCLUSIONS: Our study confirms a high prevalence of GJB2 variants in the Moroccan population, particularly the c.35delG mutation. Additionally, we have identified previously unreported or rarely reported mutations, revealing a greater diversity of GJB2 mutations. These findings emphasize the importance of comprehensive screening beyond the 35delG mutation for patients with NSHL, regardless of their family history. Integrating this approach into clinical care will enhance diagnosis and management of hearing loss in the Moroccan population.


Assuntos
Conexina 26 , Conexinas , Mutação , Humanos , Marrocos , Conexina 26/genética , Conexinas/genética , Feminino , Masculino , Surdez/genética , Criança , Adulto , Adolescente , Pré-Escolar , Adulto Jovem , Linhagem
5.
J Cell Mol Med ; 28(1): e18004, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37864300

RESUMO

Nonsyndromic hearing loss (NSHL) is a genetically diverse, highly heterogeneous condition characterised by deafness, and Gasdermin E (GSDME) variants have been identified as directly inducing autosomal dominant NSHL. While many NSHL cases associated with GSDME involve the skipping of exon 8, there is another, less understood pathogenic insertion variant specifically found in Chinese pedigrees that causes deafness, known as autosomal dominant 5 (DFNA5) hearing loss. In this study, we recruited a large Chinese pedigree, conducted whole-exome and Sanger sequencing to serve as a comprehensive clinical examination, and extracted genomic DNA samples for co-segregation analysis of the members. Conservation and expression analyses for GSDME were also conducted. Our clinical examinations revealed an autosomal dominant phenotype of hearing loss in the family. Genetic analysis identified a novel insertion variant in GSDME exon 8 (GSDME: NM_004403.3: c.1113_1114insGGGGTGCAGCTTACAGGGTGGGTGT: p. P372fs*36). This variant is segregated with the deafness phenotype of this pedigree. The GSDME gene was highly conserved in the different species we analysed, and its mRNA expression was ubiquitously low in different human tissues. In conclusion, we have successfully identified a novel pathogenic insertion variant of GSDME in a Chinese pedigree that causes deafness, shedding light on the genetic basis of hearing loss within this specific family. Our findings expand the spectrum of known variants associated with GSDME-related deafness and may further support both the underlying gain-of-function mechanism and functional associations of GSDME hearing loss variants.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Humanos , Linhagem , Perda Auditiva/genética , Surdez/genética , China , Mutação , Perda Auditiva Neurossensorial/genética
6.
Mol Genet Genomic Med ; 11(8): e2185, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37070846

RESUMO

BACKGROUND: GJB2 mutations are among the most important causes of deafness, and their prevalence varies greatly among different countries and ethnic groups. This study aimed to determine the pathogenic mutation spectrum of GJB2 in patients with nonsyndromic hearing loss (NSHL) in Western Guangdong and to explore the pathogenic characteristics of the c.109G>A locus. METHODS: In total, 97 NSHL patients and 212 normal controls (NC) were included in this study. Genetic sequencing analyses were performed on GJB2. RESULTS: In the NSHL group, the main pathogenic mutations in GJB2 were as follows: c.109G>A, c.235delC, and c.299_300delAT with allele frequencies of 9.28%, 4.12%, and 2.06%, respectively. c.109G>A was the most frequently detected pathogenic mutation in this region. In the NC group, the allele frequency of c.109G>A among 30-50 years old subjects was markedly lower than that among 0-30 years old subjects (5.31% vs. 11.11%, p < 0.05). CONCLUSION: We found the pathogenic mutation spectrum of GJB2 in this region and showed that c.109G>A was the most common GJB2 mutation with unique characteristics, such as clinical phenotypic heterogeneity and delayed onset. Therefore, the c.109G>A mutation should be considered as an essential marker for routine genetic assessment of deafness, which can also be beneficial for preventing deafness.


Assuntos
Conexina 26 , Surdez , Adolescente , Adulto , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Pessoa de Meia-Idade , Adulto Jovem , Conexina 26/genética , Surdez/genética , Mutação
7.
Saudi J Biol Sci ; 30(2): 103520, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36568409

RESUMO

Hearing loss (HL) is the most prevalent sensory disorder whose etiology comes from environmental and/or genetic factors. Approximately 60 % of HL cases are due to mutations in genes responsible for maintaining a normal hearing function. Despite the monogenic inheritance of hereditary hearing loss (HHL), its diagnosis is challenging as both clinical and genetic heterogeneity characterizes it. Through the development of next-generation sequencing (NGS) techniques, the number of identified mutations responsible for HHL has increased exponentially during the last decade. Mutations in the TMC1 have been reported in several patients with nonsyndromic hereditary hearing loss (NSHHL), more precisely in cases with an autosomal recessive inheritance pattern. In this study, we conducted whole-exome sequencing (WES) analysis of a United Arabs Emirates (UAE) family with autosomal recessive nonsyndromic hearing loss (ARNSHL). This analysis revealed segregation of the TMC1 missense mutation c.596A > T (p.Asn199Ile) with the disease. Bioinformatics analysis supported the pathogenic effect of this mutation and predicted its impact at the proteomics level. Molecular docking analysis of TMC2WT, TMC2R123K, TMC2Q205R, and TMC2R123K + Q205R. Finally, protein docking results suggest a role for TMC2 variants in the phenotypic variability observed within the investigated family.

8.
Front Genet ; 13: 921324, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147510

RESUMO

Hearing loss (HL) is a common sensory deficit in humans and represents an important clinical and social burden. We studied whole-genome sequencing data of a cohort of 2,097 individuals from the Brazilian Rare Genomes Project who were unaffected by hearing loss to investigate pathogenic and likely pathogenic variants associated with nonsyndromic hearing loss (NSHL). We found relevant frequencies of individuals harboring these alterations: 222 heterozygotes (10.59%) for sequence variants, 54 heterozygotes (2.58%) for copy-number variants (CNV), and four homozygotes (0.19%) for sequence variants. The top five most frequent genes and their corresponding combined allelic frequencies (AF) were GJB2 (AF = 1.57%), STRC (AF = 1%), OTOA (AF = 0.69%), TMPRSS3 (AF = 0.41%), and OTOF (AF = 0.29%). The most frequent sequence variant was GJB2:c.35del (AF = 0.72%), followed by OTOA:p. (Glu787Ter) (AF = 0.61%), while the most recurrent CNV was a microdeletion of 57.9 kb involving the STRC gene (AF = 0.91%). An important fraction of these individuals (n = 104; 4.96%) presented variants associated with autosomal dominant forms of NSHL, which may imply the development of some hearing impairment in the future. Using data from the heterozygous individuals for recessive forms and the Hardy-Weinberg equation, we estimated the population frequency of affected individuals with autosomal recessive NSHL to be 1:2,222. Considering that the overall prevalence of HL in adults ranges from 4-15% worldwide, our data indicate that an important fraction of this condition may be associated with a monogenic origin and dominant inheritance.

9.
J Clin Lab Anal ; 36(11): e24708, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36164746

RESUMO

BACKGROUND: Variants in the MYO7A gene are increasingly identified among patients suffering from Usher syndrome type 1B (USH1B). However, such mutations are less commonly detected among patients suffering from nonsyndromic hearing loss (NSHL), including autosomal recessive deafness (DFNB2) and autosomal dominant deafness (DFNA11). This research attempts to clarify the genetic base of DFNB2 in a Chinese family and determine the pathogenicity of the identified mutations. METHOD: Targeted next-generation sequencing (TGS) of 127 known deafness genes was performed for the 14-year-old proband. Then, Sanger sequencing was performed on the available family members. A minigene splicing assay was performed to verify the impact of the novel MYO7A synonymous variant. After performing targeted next-generation sequencing (TGS) of 127 existing hearing loss-related genes in a 14-year-old proband, Sanger sequencing was carried out on the available family members. Then, to confirm the influence of the novel MYO7A synonymous variants, a minigene splicing assay was performed. RESULTS: Two heteroallelic mutants of MYO7A (NM_000260.3) were identified: a maternally inherited synonymous variant c.2904G > A (p.Glu968=) in exon 23 and a paternally inherited missense variant c.5994G > T (p.Trp1998Cys) in exon 44. The in vitro minigene expression indicated that c.2904G > A may result in skipping of exon 23 resulting in a truncated protein. CONCLUSIONS: We reported a novel missense (c.5994G > T) and identified, for the first time, a novel pathogenic synonymous (c.2904G > A) variant within MYO7A in a patient with DFNB2. These findings enrich our understanding of the MYO7A variant spectrum of DFNB2 and can contribute to accurate genetic counseling and diagnosis of NSHL patients.


Assuntos
Miosinas , Síndromes de Usher , Humanos , Adolescente , Miosina VIIa , Linhagem , Miosinas/genética , Síndromes de Usher/genética , Sequenciamento de Nucleotídeos em Larga Escala , China
10.
Mol Genet Genomic Med ; 10(10): e2015, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36029164

RESUMO

BACKGROUND: DFNB28, a recessively inherited nonsyndromic form of deafness in humans, is caused by mutations in the TRIOBP gene (MIM #609761) on chromosome 22q13. Its protein TRIOBP helps to tightly bundle F-actin filaments, forming a rootlet that penetrates through the cuticular plate into the cochlear hair cell body. Repeat motifs R1 and R2, located in exon 7 of the TRIOBP-5 isoform, are the actin-binding domains. Deletion of both repeat motifs R1 and R2 results in complete disruption of both actin-binding and bundling activities, whereas deletion of the R2 motif alone retains F-actin bundling ability in stereocilia rootlets. METHODS: Target sequencing, using a custom capture panel of 180 known and candidate genes associated with sensorineural hearing loss, bioinformatics processing, and data analysis were performed. Genesis 2.0 was used for variant filtering based on quality/score read depth and minor allele frequency (MAF) thresholds of 0.005 for recessive NSHL, as reported in population-based sequencing databases. All variants were reclassified based on the American College of Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology (AMP) guidelines together with other variant interpretation guidelines for genetic hearing loss . Candidate variants were confirmed via Sanger sequencing according to standard protocols, using the ABIPRISM 3730 DNA Analyzer. DNA sequence analysis was performed with DNASTAR Lasergene software. RESULTS: Candidate TRIOBP variants identified among 94 indigenous sub-Saharan African individuals were characterized through segregation analysis. Family TS005 carrying variants c.572delC, p.Pro191Argfs*50, and c.3510_3513dupTGCA, p.Pro1172Cysfs*13, demonstrated perfect cosegregation with the deafness phenotype. On the other hand, variants c.505C > A p.Asp168Glu and c.3636 T > A p.Leu1212Gln in the same family did not segregate with deafness and we have classified these variants as benign. A control family, TS067, carrying variants c.2532G > T p.Leu844Arg, c.2590C > A p.Asn867Lys, c.3484C > T p.Pro1161Leu, and c.3621 T > C p.Phe1187Leu demonstrated no cosegregation allowing us to classify these variants as benign. Together with published TRIOBP variants, the results showed that genotypes combining two truncating TRIOBP variants affecting repeat motifs R1 and R2 or R2 alone lead to a deafness phenotype, while a truncating variant affecting repeat motifs R1 and R2 or R2 alone combined with a missense variant does not. Homozygous truncating variants affecting repeat motif R2 cosegregate with the deafness phenotype. CONCLUSION: While a single intact R1 motif may be adequate for actin-binding and bundling in the stereocilia of cochlear hair cells, our findings indicate that a truncated R2 motif in cis seems to be incompatible with normal hearing, either by interfering with the function of an intact R1 motif or through another as yet unknown mechanism. Our study also suggests that most heterozygous missense variants involving exon 7 are likely to be tolerated.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Proteínas dos Microfilamentos , Humanos , Actinas , Perda Auditiva Neurossensorial/genética , Proteínas dos Microfilamentos/genética , Isoformas de Proteínas/genética , África do Sul
11.
BMC Med Genomics ; 15(1): 163, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864542

RESUMO

BACKGROUND: The most frequent clinical presentation of autosomal dominant nonsyndromic hearing loss (ADNSHL) is bilateral, symmetrical, postlingual progressive sensorineural hearing loss, which begins with impairment at high frequencies and eventually progresses to hearing loss at all frequencies. Autosomal dominant deafness-5 (DFNA5) is a subtype of ADNSHL caused by heterozygous variants in the gasdermin E (GSDME, also known as DFNA5) gene. METHODS: Deafness gene NGS panel analysis were performed on the proband of a six-generation Chinese family with hearing loss. The co-segregation analysis between the hearing loss and the novel variant was analyzed by Sanger sequencing and pure-tone audiometry. The minigene splicing assay was performed to evaluate the potential effect of the variant on messenger RNA splicing in vitro. RESULTS: The family exhibited autosomal dominant, progressive, postlingual, nonsyndromic sensorineural hearing loss, which was similar to that of the previously reported DFNA5 families. A novel heterozygous splice site variant in GSDME gene intron 8 was identified, which co-segregated with the hearing loss phenotype of the family. The variant caused skipping of exon 8 in the mutant transcript, leading to the direct linking of exons 7 and 9. CONCLUSIONS: We identified a novel GSDME splice site variant c.1183 + 1 G > C in an extended Chinese family, which led to the skipping of exon 8. The results extended the pathogenic variants spectrum of the GSDME gene, provided further support for the 'gain-of-function' mechanism of DFNA5, and afforded a molecular interpretation for these patients with ADNSHL.


Assuntos
Surdez , Perda Auditiva , Humanos , China , Perda Auditiva/genética , Perda Auditiva Neurossensorial , Mutação , Linhagem
12.
BMC Med Genomics ; 15(1): 142, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35761346

RESUMO

PURPOSE: Genetic testing is widely used in diagnosing genetic hearing loss in patients. Other than providing genetic etiology, the benefits of genetic testing in pediatric patients with hearing loss are less investigated. METHODS: From 2018-2020, pediatric patients who initially presented isolated hearing loss were enrolled. Comprehensive genetic testing, including GJB2/SLC26A4 multiplex amplicon sequencing, STRC/OTOA copy number variation analysis, and exome sequencing, were hierarchically offered. Clinical follow-up and examinations were performed. RESULTS: A total of 80 pediatric patients who initially presented isolated hearing loss were considered as nonsyndromic hearing loss and enrolled in this study. The definitive diagnosis yield was 66% (53/80) and the likely diagnosis yield was 8% (6/80) through comprehensive genetic testing. With the aid of genetic testing and further clinical follow-up and examinations, the clinical diagnoses and medical management were altered in eleven patients (19%, 11/59); five were syndromic hearing loss; six were nonsyndromic hearing loss mimics. CONCLUSION: Syndromic hearing loss and nonsyndromic hearing loss mimics are common in pediatric patients who initially present with isolated hearing loss. The comprehensive genetic testing provides not only a high diagnostic yield but also valuable information for clinicians to uncover subclinical or pre-symptomatic phenotypes, which allows early diagnosis of SHL, and leads to precise genetic counseling and changes the medical management.


Assuntos
Surdez , Perda Auditiva , Criança , Conexina 26/genética , Conexinas/genética , Variações do Número de Cópias de DNA , Surdez/genética , Testes Genéticos , Perda Auditiva/diagnóstico , Perda Auditiva/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mutação
13.
Front Genet ; 13: 797124, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677558

RESUMO

Background: Gap junctions formed by connexins are channels on cytoplasm functioning in ion recycling and homeostasis. Some members of connexin family including connexin 31 are significant components in human skin and cochlea. In clinic, mutations of connexin 31 have been revealed as the cause of a rare hereditary skin disease called erythrokeratodermia variabilis (EKV) and non-syndromic hearing loss (NSHL). Objective: To determine the underlying genetic cause of EKV, ichthyosis and NSHL in three members of a Chinese pedigree and skin histologic characteristics of the EKV patient. Methods: By performing whole exome sequencing (WES), Sanger sequencing and skin biopsy, we demonstrate a Chinese pedigree carrying a mutation of GJB3 with three patients separately diagnosed with EKV, ichthyosis and NSHL. Results: The proband, a 6-year-old Chinese girl, presented with demarcated annular red-brown plaques and hyperkeratotic scaly patches on her trunk and limbs. Her mother has ichthyosis with hyperkeratosis and geographic tongue while her younger brother had NSHL since birth. Mutation analysis revealed all of them carried a heterozygous missense mutation c.293G>A of GJB3. Skin biopsy showed many grain cells with dyskeratosis in the granular layer. Acanthosis, papillomatosis, and a mild superficial perivascular lymphocytic infiltrate were observed. Conclusion: A mutation of GJB3 associated with EKV, ichthyosis and NSHL is reported in this case. The daughter with EKV and the son with NSHL in this Chinese family inherited the mutation from their mother with ichthyosis. The variation of clinical features may involve with genetic, epigenetic and environmental factors.

14.
Ann Hum Genet ; 86(4): 207-217, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35292975

RESUMO

AIM: Autosomal dominant non-syndromic hearing loss is a common sensorineural disorder with extremely high genetic heterogeneity. CEA antigen-related cell adhesion molecule 16(CEACAM16)is a secreted glycoprotein encoded by the CEACAM16 gene. Mutations in CEACAM16 lead to autosomal dominant non-syndromic hearing loss in humans, due defects in the tectorial membrane of the inner ear. Here we reported a novel missense variant in CEACAM16 gene causes autosomal dominant non-syndromic hearing loss. MATERIAL AND METHODS: A four-generation Chinese family affected by late-onset and progressive hearing loss was enrolled in this study. The proband was analyzed by targeted next-generation sequencing and bioinformatic analysis. And in vitro experiments were performed in overexpressed transfected HEK293T cells to investigate the pathogenesis of the mutant protein. RESULTS: We identified a novel missense variant in the CEACAM16 gene c.763A>G; (p.Arg255Gly) as causing autosomal dominant non-syndromic hearing loss in the Chinese family. Using Western blot analysis, ELISA, and immunofluorescence we found increased expression level of the secreted mutant CEACAM16 protein, both intracellularly and extracellularly, compared with wild type CEACAM16 protein. CONCLUSION: Our study showed that the p.Arg255Gly variant leads to increased secretion of mutant CEACAM16 protein, with potential deleterious effect to the function of the protein. Our findings expand the mutation spectrum of CEACAM16, and further the understanding CEACAM16 function and implications in disease.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Humanos , Moléculas de Adesão Celular/genética , Surdez/genética , Genes Dominantes , Perda Auditiva Neurossensorial/genética , Mutação de Sentido Incorreto , Linhagem
15.
J Pediatr Genet ; 11(1): 5-14, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35186384

RESUMO

Congenital nonsyndromic hearing loss (NSHL) has been considered as one of the most prevalent chronic disorder in children. It affects the physical and mental conditions of a large children population worldwide. Because of the genetic heterogeneity, the identification of target gene is very challenging. However, gap junction ß-2 ( GJB2 ) is taken as the key gene for hearing loss, as its involvement has been reported frequently in NSHL cases. This study aimed to identify the association of GJB2 mutants in different Indian populations based on published studies in Indian population. This will provide clear genetic fundamental of NSHL in Indian biogeography, which would be helpful in the diagnosis process.

16.
Genes (Basel) ; 12(11)2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34828318

RESUMO

Clinical presentation is heterogeneous for autosomal dominant nonsyndromic hearing loss (ADNSHL). Variants of KCNQ4 gene is a common genetic factor of ADNSHL. Few studies have investigated the association between hearing impairment and the variant c.546C>G of KCNQ4. Here, we investigated the phenotype and clinical manifestations of the KCNQ4 variant. Study subjects were selected from the participants of the Taiwan Precision Medicine Initiative. In total, we enrolled 12 individuals with KCNQ4 c.546C>G carriers and 107 non-carriers, and performed pure tone audiometry (PTA) test and phenome-wide association (PheWAS) analysis for the patients. We found that c.546C>G variant was related to an increased risk of hearing loss. All patients with c.546C>G variant were aged >65 years and had sensorineural and high frequency hearing loss. Of these patients, a third (66.7%) showed moderate and progressive hearing loss, 41.7% complained of tinnitus and 16.7% complained of vertigo. Additionally, we found a significant association between KCNQ4 c.546C>G variant, aortic aneurysm, fracture of lower limb and polyneuropathy in diabetes. KCNQ4 c.546C>G is likely a potentially pathogenic variant of ADNSHL in the elderly population. Genetic counseling, annual audiogram and early assistive listening device intervention are highly recommended to prevent profound hearing impairment in this patient group.


Assuntos
Povo Asiático/genética , Surdez/genética , Canais de Potássio KCNQ/genética , Polimorfismo de Nucleotídeo Único , Zumbido/epidemiologia , Vertigem/epidemiologia , Adulto , Fatores Etários , Idade de Início , Idoso , Audiometria de Tons Puros , Estudos de Casos e Controles , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Fenômica , Taiwan/epidemiologia , Zumbido/genética , Vertigem/genética
17.
Genes (Basel) ; 12(10)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34681017

RESUMO

Variants in MYH14 are reported to cause autosomal dominant nonsyndromic hereditary hearing loss (ADNSHL), with 34 variants reported to cause hearing loss in various ethnic groups. However, the available information on prevalence, as well as with regard to clinical features, remains fragmentary. In this study, genetic screening for MYH14 variants was carried out using a large series of Japanese hearing-loss patients to reveal more detailed information. Massively parallel DNA sequencing of 68 target candidate genes was applied in 8074 unrelated Japanese hearing-loss patients (including 1336 with ADNSHL) to identify genomic variations responsible for hearing loss. We identified 11 families with 10 variants. The prevalence was found to be 0.14% (11/8074) among all hearing-loss patients and 0.82% (11/1336) among ADNSHL patients. Nine of the eleven variants identified were novel. The patients typically showed late-onset hearing loss arising later than 20 years of age (64.3%, 9/14) along with progressive (92.3%, 12/13), moderate (62.5%, 10/16), and flat-type hearing loss (68.8%, 11/16). We also confirmed progressive hearing loss in serial audiograms. The clinical information revealed by the present study will contribute to further diagnosis and management of MYH14-associated hearing loss.


Assuntos
Surdez/genética , Predisposição Genética para Doença , Cadeias Pesadas de Miosina/genética , Miosina Tipo II/genética , Adolescente , Adulto , Sequência de Aminoácidos/genética , Povo Asiático , Surdez/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Linhagem , Análise de Sequência de DNA
18.
F1000Res ; 10: 61, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34567527

RESUMO

Background: We examined the genetic variants of a Chinese family with a 22-month-old infant with sporadic non-syndromic sensorineural hearing loss (NSHL). Methods: The whole-exome sequence data in the family, especially the de novo variants presented in the patient, were analyzed and the effect of the disease-causing genetic variants on the protein expression level and cellular localization were examined by cell-based functional assay. Results: The infant had no known NSHL-causing variants, except two compound heterozygous variants in connexin26 gene GJB2; one was the c.79G>A, c.341A>G haplotype from the asymptomatic mother who was benign, and the other was a de novo pathogenic c.262G>C (p.A88P). In vitro, GJB2 with c.262G>C was weakly expressed and displayed a punctate distribution in the cytoplasm and cytomembrane, while wild type GJB2 was robustly expressed in the cytomembrane. We deduced that the de novo pathogenic GJB2 c.262G>C exacerbated loss-of-function in the context of leaky variants c.79G>A, c.341A>G in the patient. Interestingly, further analysis of exome sequences revealed that the occurrence of de novo pathogenic variants in the infant was frequent. Among the total~47,000 variants, 143 were de novo in the patient, whereas among all 74 variants predicted to be pathogenic/likely pathogenic, 21 were heterozygous and two were homozygous de novo. The occurrence rate of de novo deleterious variants was much higher (31.1%, 23/74) than that in total (0.34%, 143/47,000). It is notable that most genes with de novo deleterious variants were environment-sensitive, such as GJB2, MNK1, MNK2, MUC4, RAD21 and DNA copy number variations. Conclusions: The full picture of genetic variants in the exome might help us to interpret the NSHL-causing variants. More research is needed into the causes of de novo deleterious variants and gene-environment interactions in congenital NSHL.


Assuntos
Variações do Número de Cópias de DNA , Perda Auditiva Neurossensorial , China , Surdez , Perda Auditiva Neurossensorial/genética , Humanos , Lactente , Mutação , Linhagem , Sequenciamento do Exoma
19.
J Clin Lab Anal ; 35(11): e24024, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34581455

RESUMO

OBJECTIVE: Autosomal-recessive nonsyndromic hearing loss (ARNSHL) is a heterogeneous genetic disorder. Mutations in the gap junction protein beta 2 (GJB2) gene, encoding connexin 26, are a significant cause of ARNSHL in different ethnic groups. This study aimed to identify the frequency and type of GJB2 mutations in the Iranian Azeri population. METHODS: Fifty unrelated families presenting ARNSHL in Ardabil Province, the northwest of Iran, were studied to determine the frequency and type of GJB2 mutations leading to ARNSHL. ARMS-PCR screened all DNA samples to detect c.35delG; p. Gly12Val mutation. In addition, normal samples for c.35delG; p. Gly12Val were analyzed by direct sequencing for other GJB2 mutations. RESULT: Of the fifty families, 13 (26%) showed a GJB2 gene mutation, with c.35delG; p. Gly12Val mutation was the most prevalent one that occurred in eight (61.5%) out of the 13 families. Of the families, two were homozygous for c.358-360delGAC; p. Glu120del mutation, and one was homozygous for c.290dupA; p. Tyr97Ter and c.299-300delAT; p. His100Arg mutations. Also, we detected a novel mutation, c.238C>A; p. Gln80lys, in one of the families. CONCLUSION: Our findings are comparable to previous studies, indicating c.35d3lG; p. Gly12Val mutation in the GJB2 gene is the most common cause of GJB2-related hearing loss in the Iranian Azeri population. Furthermore, our study highlights the significance of ARNSHL screening programs of live births based on local population data in Iran.


Assuntos
Conexina 26/genética , Surdez/epidemiologia , Surdez/genética , Etnicidade/genética , Mutação/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Irã (Geográfico) , Masculino , Pessoa de Meia-Idade , Prevalência , Adulto Jovem
20.
Int J Mol Sci ; 22(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801540

RESUMO

Potassium voltage-gated channel subfamily q member 4 (KCNQ4) is a voltage-gated potassium channel that plays essential roles in maintaining ion homeostasis and regulating hair cell membrane potential. Reduction of the activity of the KCNQ4 channel owing to genetic mutations is responsible for nonsyndromic hearing loss, a typically late-onset, initially high-frequency loss progressing over time. In addition, variants of KCNQ4 have also been associated with noise-induced hearing loss and age-related hearing loss. Therefore, the discovery of small compounds activating or potentiating KCNQ4 is an important strategy for the curative treatment of hearing loss. In this review, we updated the current concept of the physiological role of KCNQ4 in the inner ear and the pathologic mechanism underlying the role of KCNQ4 variants with regard to hearing loss. Finally, we focused on currently developed KCNQ4 activators and their pros and cons, paving the way for the future development of specific KCNQ4 activators as a remedy for hearing loss.


Assuntos
Perda Auditiva/patologia , Canais de Potássio KCNQ/genética , Mutação , Animais , Perda Auditiva/genética , Perda Auditiva/terapia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA