Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Sci Rep ; 14(1): 19958, 2024 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198480

RESUMO

The Omp85 family of outer membrane proteins are ubiquitously distributed among diderm bacteria and play essential roles in outer membrane (OM) biogenesis. The majority of Omp85 orthologs are bipartite and consist of a conserved OM-embedded 16-stranded beta-barrel and variable periplasmic functional domains. Here, we demonstrate that Leptospira interrogans encodes four distinct Omp85 proteins. The presumptive leptospiral BamA, LIC11623, contains a noncanonical POTRA4 periplasmic domain that is conserved across Leptospiraceae. The remaining three leptospiral Omp85 proteins, LIC12252, LIC12254 and LIC12258, contain conserved beta-barrels but lack periplasmic domains. Two of the three 'noNterm' Omp85-like proteins were upregulated by leptospires in urine from infected mice compared to in vitro and/or following cultivation within rat peritoneal cavities. Mice infected with a L. interrogans lic11254 transposon mutant shed tenfold fewer leptospires in their urine compared to mice infected with the wild-type parent. Analyses of pathogenic and saprophytic Leptospira spp. identified five groups of noNterm Omp85 paralogs, including one pathogen- and two saprophyte-specific groups. Expanding our analysis beyond Leptospira spp., we identified additional noNterm Omp85 orthologs in bacteria isolated from diverse environments, suggesting a potential role for these previously unrecognized noNterm Omp85 proteins in physiological adaptation to harsh conditions.


Assuntos
Proteínas da Membrana Bacteriana Externa , Leptospira interrogans , Leptospirose , Leptospira interrogans/genética , Leptospira interrogans/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Animais , Camundongos , Leptospirose/microbiologia , Ratos , Sequência de Aminoácidos , Feminino
2.
bioRxiv ; 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37333265

RESUMO

Members of the Omp85 superfamily of outer membrane proteins (OMPs) found in Gram-negative bacteria, mitochondria and chloroplasts are characterized by a distinctive 16-stranded ß-barrel transmembrane domain and at least one periplasmic POTRA domain. All previously studied Omp85 proteins promote critical OMP assembly and/or protein translocation reactions. Pseudomonas aeruginosa PlpD is the prototype of an Omp85 protein family that contains an N-terminal patatin-like (PL) domain that is thought to be translocated across the OM by a C-terminal ß-barrel domain. Challenging the current dogma, we found that the PlpD PL-domain resides exclusively in the periplasm and, unlike previously studied Omp85 proteins, PlpD forms a homodimer. Remarkably, the PL-domain contains a segment that exhibits unprecedented dynamicity by undergoing transient strand-swapping with the neighboring ß-barrel domain. Our results show that the Omp85 superfamily is more structurally diverse than currently believed and suggest that the Omp85 scaffold was utilized during evolution to generate novel functions.

3.
Front Mol Biosci ; 9: 950871, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936790

RESUMO

The Two-Partner secretion pathway mediates protein transport across the outer membrane of Gram-negative bacteria. TpsB transporters belong to the Omp85 superfamily, whose members catalyze protein insertion into, or translocation across membranes without external energy sources. They are composed of a transmembrane ß barrel preceded by two periplasmic POTRA domains that bind the incoming protein substrate. Here we used an integrative approach combining in vivo assays, mass spectrometry, nuclear magnetic resonance and electron paramagnetic resonance techniques suitable to detect minor states in heterogeneous populations, to explore transient conformers of the TpsB transporter FhaC. This revealed substantial, spontaneous conformational changes on a slow time scale, with parts of the POTRA2 domain approaching the lipid bilayer and the protein's surface loops. Specifically, our data indicate that an amphipathic POTRA2 ß hairpin can insert into the ß barrel. We propose that these motions enlarge the channel and initiate substrate secretion. Our data propose a solution to the conundrum how TpsB transporters mediate protein secretion without the need for cofactors, by utilizing intrinsic protein dynamics.

4.
Elife ; 102021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34463613

RESUMO

The outer membrane (OM) of Gram-negative bacteria functions as a selective permeability barrier. Escherichia coli periplasmic Zn-metallopeptidase BepA contributes to the maintenance of OM integrity through its involvement in the biogenesis and degradation of LptD, a ß-barrel protein component of the lipopolysaccharide translocon. BepA either promotes the maturation of LptD when it is on the normal assembly pathway (on-pathway) or degrades it when its assembly is compromised (off-pathway). BepA performs these functions probably on the ß-barrel assembly machinery (BAM) complex. However, how BepA recognizes and directs an immature LptD to different pathways remains unclear. Here, we explored the interactions among BepA, LptD, and the BAM complex. We found that the interaction of the BepA edge-strand located adjacent to the active site with LptD was crucial not only for proteolysis but also, unexpectedly, for assembly promotion of LptD. Site-directed crosslinking analyses indicated that the unstructured N-terminal half of the ß-barrel-forming domain of an immature LptD contacts with the BepA edge-strand. Furthermore, the C-terminal region of the ß-barrel-forming domain of the BepA-bound LptD intermediate interacted with a 'seam' strand of BamA, suggesting that BepA recognized LptD assembling on the BAM complex. Our findings provide important insights into the functional mechanism of BepA.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Metaloproteases/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Lipopolissacarídeos/metabolismo , Metaloproteases/química , Metaloproteases/genética , Modelos Moleculares , Periplasma/metabolismo , Domínios Proteicos , Proteólise
5.
J Microbiol Biotechnol ; 31(5): 645-658, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-33879642

RESUMO

Porins are essential for the viability of Gram-negative bacteria. They ensure the uptake of nutrients, can be involved in the maintenance of outer membrane integrity and define the antibiotic or drug resistance of organisms. The function and structure of porins in proteobacteria is well described, while their function in photoautotrophic cyanobacteria has not been systematically explored. We compared the domain architecture of nine putative porins in the filamentous cyanobacterium Anabaena sp. PCC 7120 and analyzed the seven candidates with predicted OprB-domain. Single recombinant mutants of the seven genes were created and their growth capacity under different conditions was analyzed. Most of the putative porins seem to be involved in the transport of salt and copper, as respective mutants were resistant to elevated concentrations of these substances. In turn, only the mutant of alr2231 was less sensitive to elevated zinc concentrations, while mutants of alr0834, alr4741 and all4499 were resistant to high manganese concentrations. Notably the mutant of alr4550 shows a high sensitivity against harmful compounds, which is indicative for a function related to the maintenance of outer membrane integrity. Moreover, the mutant of all5191 exhibited a phenotype which suggests either a higher nitrate demand or an inefficient nitrogen fixation. The dependency of porin membrane insertion on Omp85 proteins was tested exemplarily for Alr4550, and an enhanced aggregation of Alr4550 was observed in two omp85 mutants. The comparative analysis of porin mutants suggests that the proteins in parts perform distinct functions related to envelope integrity and solute uptake.


Assuntos
Anabaena/metabolismo , Porinas/genética , Anabaena/genética , Anabaena/crescimento & desenvolvimento , Antibacterianos/metabolismo , Membrana Externa Bacteriana/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Metais/metabolismo , Mutação , Nitrogênio/metabolismo , Fenótipo , Porinas/metabolismo , Sais/metabolismo , Estresse Fisiológico/genética
6.
Mol Cell ; 81(9): 2000-2012.e3, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33705710

RESUMO

The ß-barrel assembly machine (BAM) integrates ß-barrel proteins into the outer membrane (OM) of Gram-negative bacteria. An essential BAM subunit (BamA) catalyzes integration by promoting the formation of a hybrid-barrel intermediate state between its own ß-barrel domain and that of its client proteins. Here we show that in addition to catalyzing the integration of ß-barrel proteins, BamA functions as a polypeptide export channel. In vivo structural mapping via intermolecular disulfide crosslinking showed that the extracellular "passenger" domain of a member of the "autotransporter" superfamily of virulence factors traverses the OM through the BamA ß-barrel lumen. Furthermore, we demonstrate that a highly conserved residue within autotransporter ß-barrels is required to position the passenger inside BamA to initiate translocation and that during translocation, the passenger stabilizes the hybrid-barrel state. Our results not only establish a new function for BamA but also unify the divergent functions of BamA and other "Omp85" superfamily transporters.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Externa Bacteriana/metabolismo , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Transporte Biológico , Sequência Conservada , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Conformação Proteica , Dobramento de Proteína , Relação Estrutura-Atividade , Triptofano
7.
Cells ; 10(3)2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668922

RESUMO

Increasing antimicrobial resistance due to misuse and overuse of antimicrobials, as well as a lack of new and innovative antibiotics in development has become an alarming global threat. Preventative therapeutics, like vaccines, are combative measures that aim to stop infections at the source, thereby decreasing the overall use of antibiotics. Infections due to Gram-negative pathogens pose a significant treatment challenge because of substantial multidrug resistance that is acquired and spread throughout the bacterial population. Burkholderia spp. are Gram-negative intrinsically resistant bacteria that are responsible for environmental and nosocomial infections. The Burkholderia cepacia complex are respiratory pathogens that primarily infect immunocompromised and cystic fibrosis patients, and are acquired through contaminated products and equipment, or via patient-to-patient transmission. The Burkholderia pseudomallei complex causes percutaneous wound, cardiovascular, and respiratory infections. Transmission occurs through direct exposure to contaminated water, water-vapors, or soil, leading to the human disease melioidosis, or the equine disease glanders. Currently there is no licensed vaccine against any Burkholderia pathogen. This review will discuss Burkholderia vaccine candidates derived from outer membrane proteins, OmpA, OmpW, Omp85, and Bucl8, encompassing their structures, conservation, and vaccine formulation.


Assuntos
Vacinas Bacterianas/imunologia , Burkholderia/imunologia , Proteínas de Membrana/imunologia , Sequência de Aminoácidos , Animais , Antígenos de Bactérias/imunologia , Humanos , Proteínas de Membrana/química , Modelos Biológicos
8.
Elife ; 92020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33089781

RESUMO

Bacterial contact-dependent growth inhibition (CDI) systems use a type Vb secretion mechanism to export large CdiA toxins across the outer membrane by dedicated outer membrane transporters called CdiB. Here, we report the first crystal structures of two CdiB transporters from Acinetobacter baumannii and Escherichia coli. CdiB transporters adopt a TpsB fold, containing a 16-stranded transmembrane ß-barrel connected to two periplasmic domains. The lumen of the CdiB pore is occluded by an N-terminal α-helix and the conserved extracellular loop 6; these two elements adopt different conformations in the structures. We identified a conserved DxxG motif located on strand ß1 that connects loop 6 through different networks of interactions. Structural modifications of DxxG induce rearrangement of extracellular loops and alter interactions with the N-terminal α-helix, preparing the system for α-helix ejection. Using structural biology, functional assays, and molecular dynamics simulations, we show how the barrel pore is primed for CdiA toxin secretion.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Membrana/química , Toxinas Biológicas , Acinetobacter baumannii/metabolismo , Motivos de Aminoácidos , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Simulação de Dinâmica Molecular , Domínios Proteicos
9.
Plant Biol (Stuttg) ; 20(5): 825-833, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29758131

RESUMO

The Omp85 proteins form a large membrane protein family in bacteria and eukaryotes. Omp85 proteins are composed of a C-terminal ß-barrel-shaped membrane domain and one or more N-terminal polypeptide transport-associated (POTRA) domains. However, Arabidopsis thaliana contains two genes coding for Omp85 proteins without a POTRA domain. One gene is designated P39, according to the molecular weight of the encoded protein. The protein is targeted to plastids and it was established that p39 has electrophysiological properties similar to other Omp85 family members, particularly to that designated as Toc75V/Oep80. We analysed expression of the gene and characterised two T-DNA insertion mutants, focusing on alterations in photosynthetic activity, plastid ultrastructure, global expression profile and metabolome. We observed pronounced expression of P39, especially in veins. Mutants of P39 show growth aberrations, reduced photosynthetic activity and changes in plastid ultrastructure, particularly in the leaf tip. Further, they display global alteration of gene expression and metabolite content in leaves of mature plants. We conclude that the function of the plastid-localised and vein-specific Omp85 family protein p39 is important, but not essential, for maintenance of metabolic homeostasis of full-grown A. thaliana plants. Further, the function of p39 in veins influences the functionality of other plant tissues. The link connecting p39 function with metabolic regulation in mature A. thaliana is discussed.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Genes de Plantas/genética , Homeostase/genética , Proteínas de Membrana/genética , Folhas de Planta/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tilacoides/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-28536673

RESUMO

Initially identified in pathogenic Gram-negative bacteria, the two-partner secretion (TPS) pathway, also known as Type Vb secretion, mediates the translocation across the outer membrane of large effector proteins involved in interactions between these pathogens and their hosts. More recently, distinct TPS systems have been shown to secrete toxic effector domains that participate in inter-bacterial competition or cooperation. The effects of these systems are based on kin vs. non-kin molecular recognition mediated by specific immunity proteins. With these new toxin-antitoxin systems, the range of TPS effector functions has thus been extended from cytolysis, adhesion, and iron acquisition, to genome maintenance, inter-bacterial killing and inter-bacterial signaling. Basically, a TPS system is made up of two proteins, the secreted TpsA effector protein and its TpsB partner transporter, with possible additional factors such as immunity proteins for protection against cognate toxic effectors. Structural studies have indicated that TpsA proteins mainly form elongated ß helices that may be followed by specific functional domains. TpsB proteins belong to the Omp85 superfamily. Open questions remain on the mechanism of protein secretion in the absence of ATP or an electrochemical gradient across the outer membrane. The remarkable dynamics of the TpsB transporters and the progressive folding of their TpsA partners at the bacterial surface in the course of translocation are thought to be key elements driving the secretion process.


Assuntos
Bactérias/metabolismo , Sistemas de Secreção Bacterianos/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Interações Microbianas/fisiologia , Transporte Proteico/fisiologia , Bactérias/patogenicidade , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas da Membrana Bacteriana Externa/fisiologia , Fenômenos Fisiológicos Bacterianos , Sistemas de Secreção Bacterianos/classificação , Sistemas de Secreção Bacterianos/genética , Sistemas de Secreção Bacterianos/metabolismo , Toxinas Bacterianas/metabolismo , Regulação Bacteriana da Expressão Gênica , Bactérias Gram-Negativas , Proteínas de Membrana Transportadoras/classificação , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/fisiologia , Transporte Proteico/imunologia , Sistemas de Secreção Tipo V/classificação , Sistemas de Secreção Tipo V/genética , Sistemas de Secreção Tipo V/fisiologia
11.
Proteins ; 85(8): 1391-1401, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25401771

RESUMO

Proteins of the Omp85 family chaperone the membrane insertion of ß-barrel-shaped outer membrane proteins in bacteria, mitochondria, and probably chloroplasts and facilitate the transfer of nuclear-encoded cytosolically synthesized preproteins across the outer envelope of chloroplasts. This protein family is characterized by N-terminal polypeptide transport-associated (POTRA) domains and a C-terminal membrane-embedded ß-barrel. We have investigated a recently identified Omp85 family member of Arabidopsis thaliana annotated as P39. We show by in vitro and in vivo experiments that P39 is localized in chloroplasts. The electrophysiological properties of P39 are consistent with those of other Omp85 family members confirming the sequence based assignment of P39 to this family. Bioinformatic analysis showed that P39 lacks any POTRA domain, while a complete 16 stranded ß-barrel including the highly conserved L6 loop is proposed. The electrophysiological properties are most comparable to Toc75-V, which is consistent with the phylogenetic clustering of P39 in the Toc75-V rather than the Toc75-III branch of the Omp85 family tree. Taken together P39 forms a pore with Omp85 family protein characteristics. The bioinformatic comparison of the pore region of Toc75-III, Toc75-V, and P39 shows distinctions of the barrel region most likely related to function. Proteins 2017; 85:1391-1401. © 2014 Wiley Periodicals, Inc.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , Cloroplastos/química , Membranas Intracelulares/química , Potenciais da Membrana/fisiologia , Proteínas de Membrana/química , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Clonagem Molecular , Biologia Computacional , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Membranas Intracelulares/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Caules de Planta/química , Caules de Planta/genética , Caules de Planta/metabolismo , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
12.
Adv Exp Med Biol ; 883: 255-70, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26621472

RESUMO

The outer membrane of Gram-negative bacteria is predominantly populated by ß-Barrel proteins and lipid anchored proteins that serve a variety of biological functions. The proper folding and assembly of these proteins is essential for bacterial viability and often plays a critical role in virulence and pathogenesis. The ß-barrel assembly machinery (Bam) complex is responsible for the proper assembly of ß-barrels into the outer membrane of Gram-negative bacteria, whereas the localization of lipoproteins (Lol) system is required for proper targeting of lipoproteins to the outer membrane.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Lipoproteínas/metabolismo , Dobramento de Proteína , Transporte Proteico
13.
Methods Mol Biol ; 1329: 1-16, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26427672

RESUMO

The outer membranes of gram-negative bacteria contain integral membrane proteins, most of which are of ß-barrel structure, and critical for bacterial survival. These ß-barrel proteins rely on the ß-barrel assembly machinery (BAM) complex for their integration into the outer membrane as folded species. The central and essential subunit of the BAM complex, BamA, is a ß-barrel protein conserved in all gram-negative bacteria and also found in eukaryotic organelles derived from bacterial endosymbionts. In Escherichia coli, BamA docks with four peripheral lipoproteins, BamB, BamC, BamD and BamE, partner subunits that add to the function of the BAM complex in outer membrane protein biogenesis. By way of introduction to this volume, we provide an overview of the work that has illuminated the mechanism by which the BAM complex drives ß-barrel assembly. The protocols and methodologies associated with these studies as well as the challenges encountered and their elegant solutions are discussed in subsequent chapters.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Periplasma/metabolismo , Dobramento de Proteína , Estrutura Secundária de Proteína
14.
Methods Mol Biol ; 1329: 259-70, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26427691

RESUMO

TamA is an Omp85 protein involved in autotransporter assembly in the outer membrane of Escherichia coli. It comprises a C-terminal 16-stranded transmembrane ß-barrel as well as three periplasmic POTRA domains, and is a challenging target for structure determination. Here, we present a method for crystal structure determination of TamA, including recombinant expression in E. coli, detergent extraction, chromatographic purification, and bicelle crystallization in combination with seeding. As a result, crystals in space group P21212 are obtained, which diffract to 2.3 Å resolution. This protocol also serves as a template for structure determination of other outer membrane proteins, in particular of the Omp85 family.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Cristalização/métodos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/isolamento & purificação , Micelas , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Escherichia coli/genética , Plasmídeos/genética
15.
Traffic ; 16(12): 1254-69, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26381927

RESUMO

Apicomplexa are unicellular parasites causing important human and animal diseases, including malaria and toxoplasmosis. Most of these pathogens possess a relict but essential plastid, the apicoplast. The apicoplast was acquired by secondary endosymbiosis between a red alga and a flagellated eukaryotic protist. As a result the apicoplast is surrounded by four membranes. This complex structure necessitates a system of transport signals and translocons allowing nuclear encoded proteins to find their way to specific apicoplast sub-compartments. Previous studies identified translocons traversing two of the four apicoplast membranes. Here we provide functional support for the role of an apicomplexan Toc75 homolog in apicoplast protein transport. We identify two apicomplexan genes encoding Toc75 and Sam50, both members of the Omp85 protein family. We localize the respective proteins to the apicoplast and the mitochondrion of Toxoplasma and Plasmodium. We show that the Toxoplasma Toc75 is essential for parasite growth and that its depletion results in a rapid defect in the import of apicoplast stromal proteins while the import of proteins of the outer compartments is affected only as the secondary consequence of organelle loss. These observations along with the homology to Toc75 suggest a potential role in transport through the second innermost membrane.


Assuntos
Apicoplastos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Apicomplexa/genética , Apicomplexa/metabolismo , Apicoplastos/genética , Eritrócitos/parasitologia , Fibroblastos/parasitologia , Proteínas de Fluorescência Verde , Humanos , Proteínas de Membrana/genética , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Mutagênese Sítio-Dirigida , Fenilalanina/genética , Filogenia , Transporte Proteico , Proteínas de Protozoários/genética , Toxoplasma/genética
16.
Gene ; 566(2): 166-74, 2015 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-25939848

RESUMO

Marine sponges and their associated bacteria are rich sources of novel secondary metabolites with therapeutic usefulness. In our earlier work, we have identified a novel antibacterial peptide from the marine sponge Axinella donnani endosymbiotic bacteria. In this work, we have carried out a comparative genomic analysis and identified a set of 60 proteins as probable receptor which is common in all the strains. The analysis on binding substrate showed that ß barrel assembly machinery (BamA) of the outer membrane protein 85 (omp85) superfamily is a potential receptor protein for the antibacterial peptide. It plays a central role in OMP biogenesis, especially in cell viability. Further, the triplet and quartet motifs RGF and YGDG, respectively in L6 loop are conserved over all the strains and these conserved residues interact with antibacterial peptide to inhibit the BamA function, which is essential for OMP biogenesis.


Assuntos
Antibacterianos/metabolismo , Peptídeos/metabolismo , Poríferos/química , Receptores de Superfície Celular/metabolismo , Simbiose , Sequência de Aminoácidos , Animais , Dados de Sequência Molecular , Filogenia , Poríferos/microbiologia , Homologia de Sequência de Aminoácidos
17.
Front Plant Sci ; 5: 535, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25352854

RESUMO

Translocon at the outer-envelope-membrane of chloroplasts 75 (Toc75) is the core component of the chloroplast protein import machinery. It belongs to the Omp85 family whose members exist in various Gram-negative bacteria, mitochondria, and chloroplasts of eukaryotes. Chloroplasts of Viridiplantae contain another Omp85 homolog called outer envelope protein 80 (OEP80), whose exact function is unknown. In addition, the Arabidopsis thaliana genome encodes truncated forms of Toc75 and OEP80. Multiple studies have shown a common origin of the Omp85 homologs of cyanobacteria and chloroplasts but their results about evolutionary relationships among cyanobacterial Omp85 (cyanoOmp85), Toc75, and OEP80 are inconsistent. The bipartite targeting sequence-dependent sorting of Toc75 has been demonstrated but the targeting mechanisms of other chloroplast Omp85 homologs remain largely unexplored. This study was aimed to address these unresolved issues in order to further our understanding of chloroplast evolution. Sequence alignments and recently determined structures of bacterial Omp85 homologs were used to predict structures of chloroplast Omp85 homologs. The results enabled us to identify amino acid residues that may indicate functional divergence of Toc75 from cyanoOmp85 and OEP80. Phylogenetic analyses using Omp85 homologs from various cyanobacteria and chloroplasts provided strong support for the grouping of Toc75 and OEP80 sister to cyanoOmp85. However, this support was diminished when the analysis included Omp85 homologs from other bacteria and mitochondria. Finally, results of import assays using isolated chloroplasts support outer membrane localization of OEP80tr and indicate that OEP80 may carry a cleavable targeting sequence.

18.
Front Microbiol ; 5: 370, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25101071

RESUMO

Members of the Omp85/TpsB protein superfamily are ubiquitously distributed in Gram-negative bacteria, and function in protein translocation (e.g., FhaC) or the assembly of outer membrane proteins (e.g., BamA). Several recent findings are suggestive of a further level of variation in the superfamily, including the identification of the novel membrane protein assembly factor TamA and protein translocase PlpD. To investigate the diversity and the causal evolutionary events, we undertook a comprehensive comparative sequence analysis of the Omp85/TpsB proteins. A total of 10 protein subfamilies were apparent, distinguished in their domain structure and sequence signatures. In addition to the proteins FhaC, BamA, and TamA, for which structural and functional information is available, are families of proteins with so far undescribed domain architectures linked to the Omp85 ß-barrel domain. This study brings a classification structure to a dynamic protein superfamily of high interest given its essential function for Gram-negative bacteria as well as its diverse domain architecture, and we discuss several scenarios of putative functions of these so far undescribed proteins.

19.
J Biol Chem ; 289(28): 19799-809, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-24872418

RESUMO

The two-partner secretion (TPS) systems of Gram-negative bacteria secrete large TpsA exoproteins by a dedicated TpsB transporter in the outer membrane. TpsBs contain an N-terminal module located in the periplasm that includes two polypeptide transport-associated (POTRA) domains. These are thought to initiate secretion of a TpsA by binding its N-terminal secretion signal, called the TPS domain. Neisseria meningitidis encodes up to five TpsA proteins that are secreted via only two TpsB transporters: TpsB1 and TpsB2. Of these two, the TpsB2 recognizes the TPS domains of all TpsAs, despite their sequence diversity. By contrast, the TpsB1 shows a limited recognition of a TPS domain that is shared by two TpsAs. The difference in substrate specificity of the TpsBs enabled us to investigate the role of the POTRA domains in the selection of TPS domains. We tested secretion of TPS domains or full-length TpsAs by TpsB mutants with deleted, duplicated, and exchanged POTRA domains. Exchanging the two POTRA domains of a TpsB resulted in a switch in specificity. Furthermore, exchanging a single POTRA domain showed that each of the two domains contributed to the cargo selection. Remarkably, the order of the POTRA domains could be reversed without affecting substrate selection, but this aberrant order did result in an alternatively processed secretion product. Our results suggest that secretion of a TpsA is initiated by engaging both POTRA domains of a TpsB transporter and that these select the cognate TpsAs for secretion.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/fisiologia , Proteínas de Transporte/metabolismo , Neisseria meningitidis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Neisseria meningitidis/genética , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia
20.
FASEB J ; 28(6): 2677-85, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24619089

RESUMO

In gram-negative bacteria, the assembly of outer membrane proteins (OMPs) requires a ß-barrel assembly machinery (BAM) complex, of which BamA is an essential and evolutionarily conserved component. To elucidate the mechanism of BamA-mediated OMP biogenesis, we determined the crystal structure of the C-terminal transmembrane domain of BamA from Escherichia coli (EcBamA) at 2.6 Å resolution. The structure reveals 2 distinct features. First, a portion of the extracellular side of the ß barrel is composed of 5 markedly short ß strands, and the loops stemming from these ß strands form a potential surface cavity, filled by a portion of the L6 loop that includes the conserved VRGF/Y motif found in the Omp85 family. Second, the 4 extracellular loops L3, L4, L6, and L7 of EcBamA form a dome over the barrel, stabilized by a salt-bridge interaction network. Functional data show that hydrophilic-to-hydrophobic mutations of the potential hydrophilic surface cavity and a single Arg547Ala point mutation that may destabilize the dome severely affect the function of EcBamA. Our structure of the EcBamA ß barrel and structure-based mutagenesis studies suggest that the transmembrane ß strands of OMP substrates may integrate into the outer membrane at the interface of the first and last ß strands of the EcBamA barrel, whereas the soluble loops or domains may be transported out of the cell via the hydrophilic surface cavity on dislocation of the VRGF/Y motif of L6. In addition, the dome over the barrel may play an important role in maintaining the efficiency of OMP biogenesis.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/genética , Cristalografia por Raios X , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA