Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 385
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39444357

RESUMO

Thermally activated delayed fluorescence (TADF)-based electroluminescence (EL) devices adopting a host/guest strategy in their emitting layer (EML) are capable of realizing high efficiency. However, TADF emitters composed of donor and acceptor moieties as guests dispersed in organic host materials containing a donor and/or an acceptor are subject to donor-acceptor (D-A) interactions. In addition, electron delocalization between neighboring emitter molecules could form different species of aggregates. Here, we investigate the effects of intermolecular interacting emission species on the optoelectronic properties of sky-blue/green/red (sB/G/R) TADF emitters as guests using poly(biphenyl-Si/Ge) grafted with various donor moieties as hosts. We found the presence of guest/guest exciplex (Dg/Ag)*, host/guest exciplexes (Dh/Ag)*, and aggregates through the exploration of interactions between neighboring TADF guest molecules and between host and TADF-guest molecules. The nonradiative 3(Dh/Ag)* (ΔEST ≈ 0.5 eV) could increase the internal conversion rate (kIC) and reduce delayed luminescence, and both of them could cause a decrease in PLQY. The luminescence of 3(Dh/Ag)* may have a positive or negative effect on PLQY depending on its triplet energy. As the singlet and triplet energies of (aggregate)* are lower than those of (ICT)*, energy transfer from (ICT)* to (aggregate)* could occur. The low PLQY nature of (aggregate)* means that it is more likely to cause quenching in device emission. The emissions from (Dh/Ag)* and (aggregate)* are found to have increased full width at half-maximum and lead to lower emission color purity. Such intermolecular interactions should also occur in host/guest (TADF) systems and nondoped TADF emitter systems and thus are important factors for the molecular design of the TADF emitter and/or its accompanying host for high device efficiency and emission color purity.

2.
Small ; : e2405312, 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39434477

RESUMO

A new host material for Single-Layer Phosphorescent Organic Light-Emitting Diodes (SL-PhOLED) is reported, namely SPA-2-FDMB, using the dimesitylborane (DMB) fragment as an acceptor unit. The molecular design is constructed on the general donor-spiro-acceptor architecture, which consists of connecting, via a spiro bridge, a donor and an acceptor units in order to avoid strong interaction between them. The DMB fragment is known for many electronic applications (notably Aggregation-Induced Emission) but has not been used yet for SL-PhOLED applications. This appears particularly interesting, as the development of this simplified technology has shown that only a few electron-accepting fragments such as diphenylphosphine oxide can provide high-performance devices. Herein, the yellow-emitting SL-PhOLED using SPA-2-FDMB as host presents an External Quantum Efficiency of 8.1% (Current Efficiency of 24.9 cd.A-1) with a low threshold voltage of 2.6 V. As SPA-2-FDMB presents a sharp HOMO/LUMO difference, the good matching of HOMO and LUMO energy levels with the Fermi level of the electrodes is responsible for these performances. The low LUMO level of -2.61 eV also appears particularly important. These performances are, to date, the highest reported for a yellow/orange-emitting SL-PhOLED and show the potential of DMB unit in the single-layer technology.

3.
Adv Mater ; : e2412761, 2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39394825

RESUMO

Here the utility and potential of an emitter design are demonstrated, consisting of a narrowband-emitting multiresonant thermally activated delayed fluorescent (MR-TADF) core that is decorated with a suitably higher energy donor-acceptor TADF moiety. Not only does this D-A TADF group offer additional channels for triplet exciton harvesting and confers faster reverse intersystem crossing (RISC) kinetics but it also acts as a steric shield, insulating the emissive MR-TADF core from aggregation-caused quenching. Two emitters, DtCzBN-CNBT1 and DtCzBN-CNBT2, demonstrate enhanced photophysical properties leading to outstanding performance of the organic light-emitting diodes (OLEDs). DtCzBN-CNBT2, containing a D-A TADF moiety, has a faster kRISC (1.1 × 105 s-1) and higher photoluminescence quantum yield (ΦPL: 97%) compared to DtCzBN-CNBT1 (0.2 × 105 s-1, ΦPL: 90%), which contains a D-A moiety that itself is not TADF. The sensitizer-free OLEDs with DtCzBN-CNBT2 achieve a record-high maximum external quantum efficiency (EQEmax) of 40.2% and showed milder efficiency roll-off (EQE1000 of 20.7%) compared to the DtCzBN-CNBT1-based devices (EQEmax of 37.1% and EQE1000 of 11.9%).

4.
Materials (Basel) ; 17(17)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39274736

RESUMO

We designed and synthesized new indolocarbazole-triazine derivatives, 9-di-tert-butyl-5,7-bis(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-5,7-dihydroindolo[2,3-b]carbazole (2TRZ-P-ICz) and 3,9-di-tert-butyl-5,7-bis(5'-(4,6-diphenyl-1,3,5-triazin-2-yl)-[1,1':3',1″-terphenyl]-2'-yl)-5,7-dihydroindolo[2,3-b]carbazole (2TRZ-TP-ICz), as new bipolar host materials for red phosphorescent OLEDs. In the film state, 2TRZ-P-ICz and 2TRZ-TP-ICz exhibited photoluminescence maxima at 480 nm and 488 nm, respectively. The dipole moment characteristics of the new compounds under various solvent conditions were investigated using the Lippert-Mataga equation. The results showed that the dipole moment of 2TRZ-P-ICz is 26.9D, while that of 2TRZ-TP-ICz is 21.3D. The delayed fluorescence lifetimes were 0.188 µs for 2TRZ-P-ICz and 2.080 µs for 2TRZ-TP-ICz, with 2TRZ-TP-ICz showing TADF characteristics. Additionally, 2TRZ-TP-ICz was found to have a ΔEST of less than 0.2 eV. The triplet energy levels of the newly synthesized bipolar host materials were found to be 2.72 and 2.75 eV, confirming their suitability for use in red phosphorescent OLEDs. To investigate the carrier mobility of the synthesized materials, hole-only devices and electron-only devices were fabricated and tested. The hole mobility value at 1V was found to be 3.43 × 10-3 cm2/Vs for 2TRZ-P-ICz and 2.16 × 10-3 cm2/Vs for 2TRZ-TP-ICz. For electron mobility at 1V, 2TRZ-P-ICz showed a value of 4.41 × 10-9 cm2/Vs, while 2TRZ-TP-ICz exhibited a value of 9.13 × 10-9 cm2/Vs. As a result, when the new material was used as a host in red phosphorescent OLEDs, 2TRZ-TP-ICz achieved a current efficiency of 9.92 cd/A, an external quantum efficiency of 13.7%, CIE coordinates of (0.679, 0.319), and an electroluminescence maximum wavelength of 626 nm.

5.
Micromachines (Basel) ; 15(9)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39337749

RESUMO

Organometallic complexes containing reactive alkali metals, such as lithium (Li), represent a promising material approach for electron injection layers and electron transport layers (EILs and ETLs) to enhance the performance of Organic Light-Emitting Diodes (OLEDs). 8-Quinolinolato Lithium (Liq) has shown remarkable potential as an EIL and ETL when conveyed in very thin films. Nevertheless, the deposition of nano-layers requires precise control over both thickness and morphology. In this work, we investigate the optical properties and morphological characteristics of Liq thin films deposited via Organic Vapor Phase Deposition (OVPD). Specifically, we present our methodology for analyzing the measured pseudodielectric function <ε(ω)> using Spectroscopic Ellipsometry (SE), alongside the nano-topography of evaporated Liq nano-layers using Atomic Force Microscopy (AFM). This information can contribute to the understanding of the functionality of this material, since ultra-thin Liq interlayers can significantly increase the operational stability of OLED architectures.

6.
Adv Mater ; : e2410418, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39313994

RESUMO

Due to the soliton-like electronic structural characteristics, cyanine dyes typically exhibit spectral behaviors such as large molar extinction coefficients, narrow spectra, and high fluorescence efficiency. However, their extensive applications as emitters in electroluminescence are largely ignored due to their serious emission quenching in the aggregation state. Herein, it is reported a squaraine dye (a type of cyanine) SQPhEt. At different solution concentrations, the unusual decrease in full-width at half-maxima (FWHM) with increasing Stokes shift indicates the fluorescence quenching of SQPhEt in the aggregated state is because of the strong self-absorption effect. A sensitized device structure can help to reduce the doping concentration of dye, which can effectively suppress self-absorption. Benefitting from the large molar extinction coefficient of SQPhEt, even at low doping concentrations of 0.1 wt%, efficient Förster energy transfer can be achieved. The corresponding spin-coating sensitized device based on SQPhEt as the dopant exhibits favorable deep-red emission at 668 nm with a small FWHM of 0.10 eV.

7.
Adv Sci (Weinh) ; : e2407278, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304997

RESUMO

The realization of highly operationally stable blue organic light-emitting diodes (OLEDs) is a challenge in both academia and industry. This paper describes the development of anthracene-dibenzofuran host materials, 2-(10-(naphthalen-1-yl)anthracen-9-yl)naphtho[2,3-b]benzofuran (Host 1) and 2-(10-([1,1'-biphenyl]-2-yl)anthracen-9-yl)naphtho[2,3-b]benzofuran (Host 2), namely for use in the emissive layer of an OLED stack. A multiple-resonance thermally activated delayed serves as the blue fluorescence emitter and exhibits an initial luminance of 1000 cd m-2 and long operational stability (i.e., time to decay to 90% of initial luminance) of 249 h. Furthermore, a deep-blue OLED with an optimized top-emitting architecture with a high current efficiency of 154.3 cd A-1, is fabricated and calibrated to a Commission International de l'Éclairage y chromaticity coordinate of 0.048. Moreover, the emission spectrum of this OLED has a narrowband peak at 476 nm with a full width at half maximum (FWHM) of 16 nm. This work provides valuable insights into the design of anthracene-based host materials and highlights the importance of host optimization in improving the operational stability of OLEDs.

8.
Adv Sci (Weinh) ; 11(38): e2402349, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39137939

RESUMO

Three novel asymmetric Ir(III) complexes have been rationally designed to optimize their emitting dipole orientations (EDO) and enhance light outcoupling in blue phosphorescent organic light-emitting diodes (OLEDs), thereby boosting their external quantum efficiency (EQE). Bulky electron-donating groups (EDGs), namely: carbazole (Cz), di-tert-butyl carbazole (tBuCz), and phenoxazine (Pxz) are incorporated into the tridentate dicarbene pincer chelate to induce high degree of packing anisotropy, simultaneously enhancing their photophysical properties. Angle-dependent photoluminescence (ADPL) measurements indicate increased horizontal transition dipole ratios of 0.89 and 0.90 for the Ir(III) complexes Cz-dfppy-CN and tBuCz-dfppy-CN, respectively. Analysis of the single crystal structure and density functional theory (DFT) calculation results revealed an inherent correlation between molecular aspect ratio and EDO. Utilizing the newly obtained emitters, the blue OLED devices demonstrated exceptional performance, achieving a maximum EQE of 30.7% at a Commission International de l'Eclairage (CIE) coordinate of (0.140, 0.148). Optical transfer matrix-based simulations confirmed a maximum outcoupling efficiency of 35% due to improved EDO. Finally, the tandem OLED and hyper-OLED devices exhibited a maximum EQE of 44.2% and 31.6%, respectively, together with good device stability. This rational molecular design provides straightforward guidelines to reach highly efficient and stable saturated blue emission.

9.
Molecules ; 29(15)2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39125096

RESUMO

This review focuses on optical properties of compounds in which at least one phosphonate group is directly attached to a heteroaromatic ring. Additionally, the synthesis and other applications of these compounds are addressed in this work. The influence of the phosphonate substituent on the properties of the described compounds is discussed and compared with other non-phosphorus substituents, with particular attention given to photophysical properties, such as UV-Vis absorption and emission, fluorescence quantum yield and fluorescence lifetime. Considering the presence of heteroatom, the collected material was divided into two parts, and a review of the literature of the last thirty years on heteroaryl phosphonates containing sulfur and nitrogen atoms in the aromatic ring was conducted.

10.
ACS Appl Mater Interfaces ; 16(33): 43762-43773, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39106292

RESUMO

Inkjet printing, a highly promising technique for the cost-effective fabrication of large-scale organic light-emitting devices (OLEDs), typically necessitates the intricate alignment of precisely patterned insulating layers. Recently, we introduced a unique single-step inkjet printing process that produces well-patterned microinlaid spots of functional compounds through insulating polymer layers. This approach exploits lateral phase separation between the solute of functional compounds and the polymer, allowing the simultaneous spatial etching of the polymer and the infilling of the solute using a single inkjet-printed sessile droplet. Here, we demonstrate that the interaction between the solvent and polymer, as well as the solute and polymer, critically determines the precision and efficiency of printing. This is particularly evident when using either the insulating poly(vinylpyridine) isomer of poly(4-vinylpyridine) (P4VP) or poly(2-vinylpyridine) (P2VP) with chloroform as a solvent, which allows for a detailed examination of these interactions based on certain solubility parameters. Micro-Raman spectroscopy reveals that the self-organizing capability of the microinlaid spots with P4VP is superior to that with P2VP. This is due to the fact that P2VP shows higher affinity to the solvent and causes imperfect phase separation as compared to P4VP. As a result, a performance evaluation demonstrates enhanced device performance for inkjet-printed green micro-OLEDs with P4VP, exhibiting a higher external quantum efficiency of 3.3% compared to that of 2.3% achieved with P2VP. These findings elucidate the important roles of solvent-polymer and solute-polymer interactions in the inkjet printing process, leading to interfacial control of inkjet printing technique for the cost-effective production of high-performance and high-resolution micro-OLEDs.

11.
ACS Appl Mater Interfaces ; 16(33): 43786-43794, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39107103

RESUMO

In designing thermally activated delayed fluorescence (TADF) emitters, a high reverse intersystem crossing (RISC) rate with a high photoluminescence quantum yield is essential. Herein, two blue TADF molecules, 2',5'-di(9H-carbazol-9-yl)-3',6'-bis(3,6-ditert-butyl-9H-carbazol-9-yl)-[1,1':4',1″-terphenyl]-4,4″-dicarbonitrile (CzTCzPhBN) and 2',5'-bis(3,6-ditert-butyl-9H-carbazol-9-yl)-3',6'-bis(3,6-diphenyl-9H-carbazol-9-yl)-[1,1':4',1″-terphenyl]-4,4″-dicarbonitrile (PhCzTCzPhBN) with a high RISC rate, were developed through donor engineering. CzTCzPhBN and PhCzTCzPhBN showed a high RISC rate of 4.00 × 105 and 16.62 × 105 s-1, respectively, with a high photoluminescence quantum yield of 80.1 and 84.9%, which resulted in high external quantum efficiency of 27.0 and 27.8% with color coordinates (0.148, 0.170) and (0.150, 0.230) in blue TADF organic light-emitting diodes, respectively. The high RISC rate and device efficiency inspired two TADF molecules to be used as sensitizers in hyperfluorescence devices. The hyperfluorescence devices showed ultra-high external quantum efficiency of 30.7 and 36.4% with color coordinates (0.125, 0.164) and (0.127, 0.193), respectively.

12.
Chemphyschem ; 25(20): e202400232, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39031895

RESUMO

Near-infrared (NIR) light has characteristics of invisibility to human eyes, less background interference, low light scattering, and strong cell penetration. Therefore, NIR luminescent materials have significant applications in imaging, sensing, energy, information storage and display. The development of NIR luminescent materials thus has emerged as a highly dynamic area of research in the realm of contemporary materials. To date, NIR luminescent materials are roughly divided into inorganic materials and organic materials. Compared with inorganic materials, organic NIR luminescent materials have become a hot research topic in recent years due to their rich sources, easy control of structure, simple preparation process, low cost, and good film-forming properties. Among them, iridium(III) [Ir(III)] complexes exhibit excellent properties such as thermal stability, simple synthesis, easy color modulation, short excited state lifetimes, and high brightness, thus becoming one of the ideal luminescent material systems for preparing high-quality organic light-emitting diodes. Therefore, how to obtain Ir(III) complexes with NIR emission and high efficiency through molecular design is a necessary and promising research topic. This work reviews the research progress of representative NIR Ir(III) complexes bearing isoquinoline-, phenazine-, and phthalazine-based ligands reported in recent years and introduces the design strategies and electroluminescent performances of NIR Ir(III) complexes.

13.
Adv Mater ; 36(36): e2404388, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39011790

RESUMO

Current research on organic light emitters which utilize multiple resonance-induced thermally activated delayed fluorescence (MR-TADF) materials is gaining significant interest because of the materials' ability to efficiently generate color-pure blue emission. However, the underlying reasons for high color purity remain unclear. It is shown here that these emitters share a common electronic basis, which is deduced from resonance structure considerations following Clar's rule, and which is termed as "poly-heteroaromatic omni-delocalization" (PHOD). The simple and clear design rules derived from the PHOD concept allow extending the known chemical space by new structural motifs. Based on PHOD, a set of novel high-efficiency color-pure emitters with brilliant deep-blue hue is specifically designed.

14.
Micromachines (Basel) ; 15(6)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38930744

RESUMO

As a novel technology for fabricating large-screen OLED devices, OLED inkjet printing places extreme demands on the positioning accuracy of inkjet printing platforms. However, thermal deformation of the connection mechanism often reduces the printing precision of OLED printing equipment, significantly impacting overall print quality. This study introduces a compliant connection mechanism that achieves precise positioning of the inkjet printing platform and can self-eliminate thermal distortion. The design of the mechanism's core component is based on the Freedom and Constraint Topology (FACT) principle. This component is constructed from three distinct compliant sections arranged in series, collectively providing three degrees of freedom. Furthermore, the resistance to deformation caused by gravity and other external forces was evaluated by analyzing both vertical and horizontal stiffness. To validate the mechanism's thermal distortion elimination and gravity resistance capabilities, finite element analysis (FEA) was carried out. The results demonstrate that the mechanism effectively reduces the maximum deformation of the platform by approximately 46% and the average deformation across the entire platform by approximately 59%. These findings confirm that the mechanism has potential in high-precision positioning tasks that need to mitigate thermal distortion.

15.
Front Chem ; 12: 1441517, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38939164
16.
Nanophotonics ; 13(14): 2565-2573, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38836100

RESUMO

Modifying the energy landscape of existing molecular emitters is an attractive challenge with favourable outcomes in chemistry and organic optoelectronic research. It has recently been explored through strong light-matter coupling studies where the organic emitters were placed in an optical cavity. Nonetheless, a debate revolves around whether the observed change in the material properties represents novel coupled system dynamics or the unmasking of pre-existing material properties induced by light-matter interactions. Here, for the first time, we examined the effect of strong coupling in polariton organic light-emitting diodes via time-resolved electroluminescence studies. We accompanied our experimental analysis with theoretical fits using a model of coupled rate equations accounting for all major mechanisms that can result in delayed electroluminescence in organic emitters. We found that in our devices the delayed electroluminescence was dominated by emission from trapped charges and this mechanism remained unmodified in the presence of strong coupling.

17.
Chemistry ; 30(39): e202401078, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38752798

RESUMO

Hybridized local and charge-transfer (HLCT) with the utilization of both singlet and triplet excitons through the "hot excitons" channel have great application potential in highly efficient blue organic light-emitting diodes (OLEDs). The proportion of charge-transfer (CT) and locally excited (LE) components in the relevant singlet and triplet states makes a big difference for the high-lying reverse intersystem crossing process. Herein, three novel donor (D)-acceptor (A) type HLCT materials, 7-([1,1'-biphenyl]-4-yl(9,9-dimethyl-9H-fluoren-2-yl)amino)-3-phenyl-1H-isochromen-1-one (pPh-7P), 7-([1,1'-biphenyl]-4-yl(9,9-dimethyl-9H-fluoren-2-yl)amino)-3-methyl-1H-isochromen-1-one (pPh-7M), and 6-([1,1'-biphenyl]-4-yl(9,9-dimethyl-9H-fluoren-2-yl)amino)-3-methyl-1H-isochromen-1-one (pPh-6M), were rationally designed and synthesized with diphenylamine derivative as donor and oxygen heterocyclic coumarin moiety as acceptors. The proportions of CT and LE components were fine controlled by changing the connection site of diphenylamine derivative at C6/C7-position and the substituent at C3-position of coumarin moiety. The HLCT characteristics of pPh-7P, pPh-7M, and pPh-6M were systematically demonstrated through photophysical properties and density functional theory calculations. The solution-processed doped OLEDs based on pPh-6M exhibited deep-blue electroluminescence with the maximum emission wavelength of 446 nm, maximum luminance of 8755 cd m-2, maximum current efficiency of 5.83 cd A-1, and maximum external quantum efficiency of 6.54 %. The results reveal that pPh-6M with dominant 1LE and 3CT components has better OLED performance.

18.
Adv Mater ; 36(30): e2404357, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38727713

RESUMO

Linear gold complexes of the "carbene-metal-amide" (CMA) type are prepared with a rigid benzoguanidine amide donor and various carbene ligands. These complexes emit in the deep-blue range at 424 and 466 nm with 100% quantum yields in all media. The deep-blue thermally activates delayed fluorescence originates from a charge transfer state with an excited state lifetime as low as 213 ns, resulting in fast radiative rates of 4.7 × 106 s-1. The high thermal and photo-stability of these carbene-metal-amide (CMA) materials enabled the authors to fabricate highly energy-efficient organic light-emitting diodes (OLED) in host-guest architectures. Deep-blue OLED devices with electroluminescence at 416 and 457 nm with practical external quantum efficiencies of up to 23% at 100 cd m-2 with excellent color coordinates CIE (x; y) = 0.16; 0.07 and 0.17; 0.18 are reported. The operating stability of these OLEDs is the longest reported to date (LT50 = 1 h) for deep-blue CMA emitters, indicating a high promise for further development of blue OLED devices. These findings inform the molecular design strategy and correlation between delayed luminescence with high radiative rates and CMA OLED device operating stability.

19.
Molecules ; 29(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38731642

RESUMO

An efficient access to the novel 5-(aryl)amino-1,2,3-triazole-containing 2,1,3-benzothiadiazole derivatives has been developed. The method is based on 1,3-dipolar azide-nitrile cycloaddition followed by Buchwald-Hartwig cross-coupling to afford the corresponding N-aryl and N,N-diaryl substituted 5-amino-1,2,3-triazolyl 2,1,3-benzothiadiazoles under NHC-Pd catalysis. The one-pot diarylative Pd-catalyzed heterocyclization opens the straightforward route to triazole-linked carbazole-benzothiadiazole D-A systems. The optical and electrochemical properties of the compound obtained were investigated to estimate their potential application as emissive layers in OLED devises. The quantum yield of photoluminescence (PLQY) of the synthesized D-A derivatives depends to a large extent on electron-donating strengths of donor (D) component, reaching in some cases the values closed to 100%. Based on the most photoactive derivative and wide bandgap host material mCP, a light-emitting layer of OLED was made. The device showed a maximum brightness of 8000 cd/m2 at an applied voltage of 18 V. The maximum current efficiency of the device reaches a value of 3.29 cd/A.

20.
Angew Chem Int Ed Engl ; 63(35): e202407502, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-38721850

RESUMO

Currently, much research effort has been devoted to improving the exciton utilization efficiency and narrowing the emission spectra of ultraviolet (UV) fluorophores for organic light-emitting diode (OLED) applications, while almost no attention has been paid to optimizing their light out-coupling efficiency. Here, we developed a linear donor-acceptor-donor (D-A-D) triad, namely CDFDB, which possesses high-lying reverse intersystem crossing (hRISC) property. Thanks to its integrated narrowband UV photoluminescence (PL) (λPL: 397 nm; FWHM: 48 nm), moderate PL quantum yield (ϕPL: 72 %, Tol), good triplet hot exciton (HE) conversion capability, and large horizontal dipole ratio (Θ//: 92 %), the OLEDs based on CDFDB not only can emit UV electroluminescence with relatively good color purity (λEL: 398 nm; CIEx,y: 0.161, 0.040), but also show a record maximum external quantum efficiency (EQEmax) of 12.0 %. This study highlights the important role of horizontal dipole orientation engineering in the molecular design of HE UV-OLED fluorophores.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA