Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cells ; 10(9)2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34571841

RESUMO

Numb family proteins (NFPs), including Numb and Numblike (Numbl), are commonly known for their role as cell fate determinants for multiple types of progenitor cells, mainly due to their function as Notch inhibitors. Previous studies have shown that myocardial NFP double knockout (MDKO) hearts display an up-regulated Notch activation and various defects in cardiac progenitor cell differentiation and cardiac morphogenesis. Whether enhanced Notch activation causes these defects in MDKO is not fully clear. To answer the question, we examined the spatiotemporal patterns of Notch1 expression, Notch activation, and Numb expression in the murine embryonic hearts using multiple approaches including RNAScope, and Numb and Notch reporter mouse lines. To further interrogate the interaction between NFPs and Notch signaling activation, we deleted both Notch1 or RBPJk alleles in the MDKO. We examined and compared the phenotypes of Notch1 knockout, NFPs double knockout, Notch1; Numb; Numbl and RBPJk; Numb; Numbl triple knockouts. Our study showed that Notch1 is expressed and activated in the myocardium at several stages, and Numb is enriched in the epicardium and did not show the asymmetric distribution in the myocardium. Cardiac-specific Notch1 deletion causes multiple structural defects and embryonic lethality. Notch1 or RBPJk deletion in MDKO did not rescue the structural defects in the MDKO but partially rescued the defects of cardiac progenitor cell differentiation, cardiomyocyte proliferation, and trabecular morphogenesis. Our study concludes that NFPs regulate progenitor cell differentiation, cardiomyocyte proliferation, and trabecular morphogenesis partially through Notch1 and play more roles than inhibiting Notch1 signaling during cardiac morphogenesis.


Assuntos
Coração/fisiologia , Proteínas de Membrana/metabolismo , Morfogênese/fisiologia , Miocárdio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptor Notch1/metabolismo , Animais , Diferenciação Celular/fisiologia , Feminino , Masculino , Camundongos , Organogênese/fisiologia , Transdução de Sinais/fisiologia , Células-Tronco/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(31): 15560-15569, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31300538

RESUMO

The roles of cellular orientation during trabecular and ventricular wall morphogenesis are unknown, and so are the underlying mechanisms that regulate cellular orientation. Myocardial-specific Numb and Numblike double-knockout (MDKO) hearts display a variety of defects, including in cellular orientation, patterns of mitotic spindle orientation, trabeculation, and ventricular compaction. Furthermore, Numb- and Numblike-null cardiomyocytes exhibit cellular behaviors distinct from those of control cells during trabecular morphogenesis based on single-cell lineage tracing. We investigated how Numb regulates cellular orientation and behaviors and determined that N-cadherin levels and membrane localization are reduced in MDKO hearts. To determine how Numb regulates N-cadherin membrane localization, we generated an mCherry:Numb knockin line and found that Numb localized to diverse endocytic organelles but mainly to the recycling endosome. Consistent with this localization, cardiomyocytes in MDKO did not display defects in N-cadherin internalization but rather in postendocytic recycling to the plasma membrane. Furthermore, N-cadherin overexpression via a mosaic model partially rescued the defects in cellular orientation and trabeculation of MDKO hearts. Our study unravels a phenomenon that cardiomyocytes display spatiotemporal cellular orientation during ventricular wall morphogenesis, and its disruption leads to abnormal trabecular and ventricular wall morphogenesis. Furthermore, we established a mechanism by which Numb modulates cellular orientation and consequently trabecular and ventricular wall morphogenesis by regulating N-cadherin recycling to the plasma membrane.


Assuntos
Caderinas/metabolismo , Ventrículos do Coração/embriologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Organogênese , Animais , Caderinas/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Miócitos Cardíacos/citologia , Proteínas do Tecido Nervoso/genética
3.
Development ; 141(2): 281-95, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24335256

RESUMO

Numb family proteins (NFPs), including Numb and numb-like (Numbl), are cell fate determinants for multiple progenitor cell types. Their functions in cardiac progenitor differentiation and cardiac morphogenesis are unknown. To avoid early embryonic lethality and study NFP function in later cardiac development, Numb and Numbl were deleted specifically in heart to generate myocardial double-knockout (MDKO) mice. MDKOs were embryonic lethal and displayed a variety of defects in cardiac progenitor differentiation, cardiomyocyte proliferation, outflow tract (OFT) and atrioventricular septation, and OFT alignment. By ablating NFPs in different cardiac populations followed by lineage tracing, we determined that NFPs in the second heart field (SHF) are required for OFT and atrioventricular septation and OFT alignment. MDKOs displayed an SHF progenitor cell differentiation defect, as revealed by a variety of methods including mRNA deep sequencing. Numb regulated cardiac progenitor cell differentiation in an endocytosis-dependent manner. Studies including the use of a transgenic Notch reporter line showed that Notch signaling was upregulated in the MDKO. Suppression of Notch1 signaling in MDKOs rescued defects in p57 expression, proliferation and trabecular thickness. Further studies showed that Numb inhibits Notch1 signaling by promoting the degradation of the Notch1 intracellular domain in cardiomyocytes. This study reveals that NFPs regulate trabecular thickness by inhibiting Notch1 signaling, control cardiac morphogenesis in a Notch1-independent manner, and regulate cardiac progenitor cell differentiation in an endocytosis-dependent manner. The function of NFPs in cardiac progenitor differentiation and cardiac morphogenesis suggests that NFPs might be potential therapeutic candidates for cardiac regeneration and congenital heart diseases.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Coração/embriologia , Proteínas de Membrana/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem da Célula , Proliferação de Células , Feminino , Cardiopatias Congênitas/embriologia , Cardiopatias Congênitas/metabolismo , Cardiopatias Congênitas/patologia , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Morfogênese/genética , Morfogênese/fisiologia , Miocárdio/citologia , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Gravidez , Receptor Notch1/genética , Receptor Notch1/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA