Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 325
Filtrar
1.
Microorganisms ; 12(7)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39065189

RESUMO

Urban wastewater is a significant by-product of human activities. Conventional urban wastewater treatment plants have limitations in their treatment, mainly concerning the low removal efficiency of conventional and emerging contaminants. Discharged wastewater also contains harmful microorganisms, posing risks to public health, especially by spreading antibiotic-resistant bacteria and genes. Therefore, this study assesses the potential of a native microalgae-bacteria system (MBS) for urban wastewater bioremediation and disinfection, targeting NH4+-N and PO43--P removal, coliform reduction, and antibiotic resistance gene mitigation. The MBS showed promising results, including a high specific growth rate (0.651 ± 0.155 d-1) and a significant average removal rate of NH4+-N and PO43--P (9.05 ± 1.24 mg L-1 d-1 and 0.79 ± 0.06 mg L-1 d-1, respectively). Microalgae-induced pH increase rapidly reduces coliforms (r > 0.9), including Escherichia coli, within 3 to 6 days. Notably, the prevalence of intI1 and the antibiotic resistance genes sul1 and blaTEM are significantly diminished, presenting the MBS as a sustainable approach for tertiary wastewater treatment to combat eutrophication and reduce waterborne disease risks and antibiotic resistance spread.

2.
Water Sci Technol ; 90(1): 238-255, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007317

RESUMO

Human urine, which is high in nutrients, acts as a resource as well as a contaminant. Indiscriminate urine discharge causes environmental pollution and wastes resources. To elucidate the research status and developmental trajectory of source-separated urine (SSU) treatment and recovery, this study was based on the Web of Science Core Collection (WOSCC) database and used the bibliometric software VOSviewer and CiteSpace to conduct a comprehensive and in-depth bibliometric analysis of the related literature in this field. The findings revealed a general upward trend in SSU treatment and recovery from 2000 to 2023. The compendium of 894 scholarly articles predominantly focused on the disciplines of Environmental Sciences, Environmental Engineering, and Water Resources. China and the USA emerged as the foremost contributors. Keyword co-occurrence mapping, clustering, and burst analysis have shown that the recovery of nitrogen and phosphorus from urine is currently the main focus, with future prospects leaning toward the retrieval of biochemicals and chemical energy. This study systematically categorizes and compares the developmental status, current advancements, and research progress in this field. The findings of this study provide a valuable reference for understanding developmental pathways in this field of research.


Assuntos
Bibliometria , Urina , Urina/química , Humanos , Eliminação de Resíduos Líquidos/métodos
3.
Polymers (Basel) ; 16(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000689

RESUMO

Total ammoniacal nitrogen (TAN) occurs in various wastewaters and its recovery is vital for environmental reasons. Forward osmosis (FO), an energy-efficient technology, extracts water from a feed solution (FS) and into a draw solution (DS). Asymmetric FO membranes consist of an active layer and a support layer, leading to internal concentration polarization (ICP). In this study, we assessed TAN recovery using a polymeric thin-film composite FO membrane by determining the permeability coefficients of NH4+ and NH3. Calculations employed the solution-diffusion model, Nernst-Planck equation, and film theory, applying the acid-base equilibrium for bulk concentration corrections. Initially, model parameters were estimated using sodium salt solutions as the DS and deionized water as the FS. The NH4+ permeability coefficient was 0.45 µm/s for NH4Cl and 0.013 µm/s for (NH4)2SO4 at pH < 7. Meanwhile, the NH3 permeability coefficient was 6.18 µm/s at pH > 9 for both ammonium salts. Polymeric FO membranes can simultaneously recover ammonia and water, achieving 15% and 35% recovery at pH 11.5, respectively.

4.
J Environ Manage ; 366: 121712, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39003898

RESUMO

This work describes a comprehensive assessment of operating parameters of a bench-scale electrodialysis (ED) plant for nutrient concentration from an Anaerobic Membrane BioReactor (AnMBR) effluent. The ED bench-scale plant serves a dual purpose. Firstly, to generate a concentrated stream with a high nutrient content, and secondly, to produce high-quality reclaimed water in the diluted stream, both sourced from real wastewater coming from the effluent of an AnMBR. Two sets of experiments were conducted: 1) short-term experiments to study the effect of some parameters such as the applied current and the type of anionic exchange membrane (AEM), among others, and 2) a long-term experiment to verify the feasibility of the process using the selected parameters. The results showed that ED produced concentrated ammonium and phosphate streams using a 10-cell pair stack with 64 cm2 of unitary effective membrane area, working in galvanostatic mode at 0.24 A, and operating with an Acid-100-OT anionic exchange membrane. Concentrations up to 740 mg/L and 50 mg/L for NH4-N and PO4-P, respectively, were achieved in the concentrated stream along with removal efficiencies of 70% for ammonium and 60% for phosphate in the diluted stream. The average energy consumption was around 0.47 kWh·m-3.

5.
Environ Pollut ; 360: 124588, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39033844

RESUMO

Antibiotics present in human urine pose significant challenges for the use of urine-based fertilizers in agriculture. This study introduces a novel two-stage approach utilizing distinct biochar types to mitigate this concern. Initially, a modified biochar selectively adsorbed azithromycin (AZ), ciprofloxacin (CPX), sulfamethoxazole (SMX), trimethoprim (TMP), and tetracycline (TC) from human urine. Subsequently, a separate pristine biochar was employed to capture nutrients. Biochar, derived from sewage sludge and pyrolyzed at 550 and 700 °C, was modified using dimethyl sulfoxide, deep eutectic solvent, and ionic liquid to enhance antibiotic removal in the first stage. The modifications introduced hydrophilic functional groups (-OH/-COOH), which favor antibiotic adsorption. Adsorption kinetics followed the pseudo-second-order model, with the Langmuir isotherm model best describing the adsorption data. The maximum adsorption capacities for AZ, CPX, SMX, TMP, and TC after the modification were 196.08, 263.16, 81.30, 370.37, and 833.33 µg/g, respectively. Pristine biochar exhibited a superior ammonia adsorption capacity compared to the modified biochar. Hydrogen bonding, electrostatic attraction, and chemisorption drove antibiotic adsorption on the modified biochar. Regeneration efficiency declined due to solvent accumulation and potential byproduct formation on the biochar surface (<30% removal capacity after three cycles). This study presents innovative biochar modification strategies for selective antibiotic adsorption, laying the groundwork for environmentally friendly urine-based fertilizers in agriculture.

6.
Heliyon ; 10(11): e31992, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38882322

RESUMO

Hydrothermal liquefaction aqueous phase (HTL-AP) is a waste product from a thermochemical process where wet biomass is converted into biocrude oil. This nutrient-rich wastewater may be repurposed to benefit society by assisting crop growth after adequate treatment to increase inorganic nitrogen, especially NO3 -. This study aims to increase HTL-AP inorganic nitrogen, specifically NH3/NH4 + and NO3 -, through fungal remediation for further use in hydroponic systems. Trametes versicolor, a white-rot fungus known for degrading a range of organic pollutants, was used to treat a diluted (5 %) HTL-AP for 9 days. No fungal growth was observed, but T. versicolor activity was suspected by laccase activity throughout cultivation time. NO3 --N and NH3/NH4 +-N increased by 17 and 8 times after three days of fungal treatment, which was chosen as the appropriate time for HTL-AP fungal treatment as it resulted in the highest concentration of NO3 --N. The addition of nitrifying bacteria to the fungal treatment resulted in a twofold increase in NO3 --N concentration compared to the fungal treatment alone, indicating an enhancement in treatment efficacy. COD decreased by 51.33 % after 24 h, which may be related to the fungus' capacity to reduce the concentration of organics in the wastewater; nonetheless, COD increased in the following days, which may be related to the release of fungal byproducts. T. versicolor shows promise as a potential candidate for increasing inorganic nitrogen in HTL-AP. However, future studies should primarily address HTL-AP toxicity, reducing NH3/NH4 +-N while increasing NO3 --N, and hydroponics crop production after fungal treatment.

7.
Chemosphere ; 362: 142589, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38866334

RESUMO

The enrichment of phosphorus (P) and nitrogen (N) in aquatic systems can cause eutrophication. Moreover, P rocks may become exhausted in the next 100 years. A slow-release fertilizer called struvite (MgNH4PO4.6H2O) can reduce surface runoff. However, the high cost of raw material or chemicals is a bottleneck in their economical production. Therefore, incinerated sewage sludge ash, food wastewater, and bittern were combined as the sources of P, N, and Mg, respectively. Sawdust biochar was used to enhance the adsorptive recovery of nutrients. First, recovery kinetics was studied by comparing bittern-impregnated biochar (BtB) with the Mg-impregnated biochar (MgB). Subsequently, the synergistic physical and chemical interactions were observed for P and N recovery. Almost complete PO43-P recoveries were achieved within 10 min for both biochars. However, NH4+-N recovery was stable after 2 h, with 26% recovery by MgB and 20% recovery by BtB. Biochars activated with steam (steam-activated biochar) and KOH (KOH-activated biochar) gave superior activities to those of unactivated biochars and activated carbon (AC) nutrient recovery and struvite purity. Moreover, the activated biochars showed a lower risk of surface runoff, similar to that of AC. Therefore, activated biochars can be used as an alternative to AC for economical struvite production from a combination of wastewater sources.

8.
Bioresour Technol ; 406: 131055, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38944316

RESUMO

Indigenous microalgae-bacteria consortium (IMBC) offers significant advantages for swine wastewater (SW) treatment including enhanced adaptability and resource recovery. In this review, the approaches for enriching IMBC both in situ and ex situ were comprehensively described, followed by symbiotic mechanisms for IMBC which involve metabolic cross-feeding and signal transmission. Strategies for enhancing treatment efficiencies of SW-originated IMBC were then introduced, including improving SW quality, optimizing system operating conditions, and adjusting microbial activities. Recommendations for maximizing treatment efficiencies were particularly proposed using a decision tree approach. Moreover, removal/recovery mechanisms for typical pollutants in SW using IMBC were critically discussed. Ultimately, a technical route termed SW-IMBC-Crop-Pig was proposed, to achieve a closed-loop economy for pig farms by integrating SW treatment with crop cultivation. This review provides a deeper understanding of the mechanism and strategies for IMBC's resource recovery from SW.


Assuntos
Microalgas , Águas Residuárias , Animais , Águas Residuárias/microbiologia , Microalgas/metabolismo , Suínos , Bactérias/metabolismo , Purificação da Água/métodos , Eliminação de Resíduos Líquidos/métodos , Consórcios Microbianos/fisiologia , Biodegradação Ambiental
9.
Poult Sci ; 103(8): 103924, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908125

RESUMO

A significant quantity of bone-rich poultry by-products must be disposed of by poultry processors. These products still contain a significant amount of nutritionally valuable animal proteins. In the present work, a hydrolysis protocol was optimized to recover the protein fraction of bone-rich poultry by-products while simultaneously minimizing the amount of water required for hydrolysis (thus reducing drying costs) and recycling the hydrolytic broth up to 3 times, to reduce the cost of the proteolytic enzyme. The final hydrolysis conditions involved the use of (protease from B. licheniformis, ≥2.4 U/g; 0.5 V/w of raw material) and a hydrolysis time of 2 h at 65°C. The protein hydrolysate obtained has a high protein content (79-86%), a good amino acid profile (chemical amino acid score equal to 0.7-0.8) and good gastric digestibility (about 30% of peptide bonds are already hydrolyzed before digestion). This supports its use as an ingredient in food, pet food or animal feed formulations.


Assuntos
Galinhas , Hidrolisados de Proteína , Animais , Hidrolisados de Proteína/química , Hidrólise , Osso e Ossos/química , Produtos Avícolas/análise , Aves Domésticas
10.
Sci Total Environ ; 937: 173446, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38788940

RESUMO

Wastewater serves as a vital resource for sustainable fertilizer production, particularly in the recovery of nitrogen (N) and phosphorus (P). This comprehensive study explores the recovery chain, from technology to final product reuse. Biomass growth is the most cost-effective method, valorizing up to 95 % of nutrients, although facing safety concerns. Various techniques enable the recovery of 100 % P and up to 99 % N, but challenges arise during the final product crystallization due to the high solubility of ammonium salts. Among these techniques, chemical precipitation and ammonia stripping/ absorption have achieved full commercialization, with estimated recovery costs of 6.0-10.0 EUR kgP-1 and 4.4-4.8 £ kgN-1, respectively. Multiple technologies integrating biomass thermo-chemical processing and P and/or N have also reached technology readiness level TRL = 9. However, due to maturing regulatory of waste-derived products, not all of their products are commercially available. The non-homogenous nature of wastewater introduces impurities into nutrient recovery products. While calcium and iron impurities may impact product bioavailability, some full-scale P recovery technologies deliver products containing this admixture. Recovered mineral nutrient forms have shown up to 60 % higher yield biomass growth compared to synthetic fertilizers. Life cycle assessment studies confirm the positive environmental outcomes of nutrient recycling from wastewater to agricultural applications. Integration of novel technologies may increase wastewater treatment costs by a few percent, but this can be offset through renewable energy utilization and the sale of recovered products. Moreover, simultaneous nutrient recovery and energy production via bio-electrochemical processes contributes to carbon neutrality achieving. Interdisciplinary cooperation is essential to offset both energy and chemicals inputs, increase their cos-efficiency and optimize technologies and understand the nutrient release patterns of wastewater-derived products on various crops. Addressing non-technological factors, such as legal and financial support, infrastructure redesign, and market-readiness, is crucial for successfully implementation and securing the global food production.


Assuntos
Fertilizantes , Nitrogênio , Fósforo , Reciclagem , Eliminação de Resíduos Líquidos , Águas Residuárias , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Fósforo/análise , Reciclagem/métodos , Nutrientes , Agricultura/métodos
11.
Mar Pollut Bull ; 203: 116421, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38713927

RESUMO

Intensive aquaculture production generates large amounts of sludge. This waste could be considered as a potential source of nutrients that can be recovered and utilized. Little attention has been paid to nutrient recovery from fish sludge. In this study, bioconversion of sludge was evaluated in lab scale under anaerobic (AN), facultative anaerobic (FA) and aerobic (AE) conditions. After 40 days of fermentation, AN recovered the highest values of dissolved total nitrogen (82.7 mg L-1), while AE showed the highest dissolved total phosphorus (11.8 mg L-1) and the highest reduction of total suspended solids (36.0 %). Microbial analysis showed that AN exhibited a distinct bacterial community than that of FA and AE. Furthermore, C. sorokiniana grown in AN effluents collected after 12 days of fermentation achieved the highest biomass production (1.96 g L-1). These results suggest that AN has the best potential to recover nutrients from sludge for production of C. sorokiniana.


Assuntos
Chlorella , Microalgas , Nitrogênio , Nutrientes , Fósforo , Esgotos , Chlorella/crescimento & desenvolvimento , Animais , Peixes , Aquicultura , Eliminação de Resíduos Líquidos/métodos , Biomassa , Anaerobiose , Fermentação
12.
Water Res ; 256: 121638, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691899

RESUMO

In this study, we investigated the recovery of nitrogen (N) and phosphorus (P) from fresh source-separated urine with a novel electrochemical cell equipped with a magnesium (Mg) anode and carbon-based gas-diffusion cathode. Recovery of P, which exists primarily as phosphate (PO43-) in urine, was achieved through pH-driven precipitation. Maximizing N recovery requires simultaneous approaches to address urea and ammonia (NH3). NH3 recovery was possible through precipitation in struvite with soluble Mg supplied by the anode. Urea was stabilized with electrochemically synthesized hydrogen peroxide (H2O2) from the cathode. H2O2 concentrations and resulting urine pH were directly proportional to the applied current density. Concomitant NH3 and PO43- precipitation as struvite and urea stabilization via H2O2 electrosynthesis was possible at lower current densities, resulting in urine pH under 9.2. Higher current densities resulted in urine pH over 9.2, yielding higher H2O2 concentrations and more consistent stabilization of urea at the expense of NH3 recovery as struvite; PO43- precipitation still occurred but in the form of calcium phosphate and magnesium phosphate solids.


Assuntos
Eletrodos , Peróxido de Hidrogênio , Magnésio , Fósforo , Ureia , Ureia/química , Fósforo/química , Magnésio/química , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Urina/química , Fosfatos/química , Estruvita/química , Amônia/química , Compostos de Magnésio/química , Nitrogênio/química , Humanos
13.
Water Res ; 257: 121615, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38692253

RESUMO

Separate collection and treatment of urine optimizes nutrient recovery and enhances micropollutant removal from municipal wastewater. One typical urine treatment train includes nutrient recovery in three biological processes: anaerobic storage, followed by aerobic organics degradation concurrently with nitrification. These are usually followed by activated carbon adsorption to remove micropollutants. However, removing micropollutants prior to nitrification would protect nitrifiers from potential inhibition by pharmaceuticals. In addition, combining simplified biological treatment with activated carbon adsorption could offer a cheap and robust process for removing micropollutants where nutrient recovery is not the first priority, as a partial loss of ammonia occurs without nitrification. In this study, we investigated whether activated carbon adsorption could also take place between the three biological treatment steps. We tested the effectiveness of micropollutant removal with activated carbon after each biological treatment step by conducting experiments with anaerobically stored urine, organics-depleted urine, and nitrified urine. The urine solutions were spiked with 19 pharmaceuticals: amisulpride, atenolol, atenolol acid, candesartan, carbamazepine, citalopram, clarithromycin, darunavir, diclofenac, emtricitabine, fexofenadine, hydrochlorothiazide, irbesartan, lidocaine, metoprolol, N4-acetylsulfamethoxazole, sulfamethoxazole, trimethoprim, venlafaxine, and two artificial sweeteners, acesulfame and sucralose. Batch experiments were conducted with powdered activated carbon (PAC) to determine how much activated carbon achieve which degree of micropollutant removal and how organics, pH, and speciation change from ammonium to nitrate influence adsorption. Micropollutant removal was also tested in granular activated carbon (GAC) columns, which is the preferred technology for micropollutant removal from urine. The carbon usage rates (CUR) per person were lower for all urine solutions than for municipal wastewater. The results showed that organics depletion would be needed when micropollutant removal was the sole aim of urine treatment, as the degradation of easily biodegradable organics prevented clogging of GAC columns. However, CUR did hardly improve with organics-depleted urine compared to stored urine. The lowest CUR was achieved with nitrified urine. This resulted from the additional organics removal during nitrification and not the lower pH or the partial conversion of ammonium to nitrate. In addition, we showed that the relative pharmaceutical removal in all solutions was independent of the initial pharmaceutical concentration unless the background organics matrix changed considerably. We conclude that removal of micropollutants in GAC columns from organics-depleted urine can be performed without clogging, but with the drawback of a higher carbon usage compared to removal from nitrified urine.


Assuntos
Carvão Vegetal , Nitrificação , Poluentes Químicos da Água , Adsorção , Poluentes Químicos da Água/química , Carvão Vegetal/química , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Urina/química , Preparações Farmacêuticas/urina , Purificação da Água/métodos
14.
Water Res ; 257: 121746, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38733966

RESUMO

Sewage sludge is promising for the recovery and utilisation of nutrient components, but its complex nature hinders the release of these components. The combination of pH and thermal modifications shows promise for the release of nutrient components from sludge. However, comprehensive studies on the full spectrum of pH levels and corresponding mechanisms of pH-varying thermal modification are lacking. In this study, the main nutrient components, physicochemical properties, molecular structure, and noncovalent interactions of sludge were comprehensively investigated through pH-varying thermal modification (within a pH range of 2.0 to 12.0 under the same thermal condition). The experimental results showed that the release of main organics, particularly nitrogen (N)-containing organics, was well-fitted, with a tick-like function (R2: 0.74-0.96). The thermal protons exhibited a notable accumulative mutagenic effect on the N-containing organics release, while the thermal hydroxyl ions had a more direct effect, as revealed by the changes in multivalent metals and molecular structures with the protonation-deprotonation of carboxyl groups. The driving force for the release of N-containing organics was identified as the fluctuation of electrostatic interactions at the solid-liquid interface of the sludge. However, the release of phosphorus (P)-containing substances exhibited a contrasting response to that of N-containing substances with varying pH, likely because the reaction sites of thermal protons and thermal hydroxyl ions for P-containing substances were different. Moreover, high concentrations of thermal protons and hydroxyl ions collapsed the Lifshitz-van der Waals interactions of sludge, resulting in a decrease in viscoelasticity and binding strength. These propositions were further confirmed through statistical analyses of the main indicators of the main nutrient components, physicochemical properties, and noncovalent interactions of sludge. These findings can provide a basis for optimising characteristic-specific methods to recovery nutrient components (N/P) from sludge.


Assuntos
Nitrogênio , Fósforo , Esgotos , Esgotos/química , Fósforo/química , Nitrogênio/química , Concentração de Íons de Hidrogênio , Eliminação de Resíduos Líquidos/métodos
15.
Bioresour Technol ; 402: 130770, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697366

RESUMO

Ammonia inhibition is a common issue encountered in anaerobic digestion (AD) when treating nitrogen-rich substrates. This study proposed a novel approach, the electrodialysis-integrated AD (ADED) system, for in-situ recovery of ammonium (NH4+) while simultaneously enhancing AD performance. The ADED reactor was operated at two different NH4+-N concentrations (5,000 mg/L and 10,000 mg/L) to evaluate its performance against a conventional AD reactor. The results indicate that the ADED technology effectively reduced the NH4+-N concentration to below 2,000 mg/L, achieving this with a competitive energy consumption. Moreover, the ADED reactor demonstrated a 1.43-fold improvement in methane production when the influent NH4+-N was 5,000 mg/L, and it effectively prevented complete inhibition of methane production at the influent NH4+-N of 10,000 mg/L. The life cycle impact assessment reveals that ADED technology offers a more environmentally friendly alternative by recovering valuable fertilizer from the AD system.


Assuntos
Compostos de Amônio , Reatores Biológicos , Metano , Metano/metabolismo , Anaerobiose , Compostos de Amônio/metabolismo , Diálise/métodos , Amônia
16.
Environ Sci Technol ; 58(20): 8803-8814, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38686747

RESUMO

Mixed community microalgal wastewater treatment technologies have the potential to advance the limits of technology for biological nutrient recovery while producing a renewable carbon feedstock, but a deeper understanding of their performance is required for system optimization and control. In this study, we characterized the performance of a 568 m3·day-1 Clearas EcoRecover system for tertiary phosphorus removal (and recovery as biomass) at an operating water resource recovery facility (WRRF). The process consists of a (dark) mix tank, photobioreactors (PBRs), and a membrane tank with ultrafiltration membranes for the separation of hydraulic and solids residence times. Through continuous online monitoring, long-term on-site monitoring, and on-site batch experiments, we demonstrate (i) the importance of carbohydrate storage in PBRs to support phosphorus uptake under dark conditions in the mix tank and (ii) the potential for polyphosphate accumulation in the mixed algal communities. Over a 3-month winter period with limited outside influences (e.g., no major upstream process changes), the effluent total phosphorus (TP) concentration was 0.03 ± 0.03 mg-P·L-1 (0.01 ± 0.02 mg-P·L-1 orthophosphate). Core microbial community taxa included Chlorella spp., Scenedesmus spp., and Monoraphidium spp., and key indicators of stable performance included near-neutral pH, sufficient alkalinity, and a diel rhythm in dissolved oxygen.


Assuntos
Microalgas , Fósforo , Águas Residuárias , Microalgas/metabolismo , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Biomassa , Purificação da Água/métodos
17.
Bioelectrochemistry ; 158: 108706, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38608340

RESUMO

Key nutrients, such as nitrogen measured as total ammonium nitrogen (TAN), could be recycled from hydrolysed human urine back to fertiliser use. Bioelectrochemical systems (BESs) are an interesting, low-energy option for realising this. However, the high TAN concentration (> 5 g L-1) and pH (> 9) of hydrolysed urine can inhibit microbial growth and hinder the enrichment of an electroactive biofilm at the anode. This study investigated a new strategy for bioanode inoculation by mixing real hydrolysed urine with thickened waste activated sludge (TWAS) from a municipal wastewater treatment plant at different volumetric ratios. The addition of TWAS diluted the high TAN concentration of hydrolysed urine (5.2 ± 0.3 g L-1) to 2.6-5.1 g L-1, while the pH of the inoculation mixtures remained > 9 and soluble chemical oxygen demand (sCOD) at 5.6-6.7 g L-1. Despite the high pH, current generation started within 24 h for all reactors, and robust bioanodes tolerant of continuous feeding with undiluted hydrolysed urine were enriched within 11 days of start-up. Current output and Coulombic efficiency decreased with increasing initial hydrolysed urine fraction. The anodes inoculated with the highest sCOD-to-TAN ratio (2.1) performed the best, which suggests that high organics levels can protect microbes from inhibition even at elevated TAN concentrations.


Assuntos
Fontes de Energia Bioelétrica , Urina , Humanos , Urina/química , Urina/microbiologia , Hidrólise , Fontes de Energia Bioelétrica/microbiologia , Eletrodos , Biofilmes/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Esgotos/microbiologia , Esgotos/química
18.
Artigo em Inglês | MEDLINE | ID: mdl-38613762

RESUMO

A combination of membrane processes was applied to treat the digestate produced after the anaerobic treatment of pig manure in a biogas plant, aiming towards the recovery of nutrients and effective water treatment for potential reuse. Initially, coarse filtration (sieving and microfiltration) was used to remove particles larger than 1 µm, followed by ultrafiltration, to reduce the suspended solids concentrations below 1 g/L. Subsequently, selective electrodialysis is employed to recover the main nutrient ions, primarily ammonium and potassium. The ion-depleted digestate is then fed to a reverse osmosis unit, where clean water was recovered, yielding a by-product (concentrate) stream enriched in phosphates and organics content. The presence of antibiotics and the concentrations of heavy metals were monitored during all treatment stages to assess their behavior/removal in the various membrane processes. The results indicate that almost 51% of the digestate could be recovered as water free from ions and antibiotics, suitable for reuse in the biogas plant for process needs and irrigation purposes. The selective electrodialysis process can recover 51% of initial NH4+ content (corresponding to 96% of the electrodialysis feed), while the remainder largely ended up in the ultrafiltration concentrate. A similar behavior was observed for the case of K+, while approximately 68% of the phosphates content was retained by the coarse filtration process, with another 24% remaining in the ultrafiltration concentrate and the remaining 8% in the reverse osmosis concentrate. Most of the antibiotics and heavy metals were retained by the coarse and ultrafiltration steps, with smaller amounts detected in the reverse osmosis concentrate.

19.
J Environ Manage ; 356: 120458, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479286

RESUMO

The present study was designed to assess Messastrum gracile SVMIICT7 potential in treating dairy wastewater (autoclaved (ADWW) and raw (DWW)) with relation to nutrient removal, in-vivo Chl-a-based biomass, and bio-oil synthesis. Chlorophyll a fluorescence kinetics revealed improved photochemical efficiency (0.639, Fv/Fm) in M. gracile when grown with DWW. This may be owing to enhanced electron transport being mediated by an effective water-splitting complex at photosystem (PSII) of thylakoids. The increase in ABS/RC observed in DWW can be attributed to the elevated chlorophyll content and reduced light dissipation, as evident by higher values of ETo/RC and a decrease in non-photochemical quenching (NPQ). M. gracile inoculated in DWW had the highest Chl-a-biomass yield (1.8 g L-1) and biomolecules while maximum nutrient removal efficiency was observed in ADWW (83.7% TN and 60.07% TP). M. gracile exhibited substantial bio-oil yield of 29.6% and high calorific value of 37.19 MJ kg-1, predominantly composed of hydrocarbons along with nitrogen and oxygen cyclic compounds. This research offers a thorough investigation into wastewater treatment, illustrating the conversion of algal biomass into valuable energy sources and chemical intermediates within the framework of a biorefinery.


Assuntos
Clorofila , Óleos de Plantas , Polifenóis , Temperatura , Biomassa , Clorofila A
20.
Sci Rep ; 14(1): 3678, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355901

RESUMO

Increase in anthropogenic activities proliferated the consumption of resources such as phosphorus; and increase the adverse environmental impacts especially eutrophication on water resources such as lakes. Nutrient recovery from domestic wastewaters to produce a fertiliser has been explored to address these challenges in the context of a sustainable circular nutrient economy. Life cycle assessment (LCA) was performed to holistically assess the impacts of integrating a nutrient recovery system on wastewater and water resource management using Laguna de Bay, Philippines as the geographical boundary. The inventory was developed based on the results of the emerging nutrient recovery reactor operations and the application of the recovered fertiliser on the agricultural crops. The LCA results for the proposed scenario showed environmental benefits of about 83.6% freshwater eutrophication, 102.5% terrestrial ecotoxicity, 26.9% water consumption, 100.7% mineral resource scarcity, while the global warming potential is 95.4% higher than the baseline scenario. Results imply policy review for septage management, system optimisation, and evaluation of alternative methods of wastewater management, in terms of life cycle thinking and sustainability across the globe.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA