Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Heliyon ; 10(18): e37819, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39315149

RESUMO

The Snow Ablation Optimizer (SAO) is an advanced optimization algorithm. However, it suffers from slow convergence and a tendency to become trapped in local optima. To address these limitations, we propose an Enhanced Snow Ablation Optimization algorithm (ESAO). Initially, an adaptive T-distribution control strategy is employed to improve the algorithm's exploratory position adjustments, facilitating the identification of the global optimum. Furthermore, we introduce a Cauchy mutation strategy, endowing individuals with a robust capability to escape local extrema and steer the population towards more favorable directions. A leader-based boundary control strategy is also proposed to enhance the optimizer's search performance, significantly increasing the accuracy, speed, and stability of the algorithm in tackling complex problems. To validate the performance of ESAO, we utilize 29 CEC2017 benchmark functions for comparison against eight popular algorithms across various dimensions. Our algorithm ranked first in all comparisons, demonstrating ESAO's effectiveness. Additionally, to evaluate the practical applicability of the proposed method, we mathematically modeled the UAV swarm and solved the UAV swarm path planning problem using various competitor algorithms. Furthermore, we applied different competitor algorithms to two engineering design problems. The results demonstrate that ESAO performs the best. In general, ESAO outperforms its counterparts in terms of solution quality and stability, showcasing its superior application potential.

2.
Sci Rep ; 14(1): 22492, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39341966

RESUMO

Achieving compact size has emerged as a key consideration in modern microwave design. While structural miniaturization can be accomplished through judicious circuit architecture selection, precise parameter tuning is equally vital to minimize physical dimensions while meeting stringent performance requirements for electrical characteristics. Due to the intricate nature of compact structures, global optimization is recommended, yet hindered by the excessive expenses associated with system evaluation, typically conducted through electromagnetic (EM) simulation. This challenge is further compounded by the fact that size reduction is a constrained problem entailing expensive constraints. This paper introduces an innovative method for cost-effective explicit miniaturization of microwave components on a global scale. Our approach leverages response feature technology, formulating the optimization problem based on a set of characteristic points derived from EM-analyzed responses, combined with an implicit constraint handling approach. Both elements facilitate handling size reduction by transforming it into an unconstrained problem and regularizing the objective function. The core search engine employs a machine-learning framework with kriging-based surrogates refined using the predicted improvement in the objective function as the infill criterion. Our algorithm is demonstrated using two miniaturized couplers and is shown superior over several benchmark routines, encompassing both conventional (gradient-based) and population-based procedures, alongside a machine learning technique. The primary strengths of the proposed framework lie in its reliability, computational efficiency (with a typical optimization cost ranging from 100 to 150 EM circuit analyses), and straightforward setup.

3.
Biomimetics (Basel) ; 9(8)2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39194479

RESUMO

In order to further improve performance of the Slime Mould Algorithm, the Enhanced Multi-Strategy Slime Mould Algorithm (EMSMA) is proposed in this paper. There are three main modifications to SMA. Firstly, a leader covariance learning strategy is proposed to replace the anisotropic search operator in SMA to ensure that the agents can evolve in a better direction during the optimization process. Secondly, the best agent is further modified with an improved non-monopoly search mechanism to boost the algorithm's exploitation and exploration capabilities. Finally, a random differential restart mechanism is developed to assist SMA in escaping from local optimality and increasing population diversity when it is stalled. The impacts of three strategies are discussed, and the performance of EMSMA is evaluated on the CEC2017 suite and CEC2022 test suite. The numerical and statistical results show that EMSMA has excellent performance on both test suites and is superior to the SMA variants such as DTSMA, ISMA, AOSMA, LSMA, ESMA, and MSMA in terms of convergence accuracy, convergence speed, and stability.

4.
Entropy (Basel) ; 26(7)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39056972

RESUMO

For multivariate non-Gaussian involving copulas, likelihood inference is dominated by the data in the middle, and fitted models might not be very good for joint tail inference, such as assessing the strength of tail dependence. When preliminary data and likelihood analysis suggest asymmetric tail dependence, a method is proposed to improve extreme value inferences based on the joint lower and upper tails. A prior that uses previous information on tail dependence can be used in combination with the likelihood. With the combination of the prior and the likelihood (which in practice has some degree of misspecification) to obtain a tilted log-likelihood, inferences with suitably transformed parameters can be based on Bayesian computing methods or with numerical optimization of the tilted log-likelihood to obtain the posterior mode and Hessian at this mode.

5.
Sci Rep ; 14(1): 12603, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824256

RESUMO

The RIME optimization algorithm (RIME) represents an advanced optimization technique. However, it suffers from issues such as slow convergence speed and susceptibility to falling into local optima. In response to these shortcomings, we propose a multi-strategy enhanced version known as the multi-strategy improved RIME optimization algorithm (MIRIME). Firstly, the Tent chaotic map is utilized to initialize the population, laying the groundwork for global optimization. Secondly, we introduce an adaptive update strategy based on leadership and the dynamic centroid, facilitating the swarm's exploitation in a more favorable direction. To address the problem of population scarcity in later iterations, the lens imaging opposition-based learning control strategy is introduced to enhance population diversity and ensure convergence accuracy. The proposed centroid boundary control strategy not only limits the search boundaries of individuals but also effectively enhances the algorithm's search focus and efficiency. Finally, to demonstrate the performance of MIRIME, we employ CEC 2017 and CEC 2022 test suites to compare it with 11 popular algorithms across different dimensions, verifying its effectiveness. Additionally, to assess the method's practical feasibility, we apply MIRIME to solve the three-dimensional path planning problem for unmanned surface vehicles. Experimental results indicate that MIRIME outperforms other competing algorithms in terms of solution quality and stability, highlighting its superior application potential.

6.
Phys Med Biol ; 69(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38815603

RESUMO

Objective. The transmit encoding model for synthetic aperture imaging is a robust and flexible framework for understanding the effects of acoustic transmission on ultrasound image reconstruction. Our objective is to use machine learning (ML) to construct scanning sequences, parameterized by time delays and apodization weights, that produce high-quality B-mode images.Approach. We use a custom ML model in PyTorch with simulated RF data from Field II to probe the space of possible encoding sequences for those that minimize a loss function that describes image quality. This approach is made computationally feasible by a novel formulation of the derivative for delay-and-sum beamforming.Main results. When trained for a specified experimental setting (imaging domain, hardware restrictions, etc), our ML model produces optimized encoding sequences that, when deployed in the REFoCUS imaging framework, improve a number of standard quality metrics over conventional sequences including resolution, field of view, and contrast. We demonstrate these results experimentally on both wire targets and a tissue-mimicking phantom.Significance. This work demonstrates that the set of commonly used encoding schemes represent only a narrow subset of those available. Additionally, it demonstrates the value for ML tasks in synthetic transmit aperture imaging to consider the beamformer within the model, instead of purely as a post-processing step.


Assuntos
Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Ultrassonografia , Ultrassonografia/instrumentação , Ultrassonografia/métodos , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina
7.
Phys Med Biol ; 69(10)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38588671

RESUMO

Objective. A novel x-ray field produced by an ultrathin conical target is described in the literature. However, the optimal design for an associated collimator remains ambiguous. Current optimization methods using Monte Carlo calculations restrict the efficiency and robustness of the design process. A more generic optimization method that reduces parameter constraints while minimizing computational load is necessary. A numerical method for optimizing the longitudinal collimator hole geometry for a cylindrically-symmetrical x-ray tube is demonstrated and compared to Monte Carlo calculations.Approach. The x-ray phase space was modelled as a four-dimensional histogram differential in photon initial position, final position, and photon energy. The collimator was modeled as a stack of thin washers with varying inner radii. Simulated annealing was employed to optimize this set of inner radii according to various objective functions calculated on the photon flux at a specified plane.Main results. The analytical transport model used for optimization was validated against Monte Carlo calculations using Geant4 via its wrapper, TOPAS. Optimized collimators and the resulting photon flux profiles are presented for three focal spot sizes and five positions of the source. Optimizations were performed with multiple objective functions based on various weightings of precision, intensity, and field flatness metrics. Finally, a select set of these optimized collimators, plus a parallel-hole collimator for comparison, were modeled in TOPAS. The evolution of the radiation field profiles are presented for various positions of the source for each collimator.Significance. This novel optimization strategy proved consistent and robust across the range of x-ray tube settings regardless of the optimization starting point. Common collimator geometries were re-derived using this algorithm while simultaneously optimizing geometry-specific parameters. The advantages of this strategy over iterative Monte Carlo-based techniques, including computational efficiency, radiation source-specificity, and solution flexibility, make it a desirable optimization method for complex irradiation geometries.


Assuntos
Método de Monte Carlo , Raios X , Fótons , Modelos Teóricos
8.
NMR Biomed ; 37(6): e5112, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38299770

RESUMO

Missing pulse (MP) steady-state free precession (SSFP) is a magnetic resonance imaging (MRI) pulse sequence that is highly tolerant to the magnetic field inhomogeneity. In this study, optimal flip angle and radiofrequency (RF) phase scheduling in three-dimensional (3D) MP-SSFP is introduced to maximize the steady-state magnetization while keeping broadband excitation to cover widely distributed frequencies generated by inhomogeneous magnetic fields. Numerical optimization based on extended phase graph (EPG) simulation was performed to maximize the MP-SSFP steady-state magnetization. To limit the specific absorption rate (SAR) associated with the broadband excitation in 3D MP-SSFP, SAR constraint was introduced in the numerical optimization. Optimized flip angle and RF phase settings were experimentally tested by introducing a linear inhomogeneous magnetic field in a range of 10-20 mT/m and using a phantom with known T1/T2 relaxation and diffusion parameters at 3 T. The experimental results were validated through comparisons with EPG simulation. Image contrasts and molecular diffusion effects were investigated in in vivo human brain imaging with 3D MP-SSFP with the optimal flip angle and RF phase settings. In the phantom measurements, the optimal flip angle and RF phase settings improved the MP-SSFP steady-state magnetization/signal-to-noise ratio by up to 41% under the fixed SAR conditions, which matched well with EPG simulation results. In vivo brain imaging with the optimal RF pulse settings provided T2-like image contrasts. Diffusion effects were relatively minor with the linear inhomogeneous field of 10-20 mT/m for white and gray matter, but cerebrospinal fluid showed conspicuous signal intensity attenuation as the linear inhomogeneous field increased. Numerical optimization achieved significant improvement in the steady-state magnetization in MP-SSFP compared with the RF pulse settings used in previous studies. The proposed flip angle and RF phase optimization is promising to improve 3D MP-SSFP image quality for MRI in inhomogeneous magnetic fields.


Assuntos
Imageamento Tridimensional , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Ondas de Rádio , Humanos , Simulação por Computador , Encéfalo/diagnóstico por imagem , Algoritmos
9.
Sci Rep ; 14(1): 4877, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418500

RESUMO

Differential evolution (DE) is a robust optimizer designed for solving complex domain research problems in the computational intelligence community. In the present work, a multi-hybrid DE (MHDE) is proposed for improving the overall working capability of the algorithm without compromising the solution quality. Adaptive parameters, enhanced mutation, enhanced crossover, reducing population, iterative division and Gaussian random sampling are some of the major characteristics of the proposed MHDE algorithm. Firstly, an iterative division for improved exploration and exploitation is used, then an adaptive proportional population size reduction mechanism is followed for reducing the computational complexity. It also incorporated Weibull distribution and Gaussian random sampling to mitigate premature convergence. The proposed framework is validated by using IEEE CEC benchmark suites (CEC 2005, CEC 2014 and CEC 2017). The algorithm is applied to four engineering design problems and for the weight minimization of three frame design problems. Experimental results are analysed and compared with recent hybrid algorithms such as laplacian biogeography based optimization, adaptive differential evolution with archive (JADE), success history based DE, self adaptive DE, LSHADE, MVMO, fractional-order calculus-based flower pollination algorithm, sine cosine crow search algorithm and others. Statistically, the Friedman and Wilcoxon rank sum tests prove that the proposed algorithm fares better than others.

10.
Biomimetics (Basel) ; 8(7)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37999185

RESUMO

Novel high technology devices built to restore impaired peripheral nerves should be biomimetic in both their structure and in the biomolecular environment created around regenerating axons. Nevertheless, the structural biomimicry with peripheral nerves should follow some basic constraints due to their complex mechanical behaviour. However, it is not currently clear how these constraints could be defined. As a consequence, in this work, an explicit, deterministic, and physical-based framework was proposed to describe some mechanical constraints needed to mimic the peripheral nerve behaviour in extension. More specifically, a novel framework was proposed to investigate whether the similarity of the stress/strain curve was enough to replicate the natural nerve behaviour. An original series of computational optimizing procedures was then introduced to further investigate the role of the tangent modulus and of the rate of change of the tangent modulus with strain in better defining the structural biomimicry with peripheral nerves.

11.
Sensors (Basel) ; 23(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37631625

RESUMO

This paper presents a novel approach to reducing undesirable coupling in antenna arrays using custom-designed resonators and inverse surrogate modeling. To illustrate the concept, two standard patch antenna cells with 0.07λ edge-to-edge distance were designed and fabricated to operate at 2.45 GHz. A stepped-impedance resonator was applied between the antennas to suppress their mutual coupling. For the first time, the optimum values of the resonator geometry parameters were obtained using the proposed inverse artificial neural network (ANN) model, constructed from the sampled EM-simulation data of the system, and trained using the particle swarm optimization (PSO) algorithm. The inverse ANN surrogate directly yields the optimum resonator dimensions based on the target values of its S-parameters being the input parameters of the model. The involvement of surrogate modeling also contributes to the acceleration of the design process, as the array does not need to undergo direct EM-driven optimization. The obtained results indicate a remarkable cancellation of the surface currents between two antennas at their operating frequency, which translates into isolation as high as -46.2 dB at 2.45 GHz, corresponding to over 37 dB improvement as compared to the conventional setup.

12.
Ann Biomed Eng ; 51(12): 2837-2852, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37592044

RESUMO

Acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury (VILI) are heterogeneous conditions. The spatiotemporal evolution of these heterogeneities is complex, and it is difficult to elucidate the mechanisms driving its progression. Through previous quantitative analyses, we explored the distributions of cellular injury and neutrophil infiltration in experimental VILI and discovered that VILI progression is characterized by both the formation of new injury in quasi-random locations and the expansion of existing injury clusters. Distributions of neutrophil infiltration do not correlate with cell injury progression and suggest a systemic response. To further examine the dynamics of VILI, we have developed a novel computational model that simulates damage (cellular injury progression and neutrophil infiltration) using a stochastic approach. Optimization of the model parameters to fit experimental data reveals that the range and strength of interdependence between existing and new damaged regions both increase as mechanical ventilation patterns become more injurious. The interdependence of cellular injury can be attributed to mechanical tethering forces, while the interdependence of neutrophils is likely due to longer-range cell signaling pathways.


Assuntos
Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , Humanos , Pulmão/metabolismo , Infiltração de Neutrófilos , Respiração Artificial
13.
Biomimetics (Basel) ; 8(4)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37622986

RESUMO

The Mayfly Optimization Algorithm (MOA), as a new biomimetic metaheuristic algorithm with superior algorithm framework and optimization methods, plays a remarkable role in solving optimization problems. However, there are still shortcomings of convergence speed and local optimization in this algorithm. This paper proposes a metaheuristic algorithm for continuous and constrained global optimization problems, which combines the MOA, the Aquila Optimizer (AO), and the opposition-based learning (OBL) strategy, called AOBLMOA, to overcome the shortcomings of the MOA. The proposed algorithm first fuses the high soar with vertical stoop method and the low flight with slow descent attack method in the AO into the position movement process of the male mayfly population in the MOA. Then, it incorporates the contour flight with short glide attack and the walk and grab prey methods in the AO into the positional movement of female mayfly populations in the MOA. Finally, it replaces the gene mutation behavior of offspring mayfly populations in the MOA with the OBL strategy. To verify the optimization ability of the new algorithm, we conduct three sets of experiments. In the first experiment, we apply AOBLMOA to 19 benchmark functions to test whether it is the optimal strategy among multiple combined strategies. In the second experiment, we test AOBLMOA by using 30 CEC2017 numerical optimization problems and compare it with state-of-the-art metaheuristic algorithms. In the third experiment, 10 CEC2020 real-world constrained optimization problems are used to demonstrate the applicability of AOBLMOA to engineering design problems. The experimental results show that the proposed AOBLMOA is effective and superior and is feasible in numerical optimization problems and engineering design problems.

14.
Biomimetics (Basel) ; 8(3)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37504182

RESUMO

This study proposes an adaptable, bio-inspired optimization algorithm for Multi-Agent Space Exploration. The recommended approach combines a parameterized Aquila Optimizer, a bio-inspired technology, with deterministic Multi-Agent Exploration. Stochastic factors are integrated into the Aquila Optimizer to enhance the algorithm's efficiency. The architecture, called the Multi-Agent Exploration-Parameterized Aquila Optimizer (MAE-PAO), starts by using deterministic MAE to assess the cost and utility values of nearby cells encircling the agents. A parameterized Aquila Optimizer is then used to further increase the exploration pace. The effectiveness of the proposed MAE-PAO methodology is verified through extended simulations in various environmental conditions. The algorithm viability is further evaluated by comparing the results with those of the contemporary CME-Aquila Optimizer (CME-AO) and the Whale Optimizer. The comparison adequately considers various performance parameters, such as the percentage of the map explored, the number of unsuccessful runs, and the time needed to explore the map. The comparisons are performed on numerous maps simulating different scenarios. A detailed statistical analysis is performed to check the efficacy of the algorithm. We conclude that the proposed algorithm's average rate of exploration does not deviate much compared to contemporary algorithms. The same idea is checked for exploration time. Thus, we conclude that the results obtained for the proposed MAE-PAO algorithm provide significant advantages in terms of enhanced map exploration with lower execution times and nearly no failed runs.

15.
Int J Mol Sci ; 24(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37511566

RESUMO

The efficacy of antitumor radiotherapy can be enhanced by utilizing nonradioactive nanoparticles that emit secondary radiation when activated by a primary beam. They consist of small volumes of a radiosensitizing substance embedded within a polymer layer, which is coated with tumor-specific antibodies. The efficiency of nanosensitizers relies on their successful delivery to the tumor, which depends on their size. Increasing their size leads to a higher concentration of active substance; however, it hinders the penetration of nanosensitizers through tumor capillaries, slows down their movement through the tissue, and accelerates their clearance. In this study, we present a mathematical model of tumor growth and radiotherapy with the use of intravenously administered tumor-specific nanosensitizers. Our findings indicate that their optimal size for achieving maximum tumor radiosensitization following a single injection of their fixed total volume depends on the permeability of the tumor capillaries. Considering physiologically plausible spectra of capillary pore radii, with a nanoparticle polymer layer width of 7 nm, the optimal radius of nanoparticles falls within the range of 13-17 nm. The upper value is attained when considering an extreme spectrum of capillary pores.


Assuntos
Nanopartículas , Neoplasias , Humanos , Modelos Teóricos , Neoplasias/radioterapia , Neoplasias/irrigação sanguínea , Polímeros
16.
IEEE Signal Process Mag ; 40(1): 98-114, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37304755

RESUMO

Physics-driven deep learning methods have emerged as a powerful tool for computational magnetic resonance imaging (MRI) problems, pushing reconstruction performance to new limits. This article provides an overview of the recent developments in incorporating physics information into learning-based MRI reconstruction. We consider inverse problems with both linear and non-linear forward models for computational MRI, and review the classical approaches for solving these. We then focus on physics-driven deep learning approaches, covering physics-driven loss functions, plug-and-play methods, generative models, and unrolled networks. We highlight domain-specific challenges such as real- and complex-valued building blocks of neural networks, and translational applications in MRI with linear and non-linear forward models. Finally, we discuss common issues and open challenges, and draw connections to the importance of physics-driven learning when combined with other downstream tasks in the medical imaging pipeline.

17.
Entropy (Basel) ; 25(3)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36981300

RESUMO

Film cooling is a major cooling technique used in modern gas turbines and air engines. The geometry of film-cooling holes is the fundamental aspect affecting the cooling performance. In this paper, a new cooling configuration called the double-expansion film-cooling hole has been put forward, which yields better performance than the widely used shaped holes and is easy to manufacture. The double-expansion holes at inclination angles of α=30∘, 45∘, and 60∘ are optimized using the genetic algorithm and the Kriging surrogate model, which is trained by CFD data randomly sampled using the Latin hypercube method. The numerically optimized double-expansion holes at different inclination angles were experimentally evaluated and compared with the optimized single-expansion laid-back fan-shaped holes, and the optimized double-expansion hole at α=30∘ was manually modified based on experiment results. Compared with the optimal single-expansion holes, the area-averaged cooling effectiveness of the double-expansion holes was increased by 34.5% at α=30∘, by 27.8% at α=45∘, and basically the same at α=60∘, showing the benefit of the double-expansion concept. The loss mechanism of film cooling was also analyzed in the perspective of the entropy generation rate, showing the optimal double-expansion holes have 21% less loss compared to a baseline narrow single-expansion hole. It was also found that CFD sometimes predicts a different trend from the experiment in optimization, and the experimental validation is necessary.

18.
Sensors (Basel) ; 23(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36850442

RESUMO

Efficient trajectory generation in complex dynamic environments remains an open problem in the operation of an unmanned surface vehicle (USV). The perception of a USV is usually interfered by the swing of the hull and the ambient weather, making it challenging to plan optimal USV trajectories. In this paper, a cooperative trajectory planning algorithm for a coupled USV-UAV system is proposed to ensure that a USV can execute a safe and smooth path as it autonomously advances through multi-obstacle maps. Specifically, the unmanned aerial vehicle (UAV) plays the role of a flight sensor, providing real-time global map and obstacle information with a lightweight semantic segmentation network and 3D projection transformation. An initial obstacle avoidance trajectory is generated by a graph-based search method. Concerning the unique under-actuated kinematic characteristics of the USV, a numerical optimization method based on hull dynamic constraints is introduced to make the trajectory easier to be tracked for motion control. Finally, a motion control method based on NMPC with the lowest energy consumption constraint during execution is proposed. Experimental results verify the effectiveness of the whole system, and the generated trajectory is locally optimal for USV with considerable tracking accuracy.

19.
Psychometrika ; 88(1): 98-116, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36566451

RESUMO

We show that separable nonlinear least squares (SNLLS) estimation is applicable to all linear structural equation models (SEMs) that can be specified in RAM notation. SNLLS is an estimation technique that has successfully been applied to a wide range of models, for example neural networks and dynamic systems, often leading to improvements in convergence and computation time. It is applicable to models of a special form, where a subset of parameters enters the objective linearly. Recently, Kreiberg et al. (Struct Equ Model Multidiscip J 28(5):725-739, 2021. https://doi.org/10.1080/10705511.2020.1835484 ) have shown that this is also the case for factor analysis models. We generalize this result to all linear SEMs. To that end, we show that undirected effects (variances and covariances) and mean parameters enter the objective linearly, and therefore, in the least squares estimation of structural equation models, only the directed effects have to be obtained iteratively. For model classes without unknown directed effects, SNLLS can be used to analytically compute least squares estimates. To provide deeper insight into the nature of this result, we employ trek rules that link graphical representations of structural equation models to their covariance parametrization. We further give an efficient expression for the gradient, which is crucial to make a fast implementation possible. Results from our simulation indicate that SNLLS leads to improved convergence rates and a reduced number of iterations.


Assuntos
Algoritmos , Modelos Teóricos , Análise dos Mínimos Quadrados , Psicometria , Simulação por Computador
20.
Math Biosci Eng ; 19(8): 7756-7804, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35801444

RESUMO

Salp swarm algorithm (SSA) is a recently proposed, powerful swarm-intelligence based optimizer, which is inspired by the unique foraging style of salps in oceans. However, the original SSA suffers from some limitations including immature balance between exploitation and exploration operators, slow convergence and local optimal stagnation. To alleviate these deficiencies, a modified SSA (called VC-SSA) with velocity clamping strategy, reduction factor tactic, and adaptive weight mechanism is developed. Firstly, a novel velocity clamping mechanism is designed to boost the exploitation ability and the solution accuracy. Next, a reduction factor is arranged to bolster the exploration capability and accelerate the convergence speed. Finally, a novel position update equation is designed by injecting an inertia weight to catch a better balance between local and global search. 23 classical benchmark test problems, 30 complex optimization tasks from CEC 2017, and five engineering design problems are employed to authenticate the effectiveness of the developed VC-SSA. The experimental results of VC-SSA are compared with a series of cutting-edge metaheuristics. The comparisons reveal that VC-SSA provides better performance against the canonical SSA, SSA variants, and other well-established metaheuristic paradigms. In addition, VC-SSA is utilized to handle a mobile robot path planning task. The results show that VC-SSA can provide the best results compared to the competitors and it can serve as an auxiliary tool for mobile robot path planning.


Assuntos
Algoritmos , Constrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA