Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Methods Mol Biol ; 2521: 173-188, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35732998

RESUMO

Bacterial toxins gain growing attention as potential cancer treatment due to their potent cytotoxic effects. Among the very different toxins with diverse modes of action, the Clostridium perfringens enterotoxin (CPE) is in focus to treat solid cancers. This toxin targets the tight junction proteins claudin-3 and -4 (Cldn-3/4), which are frequently overexpressed in solid cancers. Binding to these claudins induces pore formation in the host cell plasma membrane leading to rapid oncoleaking cell death of tumor cells. Based on this, extending the targeting of CPE beyond Cldn-3/4 is of interest, since other claudins, such as claudin-1 or -5 are often overexpressed in various cancer entities such as non-small-cell lung cancer (NSCLC) or papillary thyroid carcinoma. In this chapter we describe the modification of a CPE-encoding vector by structure-directed mutagenesis to either preferentially target Cldn-1 and -5 or to expand targeting to Cldn1-9 for improved broadened cytotoxic targeting of claudin-overexpressing tumors such as but not limited to lung cancer via CPE gene transfer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Claudinas/genética , Claudinas/metabolismo , Clostridium perfringens/genética , Clostridium perfringens/metabolismo , Enterotoxinas/genética , Enterotoxinas/metabolismo , Terapia Genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia
2.
Mol Ther Nucleic Acids ; 27: 916-926, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35141050

RESUMO

Gene therapy offers great promises for a cure of hemophilia A resulting from factor VIII (FVIII) gene deficiency. We have developed and optimized a non-viral ultrasound-mediated gene delivery (UMGD) strategy. UMGD of reporter plasmids targeting mice livers achieved high levels of transgene expression predominantly in hepatocytes. Following UMGD of a plasmid encoding human FVIII driven by a hepatocyte-specific promoter/enhancer (pHP-hF8/N6) into the livers of hemophilia A mice, a partial phenotypic correction was achieved in treated mice. In order to achieve persistent and therapeutic FVIII gene expression, we adopted a plasmid (pHP-hF8-X10) encoding an FVIII variant with significantly increased FVIII secretion. By employing an optimized pulse-train ultrasound condition and immunomodulation, the treated hemophilia A mice achieved 25%-150% of FVIII gene expression on days 1-7 with very mild transient liver damage, as indicated by a small increase of transaminase levels that returned to normal within 3 days. Therapeutic levels of FVIII can be maintained persistently without the generation of inhibitors in mice. These results indicate that UMGD can significantly enhance the efficiency of plasmid DNA transfer into the liver. They also demonstrate the potential of this novel technology to safely and effectively treat hemophilia A.

3.
Mol Ther Methods Clin Dev ; 10: 179-188, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30105275

RESUMO

We have achieved significant enhancement of gene delivery into livers of large animals using ultrasound (US)-targeted microbubble (MB) destruction methods. An infusion of pGL4 (encoding a luciferase reporter gene) plasmid DNA (pDNA) and MBs into a portal-vein segmental branch of a porcine liver was exposed to US for 4 min. Therapeutic US induced cavitation of MBs to temporarily permeabilize the vascular endothelium and cell membranes, allowing entry of pDNA. We obtained a 64-fold enhancement in luciferase expression in pig livers compared to control without US using an unfocused, dual-element transducer (H105, center frequency [fc] = 1.10 MHz) at 2.7 MPa peak negative pressure (PNP). However, input electrical energy was limited, and modified transducers were designed to have spherical (H185A, fc = 1.10 MHz) or cylindrical foci (H185B, fc = 1.10 MHz; H185D, fc = 1.05 MHz) to enhance PNP output. The revised transducers required less electrical input to achieve 2.7 MPa PNP compared to H105, thereby allowing PNP outputs of up to 6.2 MPa without surpassing the piezo-material limitations. Subsequently, luciferase expression significantly improved up to 9,000-fold compared to controls with minor liver damage. These advancements will allow us to modify our current protocols toward minimally invasive US gene therapy.

4.
Int J Nanomedicine ; 13: 1361-1379, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29563793

RESUMO

INTRODUCTION: DNA nanoparticles (NPs) comprising polylysine conjugated to polyethylene glycol efficiently target murine photoreceptors and the retinal pigment epithelium (RPE) and lead to long-term phenotypic improvement in models of retinal degeneration. Advancing this technology requires testing in a large animal model, particularly with regard to safety. So, herein we evaluate NPs in non-human primates (baboon). METHODS AND RESULTS: NPs with plasmids carrying GFP and a ubiquitous, RPE-specific, or photoreceptor-specific promoter were delivered by either subretinal or intravitreal injection. We detected GFP message and protein in the retina/RPE from eyes dosed with NPs carrying ubiquitously expressed and RPE-specific vectors, and GFP message in eyes injected with NPs carrying photoreceptor-specific vectors. Importantly, we observed NP DNA in the retina/RPE following intravitreal injection, indicating the inner limiting membrane does not prevent NP diffusion into the outer retina. We did not observe any adverse events in any baboon, and there were no NP-associated changes in retinal function. Furthermore, no systemic or local inflammatory reaction to the vectors/injections was observed, and no NP DNA was found outside the eye. CONCLUSION: Taken together with the well-established rodent safety and efficacy data, these findings suggest that DNA NPs may be a safe and potentially clinically viable nonviral ocular therapy platform for retinal diseases.


Assuntos
DNA/química , Olho/efeitos dos fármacos , Nanopartículas/toxicidade , Animais , Encéfalo/metabolismo , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Injeções Intravítreas , Camundongos , Nanopartículas/química , Plasmídeos/metabolismo , Primatas , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo
5.
J Biomed Mater Res A ; 105(6): 1672-1683, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28218496

RESUMO

Common scaffold surfaces such as titanium can have side effects; for example, infections, cytotoxicity, impaired osseointegration, or low regeneration rates for bone tissue. These effects lead to poor implant integration or even implant loss. Therefore, bioactive implants are promising instruments in tissue regeneration. Osteoinductive elements-such as growth factors and anti-infectives-support wound healing and bone growth and thereby enable faster osseointegration, even in elderly patients. In this study, titanium surfaces were coated with a poly-(d,l-lactide) (PDLLA) layer containing different concentrations of copolymer-protected gene vectors (COPROGs) to locally provide bone morphogenetic protein-2 (BMP-2) or activated anti-infective agents, such as chlorhexidine gluconate, triclosan, and metronidazole, to prevent peri-implantitis. The coated titanium implants were then loaded with osteoblasts, NIH 3T3 fibroblasts, and human mesenchymal stem cells in 96-well plates. When shielded by COPROGs as a protective layer and resuspended in PDLLA, BMP-2-encoding pDNA at relatively low doses (5.63 µg/implant) induced the local expression of BMP-2. A linear dose dependence, which is common for recombinant growth factors, was not found, probably due to the retention property of the PDLLA surface. PDLLA, in general, successfully retains additional elements, such as osteoconductive growth factors (BMP-2) and anti-infective agents, which was demonstrated using metronidazole, and thus prevents the systemic application of excessive doses. These bioactive implant surfaces that provide the local release of therapeutic gene vectors or anti-infective agents allow the controlled stimulation of the implant and scaffold osseointegration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1672-1683, 2017.


Assuntos
Anti-Infecciosos/administração & dosagem , Materiais Revestidos Biocompatíveis/química , Preparações de Ação Retardada/química , Técnicas de Transferência de Genes , Peri-Implantite/prevenção & controle , Poliésteres/química , Titânio/química , Animais , Proteína Morfogenética Óssea 2/genética , Sistemas de Liberação de Medicamentos/métodos , Vetores Genéticos/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Células NIH 3T3 , Osteoblastos/citologia , Osteoblastos/metabolismo , Próteses e Implantes , Propriedades de Superfície
6.
J Biomed Mater Res A ; 104(10): 2441-55, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27176560

RESUMO

The osseointegration of bone implants, implant failure, and the bridging of critical-size bone defects are frequent clinical challenges. Deficiencies in endogenous bone healing can be resolved through the local administration of suitable recombinant growth factors (GFs). In preclinical models, gene-therapy-supported bone healing has proven promising for overcoming certain limitations of GFs. We report the dose-dependent bridging of critical-size mandibular bone defects (CSDs) in a rat model using a non-viral BMP-2-encoding copolymer-protected gene vector (pBMP-2) embedded in poly(d, l-lactide) (PDLLA) coatings on titanium discs that were used to cover drill holes in the mandibles of 53 male Sprague Dawley rats. After sacrificing, the mandibles were subjected to micro-computed tomography (µCT), micro-radiography, histology, and fluorescence analyses to evaluate bone regeneration. pBMP-2 in PDLLA-coated titanium implants promoted partial bridging of bone defects within 14 days and complete defect healing within 112 days when the DNA dose per implant did not exceed 2.5 µg. No bridging was observed in untreated control CSDs. Thus, the delivery of plasmid DNA coding for BMP-2 appears to be a potent method for controlled new-bone formation with an inverse dose dependency. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2441-2455, 2016.


Assuntos
Proteína Morfogenética Óssea 2/genética , Regeneração Óssea , Substitutos Ósseos/química , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Traumatismos Mandibulares/terapia , Animais , Vetores Genéticos/genética , Masculino , Mandíbula/patologia , Mandíbula/fisiologia , Traumatismos Mandibulares/patologia , Osseointegração , Plasmídeos/administração & dosagem , Plasmídeos/genética , Poliésteres/química , Próteses e Implantes , Ratos Sprague-Dawley , Propriedades de Superfície , Titânio/química
7.
J Control Release ; 182: 111-20, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24650644

RESUMO

Ultrasound (US)-mediated gene delivery has emerged as a promising non-viral method for safe and selective gene delivery. When enhanced by the cavitation of microbubbles (MBs), US exposure can induce sonoporation that transiently increases cell membrane permeability for localized delivery of DNA. The present study explores the effect of generalizable MB customizations on MB facilitation of gene transfer compared to Definity®, a clinically available contrast agent. These modifications are 1) increased MB shell acyl chain length (RN18) for elevated stability and 2) addition of positive charge on MB (RC5K) for greater DNA associability. The MB types were compared in their ability to facilitate transfection of luciferase and GFP reporter plasmid DNA in vitro and in vivo under various conditions of US intensity, MB dosage, and pretreatment MB-DNA incubation. The results indicated that both RN18 and RC5K were more efficient than Definity®, and that the cationic RC5K can induce even greater transgene expression by increasing payload capacity with prior DNA incubation without compromising cell viability. These findings could be applied to enhance MB functions in a wide range of therapeutic US/MB gene and drug delivery approach. With further designs, MB customizations have the potential to advance this technology closer to clinical application.


Assuntos
Técnicas de Transferência de Genes , Microbolhas , Ultrassom/métodos , Alanina Transaminase/sangue , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/sangue , Aspartato Aminotransferases/metabolismo , Meios de Contraste/química , DNA/metabolismo , Fluorocarbonos/química , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Lipídeos/química , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Ratos Sprague-Dawley
8.
Mol Oncol ; 8(3): 609-19, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24503218

RESUMO

Nonviral gene therapy represents a realistic option for clinical application in cancer treatment. This preclinical study demonstrates the advantage of using the small-size MIDGE(®) DNA vector for improved transgene expression and therapeutic application. This is caused by significant increase in transcription efficiency, but not by increased intracellular vector copy numbers or gene transfer efficiency. We used the MIDGE-hTNF-alpha vector for high-level expression of hTNF-alpha in vitro and in vivo for a combined gene therapy and vindesine treatment in human melanoma models. The MIDGE vector mediated high-level hTNF-alpha expression leads to sensitization of melanoma cells towards vindesine. The increased efficacy of this combination is mediated by remarkable acceleration and increase of initiator caspase 8 and 9 and effector caspase 3 and 7 activation. In the therapeutic approach, the nonviral intratumoral in vivo jet-injection gene transfer of MIDGE-hTNF-alpha in combination with vindesine causes melanoma growth inhibition in association with increased apoptosis in A375 cell line or patient derived human melanoma xenotransplant (PDX) models. This study represents a proof-of-concept for an anticipated phase I clinical gene therapy trial, in which the MIDGE-hTNF-alpha vector will be used for efficient combined chemo- and nonviral gene therapy of malignant melanoma.


Assuntos
DNA/uso terapêutico , Vetores Genéticos/uso terapêutico , Melanoma/genética , Melanoma/terapia , Fator de Necrose Tumoral alfa/genética , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Linhagem Celular Tumoral , DNA/genética , Feminino , Terapia Genética , Vetores Genéticos/genética , Humanos , Melanoma/patologia , Camundongos , Transfecção , Transgenes , Vindesina/uso terapêutico
9.
J RNAi Gene Silencing ; 1(2): 97-104, 2005 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-19771210

RESUMO

We have developed a stable RNA interference (RNAi) delivery system that is based on the Frog Prince transposable element. This plasmid-based vector system combines the gene silencing capabilities of H1 polymerase III promoter-driven short hairpin RNAs (shRNA) with the advantages of stable and efficient genomic integration of the shRNA cassette mediated by transposition. We show that the Frog Prince-based shRNA expressing system can efficiently knock down the expression of both exogenous as well as endogenous genes in human cells. Furthermore, we use the Frog Prince-based system to study the effect of knockdown of the DNA repair factor Ku70 on transposition of the Sleeping Beauty transposon. Transposon-mediated genomic integration ensures that the shRNA expression cassette and a selectable marker gene within the transposon remain intact and physically linked. We demonstrate that a major advantage of our vector system over plasmid-based shRNA delivery is both its enhanced frequency of intact genomic integration as well as higher target suppression in transgenic human cells. Due to its simplicity and effectiveness, transposon-based RNAi is an emerging tool to facilitate analysis of gene function through the establishment of stable loss-of-function cell lines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA