Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anim Cogn ; 26(4): 1345-1352, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37179500

RESUMO

Quantitative abilities are well described in many species and in diverse life situations, including in the adult domestic cat. However, such abilities have been much less studied during ontogeny. In the present study we examined spontaneous quantity discrimination by pre-weaning age kittens in two-way food choice experiments. In Experiment 1, 26 kittens performed 12 trials with different ratios between the number of same-size food items. In Experiment 2, 24 other kittens performed eight trials with different ratios between the size of two food items. We found, in general, that the kittens discriminated between the different amounts of food and spontaneously chose the larger one, but that their choice was influenced by the ratio of difference. The kittens in Experiment 1 chose the larger number of same-size food items if the ratio was smaller than 0.4 and in Experiment 2 they chose the larger pieces of food if the ratio between the items was smaller than 0.5. Because the kittens' choice was not influenced by the absolute number of food items or the numerical difference between them in Experiment 1, it suggests that their cognitive performance relied on an analog magnitude system rather than on an object file system during the quantity discrimination tasks. We discuss our results considering the ecological and social background of cats and compare it with the performance of previously studied species.


Assuntos
Felis , Alimentos , Animais , Gatos , Feminino , Preferências Alimentares , Desmame
2.
Animals (Basel) ; 12(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36139181

RESUMO

A key signature of small-number processing is the difficulty in discriminating between three and four objects, as reported in infants and animals. Five-day-old chicks overcome this limit if individually distinctive features characterize each object. In this study, we have investigated whether processing individually different face-like objects can also support discrimination between three and four objects. Chicks were reared with seven face-like stimuli and tested in the proto-arithmetic comparison 1 + 1 + 1 vs. 1 + 1 + 1 + 1. Birds reared and tested with all different faces discriminated and approached the larger group (Exp. 1), whereas new birds reared and tested with seven identical copies of one same face failed (Exp. 2). The presence at test of individually different faces allowed discrimination even when chicks were reared with copies of one face (Exp. 3). To clarify the role of the previous experience of at least one specific arrangement of facial features, in Experiment 4, featureless faces were employed during rearing. During testing, chicks were unable to discriminate between three and four individually distinct faces. Results highlight the importance of having experienced at least one "face" in prompting individual processing and proto-arithmetical calculation later during testing. We speculate that mechanisms effective at the non-symbolic level may positively affect numerical performance.

3.
Cogn Psychol ; 125: 101368, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33421683

RESUMO

How do infants reason about simple physical events such as containment, tube, and support events? According to the two-system model, two cognitive systems, the object-file (OF) and physical-reasoning (PR) systems, work together to guide infants' responses to these events. When an event begins, the OF system sends categorical information about the objects and their arrangements to the PR system. This system then categorizes the event, assigns event roles to the objects, and taps the OF system for information about features previously identified as causally relevant for the event category selected. All of the categorical and featural information included in the event's representation is interpreted by the PR system's domain knowledge, which includes core principles such as persistence and gravity. The present research tested a novel prediction of the model: If the OF system could be primed to also send, at the beginning of an event, information about an as-yet-unidentified feature, the PR system would then interpret this information using its core principles, allowing infants to detect core violations involving the feature earlier than they normally would. We examined this prediction using two types of priming manipulations directed at the OF system, object arrays and novel labels. In six experiments, infants aged 7-13 months (N = 304) were tested using different event categories and as-yet-unidentified features (color in containment events, height in tube events, and proportional distribution in support events) as well as different tasks (violation-of-expectation and action tasks). In each case, infants who were effectively primed reasoned successfully about the as-yet-unidentified feature, sometimes as early as six months before they would typically do so. These converging results provide strong support for the two-system model and for the claim that uncovering how the OF and PR systems represent and exchange information is essential for understanding how infants respond to physical events.


Assuntos
Desenvolvimento Infantil , Cognição , Atenção , Humanos , Lactente , Conhecimento , Resolução de Problemas
4.
J Exp Biol ; 223(Pt 9)2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32409523

RESUMO

Many animals need to process numerical and quantity information in order to survive. Spontaneous quantity discrimination allows differentiation between two or more quantities without reinforcement or prior training on any numerical task. It is useful for assessing food resources, aggressive interactions, predator avoidance and prey choice. Honeybees have previously demonstrated landmark counting, quantity matching, use of numerical rules, quantity discrimination and arithmetic, but have not been tested for spontaneous quantity discrimination. In bees, spontaneous quantity discrimination could be useful when assessing the quantity of flowers available in a patch and thus maximizing foraging efficiency. In the current study, we assessed the spontaneous quantity discrimination behaviour of honeybees. Bees were trained to associate a single yellow artificial flower with sucrose. Bees were then tested for their ability to discriminate between 13 different quantity comparisons of artificial flowers (numeric ratio range: 0.08-0.8). Bees significantly preferred the higher quantity only in comparisons where '1' was the lower quantity and where there was a sufficient magnitudinal distance between quantities (e.g. 1 versus 12, 1 versus 4, and 1 versus 3 but not 1 versus 2). Our results suggest a possible evolutionary benefit to choosing a foraging patch with a higher quantity of flowers when resources are scarce.


Assuntos
Flores , Animais , Abelhas
5.
J Exp Biol ; 222(Pt 19)2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601685

RESUMO

Animals including humans, fish and honeybees have demonstrated a quantity discrimination threshold at four objects, often known as subitizing elements. Discrimination between numerosities at or above the subitizing range is considered a complex capacity. In the current study, we trained and tested two groups of bees on their ability to differentiate between quantities (4 versus 5 through to 4 versus 8) when trained with different conditioning procedures. Bees trained with appetitive (reward) differential conditioning demonstrated no significant learning of this task, and limited discrimination above the subitizing range. In contrast, bees trained using appetitive-aversive (reward-aversion) differential conditioning demonstrated significant learning and subsequent discrimination of all tested comparisons from 4 versus 5 to 4 versus 8. Our results show conditioning procedure is vital to performance on numerically challenging tasks, and may inform future research on numerical abilities in other animals.


Assuntos
Apetite/fisiologia , Abelhas/fisiologia , Condicionamento Psicológico/fisiologia , Discriminação Psicológica/fisiologia , Animais , Aprendizagem em Labirinto , Estimulação Luminosa
6.
Psychon Bull Rev ; 23(4): 1206-13, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26689808

RESUMO

A key issue in understanding the evolutionary and developmental emergence of numerical cognition is to learn what mechanism(s) support perception and representation of quantitative information. Two such systems have been proposed, one for dealing with approximate representation of sets of items across an extended numerical range and another for highly precise representation of only small numbers of items. Evidence for the first system is abundant across species and in many tests with human adults and children, whereas the second system is primarily evident in research with children and in some tests with non-human animals. A recent paper (Choo & Franconeri, Psychonomic Bulletin & Review, 21, 93-99, 2014) with adult humans also reported "superprecise" representation of small sets of items in comparison to large sets of items, which would provide more support for the presence of a second system in human adults. We first presented capuchin monkeys with a test similar to that of Choo and Franconeri in which small or large sets with the same ratios had to be discriminated. We then presented the same monkeys with an expanded range of comparisons in the small number range (all comparisons of 1-9 items) and the large number range (all comparisons of 10-90 items in 10-item increments). Capuchin monkeys showed no increased precision for small over large sets in making these discriminations in either experiment. These data indicate a difference in the performance of monkeys to that of adult humans, and specifically that monkeys do not show improved discrimination performance for small sets relative to large sets when the relative numerical differences are held constant.


Assuntos
Cebus/psicologia , Aprendizagem por Discriminação , Julgamento , Matemática , Reconhecimento Visual de Modelos , Resolução de Problemas , Animais , Comportamento de Escolha , Cognição , Feminino , Masculino , Tempo de Reação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA