Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.463
Filtrar
2.
Structure ; 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39389062

RESUMO

Proteolysis-targeting chimeras (PROTACs) are heterobifunctional molecules containing a ligand for a protein of interest linked to an E3 ubiquitin ligase ligand that induce protein degradation through E3 recruitment to the target protein. Small changes in PROTAC linkers can have drastic consequences, including loss of degradation activity, but the structural mechanisms governing such changes are unclear. To study this phenomenon, we screened PROTACs of diverse targeting modalities and identified dTAG-13 as an activator of the xenobiotic-sensing pregnane X receptor (PXR), which promiscuously binds various ligands. Characterization of dTAG-13 analogs and precursors revealed interplay between the PXR-binding moiety, linker, and E3 ligand that altered PXR activity without inducing degradation. A crystal structure of PXR ligand binding domain bound to a precursor ligand showed ligand-induced binding pocket distortions and a linker-punctured tunnel to the protein exterior at a region incompatible with E3 complex formation, highlighting the effects of linker environment on PROTAC activity.

3.
Front Immunol ; 15: 1470881, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39399499

RESUMO

The intricate etiology of type 1 diabetes mellitus (T1D), characterized by harmful interactions between the immune system and insulin-producing beta cells, has hindered the development of effective therapies including human islet transplantation, which requires strong immunosuppressants that impair beta cell survival and function. As such alternative immunomodulating therapies are required for successful transplantation. The discovery that pharmacological activation of the nuclear receptor LRH-1/NR5A2 can reverse hyperglycemia in mouse models of T1D by altering, and not suppressing the autoimmune attack, prompted us to investigate whether LRH-1/NR5A2 activation could improve human islet function/survival after xenotransplantation in immunocompetent mice. Human islets were transplanted under the kidney capsule of streptozotocin (STZ)-induced diabetic mice, and treatment with BL001 (LRH-1/NR5A2 agonist) or vehicle was administered one week post-transplant. Our study, encompassing 3 independent experiments with 3 different islet donors, revealed that mice treated for 8 weeks with BL001 exhibited lower blood glucose levels correlating with improved mouse survival rates as compared to vehicle-treated controls. Human C-peptide was detectable in BL001-treated mice at both 4 and 8 weeks indicating functional islet beta cells. Accordingly, in mice treated with BL001 for 8 weeks, the beta cell mass was preserved, while a significant decrease in alpha cells was observed compared to mice treated with BL001 for only 4 weeks. In contrast, vehicle-treated mice exhibited a reduction in insulin-expressing cells at 8 weeks compared to those at 4 weeks. These results suggest that BL001 significantly enhances the survival, engraftment, and functionality of human islets in a STZ-induced diabetic mouse model.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Sobrevivência de Enxerto , Transplante das Ilhotas Pancreáticas , Receptores Citoplasmáticos e Nucleares , Transplante Heterólogo , Animais , Humanos , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/terapia , Camundongos , Sobrevivência de Enxerto/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/metabolismo , Diabetes Mellitus Tipo 1/imunologia , Masculino , Glicemia/metabolismo , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos
4.
Pest Manag Sci ; 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39400455

RESUMO

BACKGROUND: The two-spotted spider mite, Tetranychus urticae, is an important pest mite in agriculture worldwide. E78, as a member of the nuclear receptor superfamily and a downstream responsive gene of ecdysteroids, plays a crucial role in regulating physiological behaviors such as development and reproduction in insects. However, its function in mites remains unclear. The aim of this study was to explore how E78 functions in the molting process of spider mites. RESULTS: In this study, reverse transcription quantitative polymerase chain reaction (RT-qPCR) experiments to analyze the expression pattern of TuE78 during the development of Tetranychus urticae, demonstrated that the expression level of TuE78 was higher during the molting state than that after the completion of molting, and it reached a peak expression level when the deutonymph mites entered the molting stage. RNA interference (RNAi)-mediated gene-silencing of TuE78 resulted in 95% deutonymph mite molt failure. A series of analysis under a light microscope, and scanning and transmission electron microscopy revealed that RNAi mites died within the exuvium without ecdysis, and that apolysis had started but the new cuticle was thin and the typical cuticular lamellae were absent, indicating blockage of the post-apolysial processes and explaining molt failure. Hence, transcriptome sequencing confirmed that the expression of cuticle protein and lipid metabolism-related genes was significantly affected after TuE78 silencing. CONCLUSION: This study demonstrated that TuE78 participates in the molting process of Tetranychus urticae by regulating the post-apolysial processes with the formation of new cuticle and successful ecdysis. This in turn suggests the potential of TuE78 as a target for pest mite control and provides a theoretical basis for further exploration of the molecular regulatory mechanism of spider mite molting. © 2024 Society of Chemical Industry. Published by John Wiley & Sons Ltd.

5.
Int J Mol Sci ; 25(19)2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39408914

RESUMO

Phytochemical investigation of Staehelina uniflosculosa Sibth. & Sm. resulted in the isolation of twenty-two natural products: eleven sesquiterpene lactones, artemorin (1), tamirin (2), tanachin (3), reynosin (4), baynol C (5), desacetyl-ß-cyclopyrethrosin (6), 1ß-hydroxy-4α-methoxy-5α,7α,6ß-eudesm-11(13)-en-6,12-olide (7), 1ß,4α,6α-trihydroxyeudesm-11-en-8α,12-olide (8), 1ß-hydroxy-arbusculin A (9), methyl-1ß,4α,6α-trihydroxy-5α,7αH-eudesm-11(13)-en-12-oate (10) and methyl-1ß,6α,8α-trihydroxy-5α,7αH-eudesma-4(15),11(13)-dien-12-oate (11); one lignan, pinoresinol (12); one norisoprenoid, loliolide (13); six flavonoids (four genins and two glycosides), hispidulin (14), nepetin (15), jaceosidin (16), eriodictyol (17), eriodictyol-3'-O-ß-D-glucoside (18) and eriodictyol-7-O-ß-D-glucuronide (19); and three phenolic derivatives (one phenolic acid and two phenolic glucosides), protocatechuic acid (20), arbutin (21) and nebrodenside A (22). From the isolated compounds, only nepetin (15) has been reported previously from the Staehelina genus and, to the best of our knowledge, it is the first time that compound (18) has been identified in Asteraceae. A number of these substances were tested for (a) inhibition of lipoxygenase and acetylocholinesterase, (b) their antioxidant activity using the DPPH (1,1-Diphenyl-2-picrylhydrazyl) method or/and (c) inhibition of lipid peroxidation. The tested components exhibited low antioxidant activity with the exception of 5 and 22, while the effectiveness of these compounds in the inhibition of acetylocholinesterase is limited. Furthermore, Molinspiration, an online computer tool, was used to determine the bioactivity ratings of the isolated secondary metabolites. The compounds' bioactivity ratings for potential therapeutic targets were very promising.


Assuntos
Asteraceae , Componentes Aéreos da Planta , Componentes Aéreos da Planta/química , Componentes Aéreos da Planta/metabolismo , Asteraceae/química , Asteraceae/metabolismo , Metabolismo Secundário , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/metabolismo , Estrutura Molecular
6.
Artigo em Inglês | MEDLINE | ID: mdl-39369968

RESUMO

BACKGROUND: Ischemia-reperfusion injury (IRI) stands as a major trigger for primary graft dysfunction (PGD) in lung transplantation (LTx). Especially in LTx from donation after cardiac death (DCD), effective control of IRI following warm ischemia (WIRI) is crucial to prevent PGD. This study aimed to identify the key factors affecting WIRI in LTx from DCD. METHODS: Previously reported RNA-sequencing dataset of lung WIRI was reanalyzed to identify nuclear receptor subfamily 4 group A member 1 (NR4A1) as the immediate early gene for WIRI. Dynamics of NR4A1 expression were verified using a mouse hilar clamp model. To investigate the role of NR4A1 in WIRI, a mouse model of LTx from DCD was established using Nr4a1 knockout (Nr4a1-/-) mice. RESULTS: NR4A1 was located around vascular cells, and its protein levels in the lungs increased rapidly and transiently during WIRI. LTx from Nr4a1-/- donors significantly improved pulmonary graft function compared to wild-type donors (P < 0.001). Histological analysis showed decreased microvascular endothelial cell death (P = 0.007), neutrophil infiltration (P < 0.001), and albumin leakage (P < 0.001). Evans blue permeability assay demonstrated maintained pulmonary microvascular barrier integrity in grafts from Nr4a1-/- donors, correlating with diminished pulmonary edema (P < 0.001). However, NR4A1 did not significantly affect the inflammatory response during WIRI, and IRI was not suppressed when a wild-type donor lung was transplanted into the Nr4a1-/- recipient. CONCLUSIONS: Donor NR4A1 plays a specialized role in the positive regulation of endothelial cell injury and microvascular hyperpermeability. These findings demonstrate the potential of targeting NR4A1 interventions to alleviate PGD and improve outcomes in LTx from DCD.

7.
Theranostics ; 14(15): 5809-5825, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39346541

RESUMO

Introduction: Ionizing radiation has been widely used in industry, medicine, military and agriculture. Radiation-induced skin injury is a significant concern in the context of radiotherapy and accidental exposure to radiation. The molecular changes at the single-cell level and intercellular communications during radiation-induced skin injury are not well understood. Methods: This study aims to illustrate this information in a murine model and human skin samples from a radiation accident using single-cell RNA sequencing (scRNA-Seq). We further characterize the functional significance of key molecule, which may provide a potential therapeutic target. ScRNA-Seq was performed on skin samples from a nuclear accident patient and rats exposed to ionizing radiation. Bioinformatic tools were used to analyze the cellular heterogeneity and preferential mRNAs. Comparative analysis was performed to identify dysregulated pathways, regulators, and ligand-receptor interactions in fibroblasts. The function of key molecule was validated in skin cells and in three mouse models of radiation-induced skin injury. Results: 11 clusters in human skin and 13 clusters of cells in rat skin were depicted respectively. Exposure to ionizing radiation caused changes in the cellular population (upregulation of fibroblasts and endothelial cells, downregulation of keratinocytes). Fibroblasts and keratinocytes possessed the most interaction pairs with other cell lineages. Among the five DEGs common to human and rat skins, Nur77 was highly expressed in fibroblasts, which mediated radiosensitivity by cell apoptosis and modulated crosstalk between macrophages, keratinocytes and endothelial cells in radiation-induced skin injury. In animal models, Nur77 knock-out mice (Nur77 -/-) showed more severe injury after radiation exposure than wild-type counterparts in three models of radiation-induced skin injury with complex mechanisms. Conclusion: The study reveals a single-cell transcriptional framework during radiation-induced skin injury, which provides a useful resource to uncover key events in its progression. Nur77 is a novel target in radiation-induced skin injury, which provides a potential therapeutic strategy against this disease.


Assuntos
Queratinócitos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , RNA-Seq , Análise de Célula Única , Pele , Animais , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Humanos , Camundongos , Ratos , Pele/efeitos da radiação , Pele/patologia , Pele/metabolismo , Pele/lesões , Queratinócitos/efeitos da radiação , Queratinócitos/metabolismo , Fibroblastos/efeitos da radiação , Fibroblastos/metabolismo , Masculino , Camundongos Knockout , Radiação Ionizante , Lesões por Radiação/genética , Lesões por Radiação/patologia , Análise da Expressão Gênica de Célula Única
8.
Mol Cell Endocrinol ; 594: 112379, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39326649

RESUMO

The peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor abundantly expressed in the nonalcoholic fatty liver disease (NAFLD). In this study, we investigated the mechanism by which PPARγ regulates the transmembrane and coiled-coil domain family 3 (Tmcc3) gene in the liver. We found that TMCC3 is highly expressed in the fatty liver of humans and mice with NAFLD and alcoholic fatty liver disease. Three exon 1 variants (Tmcc3-1a, -1b, and -1c) of mouse Tmcc3 were identified. TMCC3-1B was highly expressed in the fatty liver of type 2 diabetic ob/ob mice; however, this increase in expression was ameliorated by liver-specific knockout of PPARγ. Reporter assays and electrophoretic mobility shift assays showed that PPARγ positively regulates Tmcc3-1b and -1c transcription through the same PPARγ-responsive element present in the 5'-region of each Tmcc3. Altogether, our results indicate that Tmcc3 is a novel PPARγ target in the fatty liver disease.

9.
Environ Toxicol Pharmacol ; 111: 104562, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39245243

RESUMO

Artificial turf, a consumer product growing in usage in the United States, contains diverse chemicals, some of which are endocrine disruptive. Endocrine effects from turf material extracts have been primarily limited to one component, crumb rubber, of these multi-material products. We present in vitro bioactivities from non-weathered and weathered turf sample extracts, including multiple turf components. All weathered samples were collected from real-world turf fields. Non-weathered versus weathered differentially affected the androgen (AR), estrogen (ER), glucocorticoid (GR), and thyroid receptors (TR) in reporter bioassays. While weathered extracts more efficaciously activated peroxisome proliferator activated receptor γ (PPARγ), this did not translate to greater in vitro adipogenic potential. All turf extracts activated the aryl hydrocarbon receptor (AhR). High AhR-efficacy extracts induced modest rat cardiomyoblast toxicity in an AhR-dependent manner. Our data demonstrate potential endocrine and cardiometabolic effects from artificial turf material extracts, warranting further investigation into potential exposures and human health effects.

10.
Cell Signal ; 124: 111382, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39243920

RESUMO

Oxidative stress causes damage to cancer cells and plays an important role in cancer therapy. Antagonizing oxidative stress is crucial for cancer cells to survive during the oxidation-based therapy. In this study, we defined the role of nuclear receptor co-activator 7 (NCOA7) in anti-oxidation in lung cancer cells and found that NCOA7 protects lung cancer A549 cells from the oxidative damage caused by hydrogen peroxide. Knockdown of NCOA7 in A549 cells significantly enhanced the hydrogen peroxide-caused inhibition of cell proliferation and migration, and markedly increased the damage effect of hydrogen peroxide on F-actin and focal adhesion structure, suggesting that NCOA7 protects F-actin and focal adhesion structure, thus the cell proliferation and migration, from oxidation-caused damage. Mechanistically, the anti-oxidation effect of NCOA7 is mediated by its nuclear receptor binding domain, the ERbd domain, suggesting that the anti-oxidation function of NCOA7 is dependent on its nuclear receptor co-activator activity. Our studies identified NCOA7 as an anti-oxidative protein through its nuclear receptor co-activator function and revealed the mechanism underlying the anti-oxidative effect of NCOA7 on cancer cell proliferation and migration.

11.
J Cheminform ; 16(1): 109, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39334272

RESUMO

Nuclear receptors (NRs) play a crucial role as biological targets in drug discovery. However, determining which compounds can act as endocrine disruptors and modulate the function of NRs with a reduced amount of candidate drugs is a challenging task. Moreover, the computational methods for NR-binding activity prediction mostly focus on a single receptor at a time, which may limit their effectiveness. Hence, the transfer of learned knowledge among multiple NRs can improve the performance of molecular predictors and lead to the development of more effective drugs. In this research, we integrate graph neural networks (GNNs) and Transformers to introduce a few-shot GNN-Transformer, Meta-GTNRP to predict the binding activity of compounds using the combined information of different NRs and identify potential NR-modulators with limited data. The Meta-GTNRP model captures the local information in graph-structured data and preserves the global-semantic structure of molecular graph embeddings for NR-binding activity prediction. Furthermore, a few-shot meta-learning approach is proposed to optimize model parameters for different NR-binding tasks and leverage the complementarity among multiple NR-specific tasks to predict binding activity of compounds for each NR with just a few labeled molecules. Experiments with a compound database containing annotations on the binding activity for 11 NRs shows that Meta-GTNRP outperforms other graph-based approaches. The data and code are available at: https://github.com/ltorres97/Meta-GTNRP .Scientific contributionThe proposed few-shot GNN-Transformer model, Meta-GTNRP captures the local structure of molecular graphs and preserves the global-semantic information of graph embeddings to predict the NR-binding activity of compounds with limited available data; A few-shot meta-learning framework adapts model parameters across NR-specific tasks for different NRs in a joint learning procedure to predict the binding activity of compounds for each NR with just a few labeled molecules in highly imbalanced data scenarios; Meta-GTNRP is a data-efficient approach that combines the strengths of GNNs and Transformers to predict the NR-binding properties of compounds through an optimized meta-learning procedure and deliver robust results valuable to identify potential NR-based drug candidates.

12.
Toxicol In Vitro ; 101: 105943, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39341470

RESUMO

Di-(2-ethylhexyl) phthalate (DEHP) is widely used as a plasticizer in polyvinyl chloride products. DEHP exposure in humans is of great concern due to its endocrine-disrupting properties. In this study, we characterized the agonistic activities of DEHP and its five metabolites, mono-(2-ethylhexyl) phthalate (MEHP), 5OH-MEHP, 5oxo-MEHP, 5cx-MEPP and 2cx-MMHP against human nuclear receptors, peroxisome proliferator-activated receptor α (PPARα), pregnane X receptor (PXR), and constitutive androstane receptor (CAR) using transactivation assays. In the PPARα assay, the order of the agonistic activity was MEHP >> 5cx-MEPP >5OH-MEHP, 5oxo-MEHP >2cx-MMHP > DEHP, with DEHP significantly inhibiting MEHP-induced PPARα agonistic activity. This finding was compared to the results from in silico docking simulation. In the PXR assay, DEHP showed PXR agonistic activity more potent than that of MEHP, whereas the other metabolites showed little activity. In the CAR assay, none of the tested compounds showed agonistic activity. Moreover, the expression levels of PPARα-, PXR-, and CAR-target genes in HepaRG cells exposed to DEHP or MEHP were investigated using qRT-PCR analysis. As a result, exposure to these compounds significantly upregulated PXR/CAR target genes (CYP3A4 and CYP2B6), but not PPARα target genes (CYP4A11, etc.) in HepaRG cells. Taken together, these results suggest that direct PXR and/or indirect CAR activation by several DEHP metabolites may be involved in the endocrine disruption by altering hormone metabolism.

13.
RNA Biol ; 21(1): 9-22, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39219375

RESUMO

This study is to elucidate the effect of the LINC00663/EBF1/NR2F1 axis on inflammation and angiogenesis in bladder cancer (BC) and related molecular mechanisms. After transfection, functional experiments were conducted to test cell proliferation and invasion, tube formation ability, and content of inflammatory factors, Snail, E-cadherin, and VEGFA. Meanwhile, the relationships among LINC00663, EBF1, and NR2F1 were predicted and verified. In addition, xenograft experiments in nude mice were performed to observe the oncogenicity of 5637 BC cells in vivo. In BC tissues and cells, LINC00663 and NR2F1 were upregulated. Silencing NR2F1 or LINC00663 repressed cell proliferation and invasion, weakened vascular mimicry in vitro, decreased inflammatory factor, Snail, and VEGFA levels, and increased expression of E-cadherin. LINC00663 positively regulated NR2F1 expression through EBF1. Additionally, in vivo experiments showed that NR2F1 upregulation reversed the suppression effects of LINC00663 silencing on tumour growth, inflammation, and angiogenesis. Silencing LINC00663 decreased NR2F1 expression by mediating EBF1, thereby inhibiting BC inflammation and angiogenesis.


Assuntos
Fator I de Transcrição COUP , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Inflamação , Neovascularização Patológica , RNA Longo não Codificante , Transativadores , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Fator I de Transcrição COUP/metabolismo , Fator I de Transcrição COUP/genética , Inflamação/metabolismo , Inflamação/genética , Inflamação/patologia , Transativadores/metabolismo , Transativadores/genética , Feminino , Masculino , Camundongos Nus , Inativação Gênica , Movimento Celular , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Angiogênese
14.
Biochem Biophys Res Commun ; 734: 150617, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39241622

RESUMO

Retinoid X receptors (RXRs) belong to a retinoid-binding subgroup of the nuclear receptor family, and their synthetic agonists have been developed as therapeutics for glucose and lipid metabolism, inflammation, and inflammatory bowel disease, although RXR agonists could cause side effects such as hypothyroidism, hypertriglyceridemia, and hepatomegaly. We previously reported novel full and partial agonists, NEt-3IB and NEt-4IB, which reduce the side effects, but the molecular basis of their different activity was not clear. In this study, we report the crystal structures of the ligand-binding domain of human RXRα complexed with NEt-3IB and NEt-4IB. Detailed comparisons of the two structures showed that the full agonist, NEt-3IB, is more stably accommodated in the ligand-binding pocket due to the interactions of the bulky iso-butoxy group with helices 5 and 7. The stabilization of these helices led to the stabilization of helix 12, which is important for formation of the coactivator-binding site. The structures shed light on the novel mechanism of the regulation of RXR activity through the interaction between the bound agonist and helix 7, an interaction that was not previously considered important.

15.
J Lipid Res ; : 100649, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39306039

RESUMO

Cholestasis is a chronic liver disease with limited therapeutic options. Hydrophobic bile acid-induced hepatobiliary injury is a major pathological driver of cholestasis progression. This study investigates the anti-cholestasis efficacy and mechanisms of action of glycine-conjugated ß-muricholic acid (Gly-ß-MCA). We use female Cyp2c70 KO mice, a rodent cholestasis model that do not produce endogenous muricholic acid (MCA) and exhibit a "human-like" hydrophobic bile acid pool and female-dominant progressive hepatobiliary injury and portal fibrosis. The efficacy of Gly-ß-MCA and ursodeoxycholic acid (UDCA), the 1st line drug for cholestasis, on cholangiopathy and portal fibrosis are compared. At a clinically relevant dose, Gly-ß-MCA shows comparable efficacy as UDCA in reducing serum transaminase, portal inflammation and ductular reaction, and better efficacy than UDCA against portal fibrosis. Unlike endogenous bile acids, orally administered Gly-ß-MCA is absorbed at low efficiency in the gut and enters the enterohepatic circulation mainly after microbiome-mediated deconjugation, which leads to taurine-conjugated MCA enrichment in bile that alters enterohepatic bile acid pool composition and reduces bile acid pool hydrophobicity. Gly-ß-MCA also promotes fecal excretion of endogenous hydrophobic bile acids and decreases total bile acid pool size, while UDCA treatment does not alter total bile acid pool. Furthermore, Gly-ß-MCA treatment leads to gut unconjugated MCA enrichment and reduces gut hydrophobic lithocholic acid (LCA) exposure. In contrast, UDCA treatment drives a marked increase of LCA flux through the large intestine. In conclusion, Gly-ß-MCA is a potent anti-cholestasis agent with potential clinical application in treating human cholestasis.

16.
Eur J Med Chem ; 279: 116856, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39270454

RESUMO

As a defense mechanism against deleterious stimuli, inflammation plays a vital role in the development of many disorders, including atherosclerosis, inflammatory bowel disease, experimental autoimmune encephalomyelitis, septic and non-septic shock, and non-alcoholic fatty liver disease (NAFLD). Despite the serious adverse effects of extended usage, traditional anti-inflammatory medications, such as steroidal and non-steroidal anti-inflammatory medicines (NSAIDs), are commonly used for alleviating symptoms of inflammation. The PPARδ subtype of peroxisome proliferator-activated receptors (PPARs) has attracted interest because of its potential for reducing inflammation and related disorders. In this study, a series of 1,3,4-thiadiazole derivatives were designed, synthesized, and evaluated. Compound 11 exhibited potent PPARδ agonistic activity with EC50 values 20 nM and strong selectivity over PPARα and PPARγ. Furthermore, compound 11 demonstrated favorable in vitro and in vivo pharmacokinetic properties. In vivo experiments using labeled macrophages and paw thickness measurements confirmed compound 11's potential to reduce macrophage infiltration and alleviate inflammation. These findings highlight compound 11 as a potent and promising therapeutic candidate for the treatment of acute inflammatory diseases and warrant further investigation to explore various biological roles.

17.
Cell Mol Life Sci ; 81(1): 362, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162859

RESUMO

Disease-modifying strategies for Parkinson disease (PD), the most common synucleinopathy, represent a critical unmet medical need. Accumulation of the neuronal protein alpha-synuclein (αS) and abnormal lipid metabolism have each been implicated in PD pathogenesis. Here, we elucidate how retinoid-X-receptor (RXR) nuclear receptor signaling impacts these two aspects of PD pathogenesis. We find that activated RXR differentially regulates fatty acid desaturases, significantly reducing the transcript levels of the largely brain-specific desaturase SCD5 in human cultured neural cells and PD patient-derived neurons. This was associated with reduced perilipin-2 protein levels in patient neurons, reversal of αS-induced increases in lipid droplet (LD) size, and a reduction of triglyceride levels in human cultured cells. With regard to αS proteostasis, our study reveals that RXR agonism stimulates lysosomal clearance of αS. Our data support the involvement of Polo-like kinase 2 activity and αS S129 phosphorylation in mediating this benefit. The lowering of cellular αS levels was associated with reduced cytotoxicity. Compared to RXR activation, the RXR antagonist HX531 had the opposite effects on LD size, SCD, αS turnover, and cytotoxicity, all supporting pathway specificity. Together, our findings show that RXR-activating ligands can modulate fatty acid metabolism and αS turnover to confer benefit in cellular models of PD, including patient neurons. We offer a new paradigm to investigate nuclear receptor ligands as a promising strategy for PD and related synucleinopathies.


Assuntos
Metabolismo dos Lipídeos , Lisossomos , Neurônios , Receptores X de Retinoides , Transdução de Sinais , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Células Cultivadas , Lisossomos/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Perilipina-2/metabolismo , Perilipina-2/genética , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Receptores X de Retinoides/metabolismo , Receptores X de Retinoides/genética , Sinucleinopatias/metabolismo , Sinucleinopatias/patologia
18.
Cells ; 13(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39120315

RESUMO

Nuclear hormone receptors (NHRs) are a family of ligand-regulated transcription factors that control key aspects of development and physiology. The regulation of NHRs by ligands derived from metabolism or diet makes them excellent pharmacological targets, and the mechanistic understanding of how NHRs interact with their ligands to regulate downstream gene networks, along with the identification of ligands for orphan NHRs, could enable innovative approaches for cellular engineering, disease modeling and regenerative medicine. We review recent discoveries in the identification of physiologic ligands for NHRs. We propose new models of ligand-receptor co-evolution, the emergence of hormonal function and models of regulation of NHR specificity and activity via one-ligand and two-ligand models as well as feedback loops. Lastly, we discuss limitations on the processes for the identification of physiologic NHR ligands and emerging new methodologies that could be used to identify the natural ligands for the remaining 17 orphan NHRs in the human genome.


Assuntos
Metaboloma , Receptores Citoplasmáticos e Nucleares , Humanos , Receptores Citoplasmáticos e Nucleares/metabolismo , Ligantes , Animais
19.
Eur J Pharmacol ; 982: 176945, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39182547

RESUMO

The nuclear receptor Nur77 is a transcription factor belonging to the NR4A subfamily. Upon activation, it regulates a wide array of biological and pathophysiological processes by modulating the expression of its target genes. Previous findings have classified Nur77 as an orphan receptor because of the discovery of a structurally atypical ligand-binding domain and the lack of identification of an endogenous ligand. Nevertheless, recent studies have uncovered several endogenous, natural, and small synthetic molecules that can bind to and activate Nur77. However, developing selective and potent Nur77 activators remains a significant challenge. The discovery of novel and potential small synthetic molecules that modulate Nur77 activity will facilitate therapeutic interventions of Nur77 against several human diseases. In this study, we have reported the development of a novel and effective Nur77 ligand. Our data show that (1E,4E)-1,5-di(pyrazin-2-yl)penta-1,4-dien-3-one (PB) induces Nur77 transcriptional activity by interacting with a putative Nur77 ligand binding site by forming solid hydrogen bonding. Calculated chemical parameters denote that PB has sophisticated chemical features that will enhance its interaction with the Nur77 ligand-binding domain. Molecular docking simulations showed that PB fits in the Nur77 putative ligand binding site with solid hydrogen bonding, and molecular dynamics simulations indicate that PB binding would stabilize the Nur77 ligand binding domain. Further, in vitro studies revealed that PB increases Nur77 nuclear expression and activity, inhibits cigarette smoke-induced inflammatory phenotype of airway epithelial cells, and protects against apoptosis. These findings provide insights into developing an effective Nur77 small-molecule activator which could be developed into a therapeutic agent against inflammatory diseases.


Assuntos
Simulação de Acoplamento Molecular , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Humanos , Ligantes , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Apoptose/efeitos dos fármacos , Animais , Sítios de Ligação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA