Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Microorganisms ; 12(7)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39065158

RESUMO

OXA-244, an R214G variant of OXA-48, is silently spreading worldwide likely because of difficulties in detection using classical screening media. Here, we characterized two clinical isolates of Escherichia coli and Citrobacter youngae that displayed reduced susceptibility to carbapenems but were lacking significant carbapenemase activity as revealed by negative Carba NP test results. However, positive test results were seen for OXA-48-like enzymes by lateral flow immunoassays. WGS revealed the presence of a blaOXA-181-like gene that codes for OXA-484, an R214G variant of OXA-181. BlaOXA-484 gene was located on a 58.4-kb IncP1-like plasmid (pN-OXA-484), that upon transfer into E. coli HB4 with impaired permeability, conferred carbapenem and temocillin resistance (MICs > 32 mg/L). E. coli TOP10 (pTOPO-OXA-484) revealed reduced MICs in most substrates as compared to E. coli TOP10 (pTOPO-OXA-181), especially for imipenem (0.25 mg/L versus 0.75 mg/L) and temocillin (16 mg/L versus 1028 mg/L). Catalytic efficiencies of OXA-484 were reduced as compared to OXA-181 for most ß-lactams including imipenem and temocillin with 27.5- and 21.7-fold reduction, respectively. Molecular modeling confirmed that the salt bridges between R214, D159, and the R1 substituent's carboxylate group of temocillin were not possible with G214 in OXA-484, explaining the reduced affinity for temocillin. In addition, changes in active site's water network may explain the decrease in hydrolysis rate of carbapenems. OXA-484 has weak imipenem and temocillin hydrolytic activities, which may lead to silent spread due to underdetection using selective screening media or biochemical imipenem hydrolysis confirmatory tests.

2.
J Glob Antimicrob Resist ; 38: 35-41, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38763331

RESUMO

OBJECTIVES: Klebsiella aerogenes is a largely understudied opportunistic pathogen that can cause sepsis and lead to high mortality rates. In this study, we reported the occurrence of carbapenem-resistant blaOXA-181-carrying Klebsiella aerogenes from swine in China and elucidate their genomic characteristics. METHODS: A total of 126 samples, including 109 swine fecal swabs, 14 environmental samples, and three feed samples were collected from a pig farm in China. The samples were enriched with LB broth culture and then inoculated into MacConkey agar plates for bacterial isolation. After PCR detection of carbapenemases genes, the blaOXA-181-carrying isolates were subjected to antimicrobial susceptibility testing, and whole-genome sequence analysis. RESULTS: Four Klebsiella aerogenes isolates carrying the blaOXA-181 gene were obtained from swine faecal samples. All the 4 strains were belonged to ST438. The blaOXA-181 genes were located in IncX3-ColKP3 hybrid plasmids with the core genetic structure of IS26-ΔIS3000-ΔISEcp1-blaOXA-181-ΔlysR-ΔereA-ΔrepA-ISKpn19-tinR-qnrS1-ΔIS2-IS26, which suggests the potential for horizontal transfer and further dissemination of this resistance gene among Enterobacteriaceae and other sources. CONCLUSIONS: This study represents the first instance of OXA-181-producing K. aerogenes being identified from swine faeces in China. It is crucial to maintain continuous monitoring and ongoing attention to the detection of K. aerogenes carrying blaOXA-181 and other resistance genes in pigs.

3.
Emerg Microbes Infect ; 13(1): 2353310, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38712879

RESUMO

OXA-48-like enzymes represent the most frequently detected carbapenemases in Enterobacterales in Western Europe, North Africa and the Middle East. In contrast to other species, the presence of OXA-48-like in Proteus mirabilis leads to an unusually susceptible phenotype with low MICs for carbapenems and piperacillin-tazobactam, which is easily missed in the diagnostic laboratory. So far, there is little data available on the genetic environments of the corresponding genes, blaOXA-48-like, in P. mirabilis. In this study susceptibility phenotypes and genomic data of 13 OXA-48-like-producing P. mirabilis were investigated (OXA-48, n = 9; OXA-181, n = 3; OXA-162, n = 1). Ten isolates were susceptible to meropenem and ertapenem and three isolates were susceptible to piperacillin-tazobactam. The gene blaOXA-48 was chromosomally located in 7/9 isolates. Thereof, in three isolates blaOXA-48 was inserted into a P. mirabilis genomic island. Of the three isolates harbouring blaOXA-181 one was located on an IncX3 plasmid and two were located on a novel MOBF plasmid, pOXA-P12, within the new transposon Tn7713. In 5/6 isolates with plasmidic location of blaOXA-48-like, the plasmids could conjugate to E. coli recipients in vitro. Vice versa, blaOXA-48-carrying plasmids could conjugate from other Enterobacterales into a P. mirabilis recipient. These data show a high diversity of blaOXA-48-like genetic environments compared to other Enterobacterales, where genetic environments are quite homogenous. Given the difficult-to-detect phenotype of OXA-48-like-producing P. mirabilis and the location of blaOXA-48-like on mobile genetic elements, it is likely that OXA-48-like-producing P. mirabilis can disseminate, escape most surveillance systems, and contribute to a hidden spread of OXA-48-like.


Assuntos
Antibacterianos , Proteínas de Bactérias , Testes de Sensibilidade Microbiana , Infecções por Proteus , Proteus mirabilis , beta-Lactamases , Proteus mirabilis/genética , Proteus mirabilis/enzimologia , Proteus mirabilis/isolamento & purificação , Proteus mirabilis/efeitos dos fármacos , beta-Lactamases/genética , beta-Lactamases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Humanos , Infecções por Proteus/microbiologia , Plasmídeos/genética , Ilhas Genômicas , Carbapenêmicos/farmacologia
5.
Microbiol Spectr ; 12(4): e0341623, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38446073

RESUMO

An increase in Klebsiella pneumoniae carbapenem-resistant human nosocomial strains is occurring in Europe, namely with the blaOXA-48-like and blaKPC-like genes. We determined the prevalence of carbapenemase-producing Enterobacterales clinical strains in companion animals in Portugal and characterized their mobile genetic elements. Susceptibility data of a consecutive collection of 977 Enterobacterales clinical strains from a Portuguese private veterinary diagnostic laboratory were evaluated (January-December 2020). Additional phenotypical and genotypical assays were performed in a subset of 261 strains with a resistant phenotype. Whole-genome sequencing was performed for carbapenemase-producing strains. The frequency of carbapenemase-producing Enterobacterales clinical strains in companion animals in Portugal was 0.51% (n = 5/977). Thus, five strains were characterized: (i) one OXA-181-producing K. pneumoniae ST273, (ii) two KPC-3-producing K. pneumoniae ST147; (iii) one KPC-3-producing K. pneumoniae ST392; and (iv) one OXA-48-producing E. coli ST127. The blaKPC-3 gene was located on transposon Tn4401d on IncFIA type plasmid for the K. pneumoniae ST147 strains and on a IncN-type plasmid for the K. pneumoniae ST392 strain, while blaOXA-181 gene was located on an IncX3 plasmid. All de novo assembled plasmids and plasmid-encoded transposons harboring carbapenemase genes were homologous to those previously described in the human healthcare. No plasmid replicons were detected on the OXA-48-producing E. coli ST127. The dissemination of carbapenem resistance is occurring horizontally via plasmid spreading from the human high burden carbapenem resistance setting to the companion animal sector. Furthermore, companion animals may act as reservoirs of carbapenem resistance. Implementation of carbapenemase detection methods in routine clinical veterinary microbiology is urgently needed. IMPORTANCE: This is the first study on the prevalence of carbapenemase-producing Enterobacterales (CPE) clinical strains from companion animals in Portugal. Despite the generally low prevalence of CPE in companion animals, it is imperative for veterinary diagnostic laboratories to employ diagnostic methods for carbapenemase detection. The resemblance found in the mobile genetic elements transporting carbapenemase genes between veterinary medicine and human medicine implies a potential circulation within a One Health framework.


Assuntos
Infecções por Klebsiella , Animais de Estimação , Humanos , Animais , Portugal/epidemiologia , Escherichia coli/genética , Proteínas de Bactérias/genética , beta-Lactamases/genética , Klebsiella pneumoniae/genética , Carbapenêmicos/farmacologia , Infecções por Klebsiella/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana
6.
J Infect Public Health ; 16(10): 1675-1681, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37633229

RESUMO

BACKGROUND: Enterobacterales carrying blaNDM represent an emerging challenge in treating infectious diseases. In this study, we aimed to investigate the characteristics of blaNDM-producing Enterobacterales from three hospitals in southern Taiwan. METHODS: Enterobacterales strains that were nonsusceptible to more than one carbapenem (ertapenem, meropenem, imipenem, or doripenem) were collected from hospitalized patients. Molecular typing for New Delhi metallo-ß-lactamase (NDM) and antibiotic susceptibility tests were performed, followed by multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE), and plasmid analysis by PCR-based replicon typing. RESULTS: A total of 1311 carbapenem-nonsusceptible Enterobacterales were isolated from 2017 to 2021. blaNDM-encoding genes were detected in 108 isolates, with 53 (49.1%) harboring blaNDM-1 and 55 (50.9%) harboring blaNDM-5. The rate of blaNDM-1 detection among isolates decreased to 2% in 2021. However, the rate of E. coli harboring blaNDM-5 increased from 1% to 12% of total isolates during the study period. Of 47 NDM-5-positive E. coli isolates, 44 (93.6%) were ST8346 with high genetic relatedness. E. coli ST8346 isolates showed high-level resistance to both carbapenems and aminoglycosides. Most (38 out of 47, 80.9%) blaNDM-5-harboring E. coli isolates co-harbored blaOXA-181. We analyzed the regions harboring blaNDM-5 in E. coli ST8346 via PCR amplification. blaNDM-5 and blaOXA-181 were located on two separate plasmids, IncF and IncX3, respectively. CONCLUSION: The dissemination of E. coli ST8346 caused an increase in blaNDM-5 and blaOXA-181 co-harboring Enterobacterales in southern Taiwan, which show high-level resistance to both carbapenems and aminoglycosides. We identified a distinct IncF plasmid encoding blaNDM-5 that has the potential for rapid spread and needs further surveillance.


Assuntos
Antibacterianos , Escherichia coli , Humanos , Escherichia coli/genética , Tipagem de Sequências Multilocus , Taiwan/epidemiologia , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Aminoglicosídeos
7.
Microorganisms ; 11(7)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37512889

RESUMO

The global emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) has become a critical public healthcare concern due to treatment challenges and high mortality. In recent years, there has been an increase in cases of CRKP co-producing New Delhi metallo-ß-lactamases (NDM) and oxacillinase 48 (OXA-48)-like carbapenemases in the US. The aim of this study was to correlate the clinical and genomic characteristics of CRKP co-producing NDM and OXA-48-like carbapenemases isolated from patients in Southern California since 2016. Whole-genome sequencing was performed on clinical isolates obtained from various sources, including blood, abdominal fluid, wounds, and urine. Genetic diversity was observed in these CRKP, including ST-14, ST-16, ST-167, ST-437, ST-2096, and ST-2497 lineages. Phylogenetic analysis revealed two closely related clusters (ST-14 and ST-2497), with single nucleotide polymorphism (SNP) differences ranging from 0 to 36, suggesting a possible local spread of these CRKP. Significant antimicrobial resistance (AMR) genes were identified in these CRKP, including blaNDM-1, blaNDM-5, blaOXA-232, blaOXA-181, blaCTX-M-15, armA, tet(A), and tet(D). Moreover, pColKP3-type and Inc-type plasmids known to harbor AMR genes were also detected in these isolates. Most of the patients infected with this rare type of CRKP died, although their severe comorbidities also played important roles in their demise. Our study highlighted the extremely limited treatment options and poor clinical outcomes associated with these dual-carbapenemase-producing CRKP. Real-time genomic surveillance of these unusual and deadly CRKP can provide critical information for infection prevention and treatment guidance.

8.
Infect Drug Resist ; 16: 3245-3255, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37249963

RESUMO

Objective: The aim of this study was to analyze the genetic characteristics of three Enterobacteriaceae strains (one strain of Escherichia coli and two strains of Klebsiella pneumoniae) that produce both the NDM-5 and OXA-181 carbapenemases in pediatric patients. Methods: Carbapenem-resistant Enterobacteriaceae (CRE) strains were collected from the Children's Hospital Affiliated to Nanjing Medical University in 2022. Resistance genes were detected by PCR. CRE strains that produced both the blaNDM-5 and blaOXA-181 genes were further characterized by antimicrobial susceptibility testing, multilocus sequence typing (MLST), plasmid conjugation assay, S1 nuclease-PFGE, Southern blotting and whole-genome sequencing. Results: Three Enterobacteriaceae strains carrying both the blaNDM-5 and blaOXA-181 resistance genes were screened. MLST results showed that the strain of Escherichia coli carrying both blaNDM-5 and blaOXA-181 was ST410; the two strains of Klebsiella pneumoniae with both blaNDM-5 and blaOXA-181 were ST2601 and ST759. Conjugation assays showed that the plasmids harboring the blaNDM-5 and blaOXA-181 genes were self-transmissible. S1-PFGE and Southern blotting showed that the blaNDM-5 and blaOXA-181 genes were located on the plasmid with the size of about 60kb~. The genotyping results showed that the plasmid types were ColKP3 and IncX3. Conclusion: This is the first report of Enterobacteriaceae strains that produce both NDM-5 and OXA-181 isolated from pediatric patients in China. Active infection control measures are urgently needed to prevent the spread of bacteria in children.

9.
Front Microbiol ; 13: 1016895, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466661

RESUMO

Carbapenemase-producing Enterobacterales (CPE) are considered a major public health issue. In the frame of the EU Harmonized AMR Monitoring program conducted in Italy in 2021, 21 epidemiological units of fattening pigs (6.98%; 95% CI 4.37-10.47%; 21/301) and four epidemiological units of bovines <12 months (1.29%; 95% CI 0.35-3.27%, 4/310) resulted positive to OXA-48-like-producing E. coli (n = 24 OXA-181, n = 1 OXA-48). Whole Genome Sequencing (WGS) for in-depth characterization, genomics and cluster analysis of OXA-181-(and one OXA-48) producing E. coli isolated, was performed. Tracing-back activities at: (a) the fattening holding of origin of one positive slaughter batch, (b) the breeding holding, and (c) one epidemiologically related dairy cattle holding, allowed detection of OXA-48-like-producing E. coli in different units and comparison of further human isolates from fecal samples of farm workers. The OXA-181-producing isolates were multidrug resistant (MDR), belonged to different Sequence Types (STs), harbored the IncX and IncF plasmid replicons and multiple virulence genes. Bioinformatics analysis of combined Oxford Nanopore Technologies (ONT) long reads and Illumina short reads identified bla OXA-181 as part of a transposon in IncX1, IncX3, and IncFII fully resolved plasmids from 16 selected E. coli, mostly belonging to ST5229, isolated during the survey at slaughter and tracing-back activities. Although human source could be the most likely cause for the introduction of the bla OXA-181-carrying IncX1 plasmid in the breeding holding, concerns arise from carbapenemase OXA-48-like-producing E. coli spreading in 2021 in Italian fattening pigs and, to a lesser extent, in veal calf holdings.

10.
Microbiol Spectr ; 10(6): e0332022, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36453894

RESUMO

IncX3 and IncL plasmids have been named as catalysts advancing dissemination of blaOXA-181 and blaOXA-48 genes. However, their impact on the performance of host cells is vastly understudied. Genetic characteristics of blaOXA-48- and blaOXA-181-containing Klebsiella pneumoniae (EFN299), Klebsiella quasipneumoniae (EFN262), and Enterobacter cloacae (EFN743) isolated from clinical samples in a Ghanaian hospital were investigated by whole-genome sequencing. Transfer of plasmids by conjugation and electroporation, plasmid stability, fitness cost, and genetic context of blaOXA-48, blaOXA-181, and blaDHA-1 were assessed. blaOXA-181 was carried on two IncX3 plasmids, an intact 51.5-kb IncX3 plasmid (p262-OXA-181) and a 45.3-kb IncX3 plasmid (p743-OXA-181) without replication protein sequence. The fluoroquinolone-resistant gene qnrS1 region was also excised, and unlike in p262-OXA-181, the blaOXA-181 drug-resistant region was not found on a composite transposon. blaOXA-48 was carried on a 74.6-kb conjugative IncL plasmid with unknown ~10.9-kb sequence insertion. This IncL plasmid proved to be highly transferable, with a conjugation efficiency of 1.8 × 10-2. blaDHA-1 was present on an untypeable 22.2 kb genetic structure. Plasmid stability test revealed plasmid loss rate between 4.3% and 12.4%. The results also demonstrated that carriage of IncX3-blaOXA-181 or IncL-blaOXA-48 plasmids was not associated with any fitness defect, but rather an enhanced competitive ability of host cells. This study underscores the significant contribution of IncX3 and IncL plasmids in the dissemination of resistance genes and their efficient transfer calls for regular monitoring to control the expansion of resistant strains. IMPORTANCE The growing rate of antibiotic resistance is an important global health threat. This threat is exacerbated by the lack of safe and potent alternatives to carbapenems in addition to the slow developmental process of newer and effective antibiotics. Infections by carbapenem-resistant Gram-negative bacteria are becoming almost untreatable, leading to poor clinical outcomes and high mortality rates. OXA-48-like carbapenemases are one of the most widespread carbapenemases accounting for resistance among Enterobacteriaecae. We characterized OXA-48- and OXA-181-producing Enterobacteriaecae to gain insights into the genetic basis and mechanism of resistance to carbapenems. Findings from the study showed that the genes encoding these enzymes were carried on highly transmissible plasmids, one of which had sequences absent in other similar plasmids. This implies that mobile genetic elements are important players in the dissemination of resistance genes. Further characterization of this plasmid is warranted to determine the role of this sequence in the spread of resistance genes.


Assuntos
Enterobacter cloacae , Klebsiella pneumoniae , Humanos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo , Carbapenêmicos/farmacologia , Enterobacter cloacae/efeitos dos fármacos , Enterobacter cloacae/genética , Gana , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Farmacorresistência Bacteriana
11.
Front Microbiol ; 13: 1020500, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312943

RESUMO

The worldwide spread of carbapenem-resistant Enterobacteriaceae (CRE) has led to a major challenge to human health. In this case, colistin is often used to treat the infection caused by CRE. However, the coexistence of genes conferring resistance to carbapenem and colistin is of great concern. In this work, we reported the coexistence of bla OXA-181, bla CTX-M-55, and mcr-8 in an ST273 Klebsiella pneumoniae isolate for the first time. The species identification was performed using MALDI-TOF MS, and the presence of various antimicrobial resistance genes (ARGs) and virulence genes were detected by PCR and whole-genome sequencing. Antimicrobial susceptibility testing showed that K. pneumoniae 5589 was resistant to aztreonam, imipenem, meropenem, ceftriaxone, cefotaxime, ceftazidime, levofloxacin, ciprofloxacin, gentamicin, piperacillin-tazobactam, cefepime, and polymyxin B, but sensitive to amikacin. S1-pulsed-field gel electrophoresis (PFGE) and Southern blotting revealed the mcr-8 gene was carried on a ~ 138 kb plasmid with a conserved structure (IS903B-ymoA-inhA-mcr-8-copR-baeS-dgkA-ampC). In addition, bla OXA-181 was found on another ~51 kb plasmid with a composite transposon flanked by insertion sequence IS26. The in vitro conjugation experiments and plasmid sequence probe indicated that the plasmid p5589-OXA-181 and the p5589-mcr-8 were conjugative, which may contribute to the propagation of ARGs. Relevant detection and investigation measures should be taken to control the prevalence of pathogens coharboring bla OXA-181, bla CTX-M-55 and mcr-8.

12.
Microbiol Spectr ; 10(3): e0262421, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35467408

RESUMO

The higher resistance rate to ceftazidime-avibactam (CZA) is mainly related to carbapenem resistance, especially New Delhi metallo-ß-lactamase (NDM). The CZA-susceptible Klebsiella pneumoniae (K191663) and the later CZA-resistant isolates (K191724, K191725, K191773) co-producing NDM-4 and OXA-181 were obtained from the same hospitalized patient returning from Vietnam. Our study aims to elucidate the diversity of K. pneumoniae ST16 through comparative analysis of whole-genome sequencing (WGS) data and identify the potential evolution of plasmids by sequencing longitudinal clinical isolates during antibiotic treatment. Firstly, multilocus sequence typing analysis and phylogenic analysis suggested that these strains belong to the two lineages of K. pneumoniae ST16. Surprisingly, the CZA-resistant strains were closely related to K. pneumoniae ST16 described in South Korea, instead of the blaNDM-4- or blaOXA-181-carrying ST16 reported in Vietnam. Secondly, blaNDM-4, blaTEM-1B, and rmtB co-existed on a self-conjugative IncFII(Yp)-like plasmid, which played a significant role in CZA resistance. It could transfer into the recipient Escherichia coli J53 at high frequency, indicating the risk of mobile carbapenemases. In addition, the loss of 12-kbp fragment occurred in blaNDM-4-positive isolate (K191773), which was likely caused by insertion sequence-mediated homologous recombination. Last but not least, as a repressor of acrAB operon system, acrR was truncated by a frameshift mutation in K191663. Thus, our study provided baseline information for monitoring the occurrence and development of bacterial resistance. IMPORTANCE As a leading health care-acquired infection pathogen, Klebsiella pneumoniae is threatening a large number of inpatients due to its diverse antibiotic resistance and virulence factors. Heretofore, with a growing number of reports about the coexistence of several carbapenemases in carbapenem-resistant K. pneumoniae (CRKP), epidemiologic surveillance has been strengthened. Nevertheless, the nosocomial outbreaks by CRKP ST16 are gradually increasing worldwide. Our study provides a deeper insight into the diversification of clinical isolates of CRKP ST16 in China. In addition, the comparison analysis of resistant plasmids may reveal the transmission of carbapenemase-encoding genes. Furthermore, our study also highlights the importance of longitudinal specimen collection and continuous monitoring during the treatment, which play a crucial role in understanding the development of antibiotic resistance and the evolution of resistance plasmids.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Carbapenêmicos/uso terapêutico , Escherichia coli/genética , Humanos , Interleucinas , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Plasmídeos/genética , beta-Lactamases/genética
13.
Microorganisms ; 10(2)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35208876

RESUMO

The carbapenem-resistant Enterobacterales (CRE) strains have been identified by the World Health Organization as critical priority pathogens in research and development of diagnostics, treatments, and vaccines. However, recent molecular information about carbapenem-resistant K. pneumoniae (CRK) epidemiology in Portugal is still scarce. Thus, this study aimed to provide the molecular epidemiology, resistome, and virulome of CRK clinical strains recovered from a tertiary care hospital centre (2019-2021) using polymerase chain reaction (PCR) and the advanced molecular technique whole-genome sequencing (WGS). PCR amplification of carbapenemase genes was performed in 437 carbapenem-resistant K. pneumoniae strains. The most frequent carbapenemases were: KPC-3 (42%), followed by OXA-181 (20%), GES-5 (0.2%), and NDM-1 (0.2%). Additionally, 10 strains (2%) coproduced KPC-3 and OXA-181, and 1 strain coproduced KPC-3 and OXA-48 (0.2%). The genomic population structure of 68 strains characterized by WGS demonstrated the ongoing dissemination of four main high-risk clones: ST13, ST17, ST147, and ST307, while no clones belonging to the European predominant clonal groups (CG15 and CG258) were found. Moreover, we describe one K. pneumoniae ST39-KL62 that coproduced the NDM-1 carbapenemase and the extended-spectrum beta-lactamase CTX-M-15, and one K. pneumoniae ST29-KL54 GES-5 and BEL-1 coproducer. Furthermore, a high prevalence of iron siderophores were present in all CRK strains, with several strains presenting both colibactin and the hypermucoviscosity phenotype. Thus, the data presented here highlight an uncommon molecular epidemiology pattern in Portugal when compared with most European countries, further supporting the emergence and dissemination of nonclonal group 258 hypervirulent multidrug high-risk clones and the need to promote in-depth hospital molecular surveillance studies.

14.
Diagn Microbiol Infect Dis ; 102(1): 115570, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34739936

RESUMO

This is the first detection and genomic analysis of an OXA-181-carbapenemase-producing E. coli in Brazil, from a traveler returning from Sub-Saharan Africa. The ST167 isolate carries blaOXA-181 inserted in an IncX3 plasmid. This report illustrates the potential role of travelers as silent vectors for dissemination of high-risk resistant clones.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , beta-Lactamases/genética , Adulto , África Subsaariana , Brasil/epidemiologia , Fezes/microbiologia , Genoma Bacteriano , Humanos , Masculino , Testes de Sensibilidade Microbiana , Plasmídeos
15.
Front Microbiol ; 12: 770130, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925277

RESUMO

Extra-intestinal pathogenic Escherichia coli (ExPEC) is one of the world's leading causes of bloodstream infections with high mortality. Sequence type 410 (ST410) is an emerging ExPEC clone resistant to a wide range of antibiotics. In this study, we investigated the epidemiology of 21 ST410 E. coli isolates from two Ghanaian hospitals. We also investigated the isolates within a global context to provide further insight into the dissemination of this highly pathogenic clone. A phylogenetic tree of the 21 isolate genomes, along with 102 others from global collection, was constructed representing the ensuing clades and sub-clades of the ST: A/H53, B2/H24R, B3/H24Rx, and B4/H24RxC. The carbapenem-resistant sub-clade B4/H24RxC is reported to have emerged in the early 2000s when ST410 acquired an IncX3 plasmid carrying a bla OXA- 181 carbapenemase gene, and a second carbapenemase gene, bla NDM- 5, on a conserved IncFII plasmid in 2014. We identified, in this study, one bla OXA- 181-carrying isolate belonging to B4/H24RxC sub-lineage and one carrying bla NDM- 1 belonging to sub-lineage B3/H24Rx. The bla OXA- 181 gene was found on a 51kb IncX3 plasmid; pEc1079_3. The majority (12/21) of our Ghanaian isolates were clustered with international strains described by previous authors as closely related strains to B4/H24RxC. Six others were clustered among the ESBL-associated sub-lineage B3/H24Rx and three with the globally disseminated sub-lineage B4/H24RxC. The results show that this highly pathogenic clone is disseminated in Ghana and, given its ability to transmit between hosts, it poses a serious threat and should be monitored closely.

17.
Front Microbiol ; 12: 641415, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33633720

RESUMO

The aim of this study was to characterize four Enterobacterales co-producing NDM- and OXA-48-like carbapenemases from Czech patients with travel history or/and previous hospitalization abroad. Klebsiella pneumoniae isolates belonged to "high risk" clones ST147, ST11, and ST15, while the Escherichia coli isolate was assigned to ST167. All isolates expressed resistance against most ß-lactams, including carbapenems, while retaining susceptibility to colistin. Furthermore, analysis of WGS data showed that all four isolates co-produced OXA-48- and NDM-type carbapenemases, in different combinations (Kpn47733: bla NDM- 5 + bla OXA- 181; Kpn50595: bla NDM- 1 + bla OXA- 181; Kpn51015: bla NDM- 1 + bla OXA- 244; Eco52418: bla NDM- 5 + bla OXA- 244). In Kpn51015, the bla OXA- 244 was found on plasmid p51015_OXA-244, while the respective gene was localized in the chromosomal contig of E. coli Eco52418. On the other hand, bla OXA- 181 was identified on a ColKP3 plasmid in isolate Kpn47733, while a bla OXA- 181-carrying plasmid being an IncX3-ColKP3 fusion was identified in Kpn50595. The bla NDM- 1 gene was found on two different plasmids, p51015_NDM-1 belonging to a novel IncH plasmid group and p51015_NDM-1 being an IncF K 1-FIB replicon. Furthermore, the bla NDM- 5 was found in two IncFII plasmids exhibiting limited nucleotide similarity to each other. In both plasmids, the genetic environment of bla NDM- 5 was identical. Finally, in all four carbapenemase-producing isolates, a diverse number of additional replicons, some of these associated with important resistance determinants, like bla CTX-M- 15, arr-2 and ermB, were identified. In conclusion, this study reports the first description of OXA-244-producing Enterobacterales isolated from Czech hospitals. Additionally, our findings indicated the genetic plurality involved in the acquisition and dissemination of determinants encoding OXA/NDM carbapenemases.

18.
J Med Microbiol ; 70(3)2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33507142

RESUMO

Klebsiella pneumoniae strains carrying OXA-48-like carbapenemases are increasingly prevalent across the globe. There is thus an urgent need to better understand the mechanisms that underpin the dissemination of bla OXA-48-like carbapenemases. To this end, four ertapenem-resistant K. pneumoniae isolates producing OXA-48-like carbapenemases were isolated from two patients. Genome sequencing revealed that one sequence type (ST) 17 isolate carried bla OXA-181, whilst three isolates from a single patient, two ST76 and one ST15, carried bla OXA-232. The 50514 bp bla OXA-181-harbouring plasmid, pOXA-181_YML0508, was X3-type with a conjugation frequency to Escherichia coli of 1.94×10-4 transconjugants per donor. The bla OXA-232 gene was located on a 6141 bp ColKP3-type plasmid, pOXA-232_WSD, that was identical in the ST76 and ST15 K. pneumoniae isolates. This plasmid could be transferred from K. pneumoniae to E. coli at low frequency, 8.13×10-6 transconjugants per donor. Comparative analysis revealed that the X3 plasmid acquired the bla OXA-48-like gene via IS3000-mediated co-integration of the ColKP3-type plasmid. Our study highlights how plasmid integration and rearrangements can contribute to the spread of bla OXA-48-like genes, which provides important clues for clinical prevention of the dissemination of K. pneumoniae strains carrying bla OXA-48-like carbapenemases.


Assuntos
Proteínas de Bactérias/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , beta-Lactamases/genética , Idoso de 80 Anos ou mais , China , Genes Bacterianos , Humanos , Klebsiella pneumoniae/genética , Masculino , Pessoa de Meia-Idade , Plasmídeos
19.
mSphere ; 6(1)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441403

RESUMO

Studies on the epidemiology and genomes of isolates harboring OXA-48-like genes in septicemic neonates are rare. Here, isolates producing these carbapenemases which emerged and persisted in an Indian neonatal unit were characterized in terms of their resistome, transmissibility, and genome diversity. Antibiotic susceptibility and whole-genome sequencing were carried out. The sequence types, resistome, virulome, mobile genetic elements, and transmissibility of carbapenem-resistant plasmids were evaluated. Core genome analysis of isolates was shown in a global context with other OXA-48-like carbapenemase-harboring genomes, including those from neonatal studies. Eleven OXA-48-like carbapenemase-producing Klebsiella pneumoniae (blaOXA-181, n = 7 and blaOXA-232, n = 4) isolates belonging to diverse sequence types (ST14, ST15, ST23, ST48, and ST231) were identified. blaOXA-181/OXA-232 and blaNDM-5 were found in a high-risk clone, ST14 (n = 4). blaOXA-181/OXA-232 were in small, nonconjugative ColKP3 plasmids located on truncated Tn2013, whereas blaNDM-5 was in self-transmissible, conjugative IncFII plasmids, within truncated Tn125 Conjugal transfer of blaOXA-181/OXA-232 was observed in the presence of blaNDM-5 The study strains were diverse among themselves and showed various levels of relatedness with non-neonatal strains from different parts of the world and similarity with neonatal strains from Tanzania and Ghana when compared with a representative collection of carbapenemase-positive K. pneumoniae strains. We found that blaOXA-181/OXA-232-harboring isolates from a single neonatal unit had remarkably diverse genomes, ruling out clonal spread and emphasizing the extent of plasmid spreading across different STs. This study is probably the first to report the coexistence of blaOXA-181/232 and blaNDM-5 in neonatal isolates.IMPORTANCE Neonatal sepsis is a leading cause of neonatal mortality in low- and middle-income countries (LMICs). Treatment of sepsis in this vulnerable population is dependent on antimicrobials, and resistance to these life-saving antimicrobials is worrisome. Carbapenemases, enzymes produced by bacteria, can make these antimicrobials useless. Our study describes how OXA-48-like carbapenemases in neonatal septicemic Klebsiella pneumoniae shows remarkable diversity in the genomes of the strains and relatedness with strains from other parts of world and also to some neonatal outbreak strains. It is also the first to describe such resistance due to coproduction of dual carbapenemases, (OXA)-48 and New Delhi metallo-ß-lactamase-5, in Klebsiella pneumoniae from neonatal settings. Carbapenemase genes situated on plasmids within high-risk international clones, as seen here, increase the ease and transfer of resistant genetic material. With the WHO treatment protocols not adequately poised to handle such infections, prompt attention to neonatal health care is required.


Assuntos
Variação Genética , Genoma Bacteriano , Infecções por Klebsiella/transmissão , Klebsiella pneumoniae/classificação , Klebsiella pneumoniae/genética , Sepse Neonatal/microbiologia , beta-Lactamases/genética , Antibacterianos/farmacologia , Genótipo , Humanos , Recém-Nascido , Infecções por Klebsiella/sangue , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/enzimologia , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Tanzânia , Sequenciamento Completo do Genoma , beta-Lactamases/classificação
20.
J Glob Antimicrob Resist ; 22: 568-570, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32603904

RESUMO

OBJECTIVES: Escherichia coli is regarded as one of the most commonly isolated Gram-negative pathogens from bloodstream infections. Increasing antimicrobial resistance (AMR) among E. coli is a threat to disease management as well as further dissemination of AMR genes to other clinically important pathogens. Here we report the genome of a multidrug-resistant (MDR) E. coli (BA22372) from a bloodstream infection belonging to ST410 B4/H24RxC subtype from India. METHODS: Genomic DNA of E. coli BA22372 was sequenced using Ion Torrent™ PGM™ and MinION™ sequencing. Hybrid genome assembly was performed using short and long reads from both methods to achieve accurate and complete genome data. RESULTS: Here we report the genome of MDR E. coli BA22372 harbouring blaOXA-181 and blaCTX-M-15 in two individual plasmids, namely pOXA181_22372 (IncX3) and pCTX-M-15_22372 (IncF). The pCTX-M-15 plasmid is well known to co-harbour blaNDM-5, which was not seen in the studied isolate here. CONCLUSION: To the best of our knowledge, this is the first report of B4/H24RxC MDR E. coli from India co-harbouring blaCTX-M-15 and blaOXA-181 along with other AMR genes. Information from this genome data revealed the possession of AMR genes in two individual plasmids and their potential for rapid dissemination. This isolate is of high health concern as it harbours a plasmid with replicatory mechanisms capable of acquiring blaNDM-5, which is a great threat for rapid dissemination of AMR. This study enhances our understanding of the AMR mechanisms among different clones of E. coli.


Assuntos
Infecções por Escherichia coli , Sepse , Escherichia coli/genética , Humanos , Índia , Sequenciamento Completo do Genoma , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA