Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Proc Biol Sci ; 291(2031): 20241280, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39317325

RESUMO

Communication is essential for social organisms. In eusocial insects, olfaction facilitates communication and recognition between nestmates. The study of certain model organisms has led to the hypothesis that odorant receptors are expanded in eusocial Hymenoptera. This has become a widely mentioned idea in the literature, albeit with conflicting reports, and has not been tested with a broad comparative analysis. Here we combined existing genomic and new neuroanatomical data, including from an approximately 100 Myr old fossil ant, across a phylogenetically broad sample of hymenopteran lineages. We find no evidence that variation in the size and evolutionary tempo of odorant receptor repertoires is related to eusociality. Post hoc exploration of our data hinted at loss of flight as a possible factor shaping some of the variation in OR repertoires in Hymenoptera. Nevertheless, our analyses revealed a complex pattern of evolutionary variation, and raise new questions about the ecological, behavioural and social factors that shape olfactory abilities.


Assuntos
Evolução Biológica , Himenópteros , Receptores Odorantes , Comportamento Social , Animais , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Himenópteros/fisiologia , Himenópteros/genética , Filogenia , Formigas/fisiologia , Formigas/genética
2.
Curr Res Insect Sci ; 6: 100090, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39193175

RESUMO

The evolution of chemosensory receptors is key for the adaptation of animals to their environment. Recent knowledge acquired on the tri-dimensional structure of insect odorant receptors makes it possible to study the link between modifications in the receptor structure and evolution of response spectra in more depth. We investigated this question in palm weevils, several species of which are well-known invasive pests of ornamental or cultivated palm trees worldwide. These insects use aggregation pheromones to gather on their host plants for feeding and reproduction. An odorant receptor detecting the aggregation pheromone components was characterised in the Asian palm weevil Rhynchophorus ferrugineus. This study compared the response spectra of this receptor, RferOR1, and its ortholog in the American palm weevil R. palmarum, RpalOR1. Sequences of these two receptors exhibit more than 70 amino acid differences, but modelling of their 3D structures revealed that their putative binding pockets differ by only three amino acids, suggesting possible tuning conservation. Further functional characterization of RpalOR1 confirmed this hypothesis, as RpalOR1 and RferOR1 exhibited highly similar responses to coleopteran aggregation pheromones and chemically related molecules. Notably, we showed that R. ferrugineus pheromone compounds strongly activated RpalOR1, but we did not evidence any response to the R. palmarum pheromone compound rhynchophorol. Moreover, we discovered that several host plant volatiles also activated both pheromone receptors, although with lower sensitivity. This study not only reveals evolutionary conservation of odorant receptor tuning across the two palm weevil species, but also questions the specificity of pheromone detection usually observed in insects.

3.
Int J Biol Macromol ; 278(Pt 1): 134646, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39128738

RESUMO

The cotton bollworm, Helicoverpa armigera, is a significant global agricultural pest, particularly detrimental during its larval feeding period. Insects' odorant receptors (ORs) are crucial for their crop-feeding activities, yet a comprehensive analysis of H. armigera ORs has been lacking, and the influence of hormones on ORs remain understudied. Herein, we conducted a genome-wide study and identified 81 ORs, categorized into 15 distinct groups. Analyses of protein motifs and gene structures revealed both conservation within groups and divergence among them. Comparative gene duplication analysis between H. armigera and Bombyx mori highlighted different duplication patterns. We further investigated subcellular localization and protein interactions within the odorant receptor family, providing valuable insights for future functional and interaction studies of ORs. Specifically, we identified that OR48 and OR75 were abundantly expressed during molting/metamorphosis and feeding stages, respectively. We demonstrated that 20E induced the upregulation of OR48 via EcR, while insulin upregulated OR75 expression through InR. Moreover, 20E induced the translocation of OR48 to the cell membrane, mediating its effects. Functional studies involving the knockdown of OR48 and OR75 revealed their roles in metamorphosis development, with OR48 knockdown resulting in delayed pupation and OR75 knockdown leading to premature pupation. OR48 can promote autophagy and apoptosis in fat body, while OR75 can significantly inhibit apoptosis and autophagy. These findings significantly contribute to our understanding of OR function in H. armigera and shed light on potential avenues for pest control strategies.


Assuntos
Proteínas de Insetos , Metamorfose Biológica , Família Multigênica , Receptores Odorantes , Animais , Metamorfose Biológica/genética , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Mariposas/genética , Mariposas/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Filogenia , Estudo de Associação Genômica Ampla , Genoma de Inseto , Bombyx/genética , Bombyx/crescimento & desenvolvimento , Duplicação Gênica , Helicoverpa armigera
4.
Life (Basel) ; 14(7)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39063624

RESUMO

The tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae), is a highly destructive invasive pest targeting Solanaceae crops. Its olfactory system plays a crucial role in host location, mate finding, and other behavioral activities. However, there is a notable gap in the literature regarding the characterization of its chemosensory genes. In this study, we conducted a genome-wide identification of 58 odorant receptors (ORs) of T. absoluta. The identified ORs exhibit coding sequence (CDS) lengths ranging from 1062 bp to 1419 bp, encoding proteins of 354 to 473 amino acids. Gene structure analysis showed that the majority of these ORs consist of five, seven, eight, or nine exons, collectively representing 67% of the total ORs identified. Through chromosomal mapping, we identified several tandemly duplicate genes, including TabsOR12a, TabsOR12b, TabsOR12c, TabsOR21a, TabsOR21b, TabsOR34a, TabsOR34b, TabsOR34c, TabsOR62a, and TabsOR62b. The phylogenetic analysis indicated that six TabsORs were clustered within the lepidopteran sex pheromone receptor clade, while an expansion clade containing ten TabsORs resulted from tandem duplication events. Additionally, five TabsORs were classified into a specific OR clade in T. absoluta. Furthermore, through RNA-Seq and RT-qPCR analyses, we identified five TabsORs (TabsOR21a, TabsOR26a, TabsOR34a, TabsOR34c, and TabsOR36) exhibiting female-antennae-biased expression. Our study provides a valuable foundation to further investigations into the molecular and ecological functions of TabsORs, particularly in relation to oviposition behavior. These findings provide foundational data for the future exploration of the functions of female-biased expression OR genes in T. absoluta, thereby facilitating the further development of eco-friendly attract-and-kill techniques for the prevention and control of T. absoluta.

5.
Genesis ; 62(3): e23610, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38874301

RESUMO

The organization of the olfactory glomerular map involves the convergence of olfactory sensory neurons (OSNs) expressing the same odorant receptor (OR) into glomeruli in the olfactory bulb (OB). A remarkable feature of the olfactory glomerular map formation is that the identity of OR instructs the topography of the bulb, resulting in thousands of discrete glomeruli in mice. Several lines of evidence indicate that ORs control the expression levels of various kinds of transmembrane proteins to form glomeruli at appropriate regions of the OB. In this review, we will discuss how the OR identity is decoded by OSNs into gene expression through intracellular regulatory mechanisms.


Assuntos
Bulbo Olfatório , Neurônios Receptores Olfatórios , Receptores Odorantes , Animais , Camundongos , Bulbo Olfatório/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
6.
BMC Genomics ; 25(1): 275, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38475721

RESUMO

BACKGROUND: The spread of Popillia japonica in non-native areas (USA, Canada, the Azores islands, Italy and Switzerland) poses a significant threat to agriculture and horticulture, as well as to endemic floral biodiversity, entailing that appropriate control measures must be taken to reduce its density and limit its further spread. In this context, the availability of a high quality genomic sequence for the species is liable to foster basic research on the ecology and evolution of the species, as well as on possible biotechnologically-oriented and genetically-informed control measures. RESULTS: The genomic sequence presented and described here is an improvement with respect to the available draft sequence in terms of completeness and contiguity, and includes structural and functional annotations. A comparative analysis of gene families of interest, related to the species ecology and potential for polyphagy and adaptability, revealed a contraction of gustatory receptor genes and a paralogous expansion of some subgroups/subfamilies of odorant receptors, ionotropic receptors and cytochrome P450s. CONCLUSIONS: The new genomic sequence as well as the comparative analyses data may provide a clue to explain the staggering invasive potential of the species and may serve to identify targets for potential biotechnological applications aimed at its control.


Assuntos
Besouros , Espécies Introduzidas , Animais , Besouros/genética , Genômica , Canadá , Itália , Filogenia
7.
Br J Pharmacol ; 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38339984

RESUMO

A large portion of the human GPCRome is still in the dark and understudied, consisting even of entire subfamilies of GPCRs such as odorant receptors, class A and C orphans, adhesion GPCRs, Frizzleds and taste receptors. However, it is undeniable that these GPCRs bring an untapped therapeutic potential that should be explored further. Open questions on these GPCRs span diverse topics such as deorphanisation, the development of tool compounds and tools for studying these GPCRs, as well as understanding basic signalling mechanisms. This review gives an overview of the current state of knowledge for each of the diverse subfamilies of understudied receptors regarding their physiological relevance, molecular mechanisms, endogenous ligands and pharmacological tools. Furthermore, it identifies some of the largest knowledge gaps that should be addressed in the foreseeable future and lists some general strategies that might be helpful in this process.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38096641

RESUMO

Chemoreception through odorant receptors (ORs), ionotropic receptors (IRs) and gustatory receptors (GRs) represents the functions of key proteins in the chemical ecology of insects. Recent studies have identified chemoreceptors in coleopterans, facilitating the evolutionary analysis of not only ORs but also IRs and GRs. Thus, Cerambycidae, Tenebrionidae and Curculionidae have received increased attention. However, knowledge of the chemoreceptors from Scarabaeidae is still limited, particularly for those that are sympatric. Considering the roles of chemoreceptors, this analysis could shed light on evolutionary processes in the context of sympatry. Therefore, the aim of this study was to identify and compare the repertoires of ORs, GRs and IRs between two sympatric scarab beetles, Hylamorpha elegans and Brachysternus prasinus. Here, construction of the antennal transcriptomes of both scarab beetle species and analyses of their phylogeny, molecular evolution and relative expression were performed. Thus, 119 new candidate chemoreceptors were identified for the first time, including 17 transcripts for B. prasinus (1 GR, 3 IRs and 13 ORs) and 102 for H. elegans (22 GRs, 14 IRs and 66 ORs). Orthologs between the two scarab beetle species were found, revealing specific expansions as well as absence in some clades. Purifying selection appears to have occurred on H. elegans and B. prasinus ORs. Further efforts will be focused on target identification to characterize kairomone and/or pheromone receptors.


Assuntos
Besouros , Receptores Odorantes , Gorgulhos , Animais , Transcriptoma , Simpatria , Perfilação da Expressão Gênica , Besouros/genética , Besouros/metabolismo , Gorgulhos/genética , Filogenia , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Antenas de Artrópodes/metabolismo
9.
Insects ; 14(12)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38132621

RESUMO

In insects, the chemical senses influence most vital behaviors, including mate seeking and egg laying; these sensory modalities are predominantly governed by odorant receptors (ORs), ionotropic receptors (IRs), and gustatory receptors (GRs). The codling moth, Cydia pomonella, is a global pest of apple, pear, and walnut, and semiochemically based management strategies limit the economic impacts of this species. The previous report of expression of a candidate pheromone-responsive OR in female codling moth ovipositor and pheromone glands raises further questions about the chemosensory capacity of these organs. With an RNA-sequencing approach, we examined chemoreceptors' expression in the female codling moth abdomen tip, sampling tissues from mated and unmated females and pupae. We report 37 ORs, 22 GRs, and 18 IRs expressed in our transcriptome showing overlap with receptors expressed in adult antennae as well as non-antennal candidate receptors. A quantitative PCR approach was also taken to assess the effect of mating on OR expression in adult female moths, revealing a few genes to be upregulated or downregulating after mating. These results provide a better understanding of the chemosensory role of codling moth female abdomen tip organs in female-specific behaviors. Future research will determine the function of specific receptors to augment current semiochemical-based strategies for codling moth management.

10.
Pestic Biochem Physiol ; 195: 105555, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37666593

RESUMO

Tribolium confusum is an important storage pest showing significant resistance to various chemical pesticides, development of botanical pesticides is an effective strategy to resolve above problem and decrease utilization of chemical pesticides. Present study attempts to explore the molecular mechanism about the repellent activity of limonene. When treatment concentration of limonene was 200.00 µg/cm2, the repellent level remained at grade V after 24 hours. Our study showed that limonene could be distinguished by T. confusum antenna with a maximal electroantennography test value of 0.90 mV. Simultaneously, 88 upregulated and 98 downregulated genes were sequenced in limonene-repellent T. confusum, and RT-qPCR analysis showed that four down-regulated and one up-regulated OR genes play an important role in the response to limonene. The repellent rate was decreased by 22.13% mediated with a knockdown of dsTconOR93, while the EAG value of the female and male adults was reduced to 0.26 mV (49.06%) and 0.20 mV (54.05%), respectively. In conclusion, limonene had a strong repellent activity against T. confusum and TconOR93 gene was determined to be a major effector in perception of limonene. This study provides a basis for the development of limonene as a novel botanical pesticide for the control to storage pests, which will reduce the utilization of chemical pesticides and postpone the development of resistance.


Assuntos
Besouros , Repelentes de Insetos , Praguicidas , Receptores Odorantes , Tribolium , Animais , Limoneno , Receptores Odorantes/genética , Tribolium/genética , Repelentes de Insetos/farmacologia
11.
J Agric Food Chem ; 71(35): 13003-13013, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37625381

RESUMO

Olfaction plays a crucial role in locating food sources, mates, and spawning sites in the fall armyworm (FAW), Spodoptera frugiperda (Lepidoptera: Noctuidae). In the current study, SfruOR14, a highly conserved odorant receptor (OR) in lepidopteran species, was newly uncovered in S. frugiperda. In two-electrode voltage clamp recordings, the SfruOR14/Orco complex was narrowly tuned to six volatile compounds including phenylacetaldehyde (PAA), benzaldehyde, heptaldehyde, (E)-2-hexen-1-al, cinnamaldehyde, and 2-phenylethanol, among which PAA showed the strongest binding affinity. Subsequent homology modeling and molecular docking revealed that Phe79, His83, Tyr149, Pro176, Gln177, Leu202, and Thr348 in SfruOR14 were the key binding residues against the six ligands. Finally, as a result of site-directed mutagenesis, the SfruOR14His83Ala mutant completely lost its binding capabilities toward all ligands. Taken together, our findings provide valuable insights into understanding the interaction between SfruOR14 and the chemical ligands including PAA, which can help to design novel olfactory modulators for pest control.


Assuntos
Mutação Puntual , Receptores Odorantes , Animais , Spodoptera , Ligantes , Simulação de Acoplamento Molecular
12.
Biomedicines ; 11(6)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37371783

RESUMO

Medullary thyroid cancer originates from parafollicular C-cells in the thyroid. Despite successful thyroidectomy, localizing remnant cancer cells in patients with elevated calcitonin and carcinoembryonic antigen levels remains a challenge. Extranasal odorant receptors are expressed in cells from non-olfactory tissues, including C-cells. This study evaluates the odorant receptor signals from parafollicular C-cells, specifically, the presence of olfactory marker protein, and further assesses the ability of the protein in localizing and treating medullary thyroid cancer. We used immunohistochemistry, immunofluorescent staining, Western blot, RNA sequencing, and real time-PCR to analyze the expression of odorant receptors in mice thyroids, thyroid cancer cell lines, and patient specimens. We used in vivo assays to analyze acetate binding, calcitonin secretion, and cAMP pathway. We also used positron emission tomography (PET) to assess C11-acetate uptake in medullary thyroid cancer patients. We investigated olfactory marker protein expression in C-cells in patients and found that it co-localizes with calcitonin in C-cells from both normal and cancer cell lines. Specifically, we found that OR51E2 and OR51E1 were expressed in thyroid cancer cell lines and human medullary thyroid cancer cells. Furthermore, we found that in the C-cells, the binding of acetate to OR51E2 activates its migration into the nucleus, subsequently resulting in calcitonin secretion via the cAMP pathway. Finally, we found that C11-acetate, a positron emission tomography radiotracer analog for acetate, binds competitively to OR51E2. We confirmed C11-acetate uptake in cancer cells and in human patients using PET. We demonstrated that acetate binds to OR51E2 in C-cells. Using C11-acetate PET, we identified recurrence sites in post-operative medullary thyroid cancer patients. Therefore, OR51E2 may be a novel diagnostic and therapeutic target for medullary thyroid cancer.

13.
Cell Tissue Res ; 393(2): 253-264, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37266727

RESUMO

The olfactory organ of turtles consists of an upper chamber epithelium (UCE) with associated glands, and a lower chamber epithelium (LCE) devoid of glands. The UCE and LCE are referred to as the air-nose and the water-nose, respectively, because the UCE is thought to detect airborne odorants, while the LCE detects waterborne odorants. However, it is not clear how the two are used in the olfactory organ. Odorant receptors (ORs) are the major olfactory receptors in turtles; they are classified as class I and II ORs, distinguished by their primary structure. Class I ORs are suggested to be receptive to water-soluble ligands and class II ORs to volatile ligands. This study analyzed the expression of class I and II ORs in hatchlings of the green sea turtle, Chelonia mydas, through in situ hybridization, to determine the localization of OR-expressing cells in the olfactory organ. Class I OR-expressing cells were distributed mainly in the LCE, implying that the LCE is receptive to waterborne odorants. Class II OR-expressing cells were distributed in both the UCE and LCE, implying that the entire olfactory organ is receptive to airborne odorants. The widespread expression of class II ORs may increase opportunities for sea turtles to sense airborne odorants.


Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Tartarugas , Animais , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Ligantes , Neurônios Receptores Olfatórios/metabolismo , Olfato , Água , Mucosa Olfatória/metabolismo
14.
Insects ; 14(6)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37367376

RESUMO

The use of insect-specific odorants to control the behavior of insects has always been a hot spot in research on "green" control strategies of insects. However, it is generally time-consuming and laborious to explore insect-specific odorants with traditional reverse chemical ecology methods. Here, an insect odorant receptor (OR) and ligand database website (iORandLigandDB) was developed for the specific exploration of insect-specific odorants by using deep learning algorithms. The website provides a range of specific odorants before molecular biology experiments as well as the properties of ORs in closely related insects. At present, the existing three-dimensional structures of ORs in insects and the docking data with related odorants can be retrieved from the database and further analyzed.

15.
J Agric Food Chem ; 71(17): 6541-6551, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37058441

RESUMO

The rice water weevil (RWW), Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae), is a destructive rice pest that threatens the rice industry worldwide. Odorant receptors (ORs) and odorant receptor coreceptors (Orcos) play an important role in the process of insects' whole life activities; however, there are no related functional studies on RWW. On this basis, a heterologous study of LoryOR20/LoryOrco in Xenopus laevis oocytes was performed to detect the effects of certain natural compounds on RWWs and four active compounds were found. Electroantennogram (EAG) recordings and a behavior test showed that RWWs exhibited a significant response to phenylacetaldehyde (PAA) and an EAG measurement of dsRNA-LoryOR20-treated RWWs revealed a significant decrease in response to PAA. Our results revealed an olfactory molecular mechanism for the recognition of PAA by RWWs, thus providing a potential genetic target at the peripheral olfactory sensing level, contributing to the development of novel control strategies for pest management.


Assuntos
Besouros , Oryza , Receptores Odorantes , Gorgulhos , Animais , Receptores Odorantes/genética , Água
16.
Mol Biol Evol ; 40(4)2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36971115

RESUMO

Cartilaginous fishes are renowned for a keen sense of smell, a reputation based on behavioral observations and supported by the presence of large and morphologically complex olfactory organs. At the molecular level, genes belonging to the four families coding for most olfactory chemosensory receptors in other vertebrates have been identified in a chimera and a shark, but it was unknown whether they actually code for olfactory receptors in these species. Here, we describe the evolutionary dynamics of these gene families in cartilaginous fishes using genomes of a chimera, a skate, a sawfish, and eight sharks. The number of putative OR, TAAR, and V1R/ORA receptors is very low and stable, whereas the number of putative V2R/OlfC receptors is higher and much more dynamic. In the catshark Scyliorhinus canicula, we show that many V2R/OlfC receptors are expressed in the olfactory epithelium in the sparsely distributed pattern characteristic for olfactory receptors. In contrast, the other three vertebrate olfactory receptor families are either not expressed (OR) or only represented with a single receptor (V1R/ORA and TAAR). The complete overlap of markers of microvillous olfactory sensory neurons with pan-neuronal marker HuC in the olfactory organ suggests the same cell-type specificity of V2R/OlfC expression as for bony fishes, that is, in microvillous neurons. The relatively low number of olfactory receptors in cartilaginous fishes compared with bony fishes could be the result of an ancient and constant selection in favor of a high olfactory sensitivity at the expense of a high discrimination capability.


Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Tubarões , Órgão Vomeronasal , Animais , Receptores Odorantes/metabolismo , Olfato/fisiologia , Órgão Vomeronasal/metabolismo , Tubarões/genética , Tubarões/metabolismo , Filogenia , Vertebrados/genética , Peixes/genética
17.
Front Physiol ; 14: 1123479, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875036

RESUMO

Insects have highly specialized and sensitive olfactory systems involving several chemosensory genes to locate their mates and hosts or escape from predators. Pine needle gall midge, Thecodiplosis japonensis (Diptera: Cecidomyiidae), has invaded China since 2016 and caused serious damage. Till now, there is no environmentally friendly measure to control this gall midge. Screening molecules with high affinity to target odorant-binding protein to develop highly efficient attractants is a potential pest management method. However, the chemosensory genes in T. japonensis are still unclear. We identified 67 chemosensory-related genes in the transcriptomes of antennae, including 26 OBPs, 2 CSPs, 17 ORs, 3 SNMPs, 6 GRs, and 13 IRs, using high throughput sequencing. Phylogenetic analysis of these six chemosensory gene families among Dipteran was performed to classify and predict the functions. The expression profiles of OBPs, CSPs and ORs were validated by quantitative real-time PCR. 16 of the 26 OBPs were biased expressed in antennae. TjapORco and TjapOR5 were highly expressed in the antenna of unmated male and female adults. The functions of related OBPs and ORs genes were also discussed. These results provide a basis for the functional research on chemosensory genes at the molecular level.

18.
Plants (Basel) ; 12(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36840263

RESUMO

Anastatus japonicus Ashmead is an egg parasitoid wasp important for the biological control of fruit crop pests. The olfaction of parasitoids is crucial to searching for host pests in fruit crops. In this study, we sequenced and analyzed the antennal and abdominal transcriptomes of A. japonicus to better understand the olfactory mechanisms in this species. A total of 201 putative olfactory receptor genes were identified, including 184 odorant receptors (ORs) and 17 ionotropic receptors (IRs). Then, we assayed the tissue-specific and sex-biased expression profiles of those genes based on the transcriptional levels. In total, 165 ORs and 15 IRs had upregulated expression in the antennae. The expression levels of 133 ORs, including odorant receptor co-receptor (AjapORco), and 10 IRs, including AjapIR8a, were significantly different between the female and male antennae. Our results provide valuable information for further studies on the molecular mechanisms of the olfactory system in A. japonicus.

19.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675132

RESUMO

Insects use a powerful and complex olfactory recognition system to sense odor molecules in the external environment to guide behavior. A large family of odorant receptors (ORs) mediates the detection of pheromone compounds. Anoplophora glabripennis is a destructive pest that harms broad-leaved tree species. Although olfactory sensation is an important factor affecting the information exchange of A. glabripennis, little is known about the key ORs involved. Here, we identified ninety-eight AglaORs in the Agla2.0 genome and found that the AglaOR gene family had expanded with structural and functional diversity. RT-qPCR was used to analyze the expression of AglaORs in sex tissues and in adults at different developmental stages. Twenty-three AglaORs with antennal-biased expression were identified. Among these, eleven were male-biased and two were female-biased and were more significantly expressed in the sexual maturation stage than in the post-mating stage, suggesting that these genes play a role in sexual communication. Relatively, two female-biased AglaORs were overexpressed in females seeking spawning grounds after mating, indicating that these genes might be involved in the recognition of host plant volatiles that may regulate the selection of spawning grounds. Our study provides a theoretical basis for further studies into the molecular mechanism of A. glabripennis olfaction.


Assuntos
Besouros , Receptores Odorantes , Animais , Feminino , Masculino , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Besouros/metabolismo , Olfato , Plantas/metabolismo , Comunicação , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Antenas de Artrópodes/metabolismo
20.
Trends Pharmacol Sci ; 44(1): 11-14, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35999088

RESUMO

Odorant receptors (ORs) belong to a large family of G protein-coupled receptors (GPCRs) that are highly expressed by olfactory sensory neurons of the nose. Accumulating evidence indicates that they are also expressed in a variety of nonolfactory tissues, which makes them new potential drug targets. Here we discuss the challenges and strategies to target these receptors.


Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Humanos , Receptores Acoplados a Proteínas G
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA