RESUMO
The CuO-Bi2O3/MgAl2O4 catalyst was synthesized via one-pot synthesis and used to catalyze formaldehyde (HCHO) ethynylation. Coprecipitation using Cu2+, Bi3+, Mg2+, and Al3+ nitrates and NaOH generated Cu and Bi oxides and spinel MgAl2O4 phase. The catalyst precursor was calcined at 450 °C. The catalytic performance of CuO-Bi2O3/MgAl2O4 in the synthesis of 1,4-butynediol via HCHO ethynylation was investigated. The presence of a new spinel phase enhanced the acid-base properties on the catalyst surface and prevented the aggregation of CuO particles. These properties resulted in improved CuO dispersion during calcination and CuO particle growth suppression, affording smaller CuO crystals. The MgAl2O4 support facilitated the reduction of Cu2+ to Cu+ and formation of abundant active species during the reaction. The catalyst exhibited abundant weakly basic, fewer strongly basic, and least acidic sites, which facilitated the adsorption of HCHO and acetylene. The catalytic performance of CuO-Bi2O3/MgAl2O4 demonstrated 97 % conversion and 80 % selectivity after the online monitoring of the ethynylation reaction for 6 h. The leaching of Cu during the reaction, as analyzed by inductively coupled plasma spectroscopy, was extremely low. Moreover, conversion and selectivity did not substantially change after eight cycles. In addition, the catalyst exhibited superior activity and long-term stability in the ethynylation reaction.
RESUMO
Protein glycosylation acts as a crucial role in regulating protein function and maintaining cellular homeostasis. Efficient peptide enrichment can be utilized to effectively solve the inherent challenges of protein glycosylation analysis to search unknown cancer biomarkers. In this research, a low dimensional porous hydrophilic nanosheets with a multi-level porous structure (Co-MOF-SiO2@HA) was synthetized via an easy one-pot method for the efficient enrichment of the N-glycopeptides in the digests of complex biosamples. The synthetized nanosheets Co-MOF-SiO2@HA demonstrated excellent enriching performances including a high enrichment capacity (300 mg g-1 calculated), a spectacular selectivity (IgG digests and BSA digests at the molar ratio of 1/1200), and an excellent spatial confinement ability (IgG digests, IgG and BSA at the molar ratio of 1/1000/1000). As an explore result, after the enrichment of human colorectal cancer tissue and human healthy tissue by the nanosheets, several proteins related to cancers and one protein directly related to well-known human colorectal cancer were identified by detecting the corresponding glycopeptides. It presented the potential value of the feasibility of this analysis mode by nanosheets Co-MOF-SiO2@HA in proteomic analysis.
Assuntos
Glicopeptídeos , Proteômica , Dióxido de Silício , Humanos , Dióxido de Silício/química , Glicopeptídeos/análise , Glicopeptídeos/química , Proteômica/métodos , Mineração de Dados , Biomarcadores Tumorais/análise , Neoplasias Colorretais , Estruturas Metalorgânicas/química , Glicosilação , Nanoestruturas/química , Imunoglobulina G/química , Porosidade , Biomarcadores/análise , Interações Hidrofóbicas e HidrofílicasRESUMO
Background: The SARS-CoV-2 pandemic has highlighted niclosamide (NIC) as a promising treatment for COVID-19. However, its clinical application is limited due to its poor water solubility, resulting in low bioavailability. Methods: To address this issue, we developed a AuNP-HA-NIC system, which combines gold nanoparticles with hyaluronic acid to enhance drug delivery. Our comprehensive characterization of the system revealed that hyaluronic acid with specific molecular weights, particularly those exposed to electron-beam irradiation between 2 and 20 kGy, produced the most stable nanoparticles for efficient drug loading and delivery. Results: Additionally, the AuNP-HA-NIC system exhibits a significant sensitivity to pH changes, which is a critical feature for targeted drug release. Under acidic conditions mimicking the stomach and small intestine, minimal drug release was observed, indicating the effective prevention of premature drug release in the gastrointestinal tract. Furthermore, the integration of a targeting aptamer established specific binding abilities towards the SARS-CoV-2 spike protein, distinguishing it from other coronaviruses. Conclusions: As research progresses, and with further in vivo testing and optimization, the AuNP-HA-NIC-aptamer system holds great promise as a game-changer in the field of antiviral therapeutics, particularly in the battle against COVID-19.
RESUMO
Aim: Pulmonary fibrosis is a life threating disease which requires an immediate treatment and due to the limited medications, this study focused on synthesizing a series of quinoline-based pyrimidodiazepines 4a-f as a novel antifibrotic hit.Materials & methods: The target compounds were synthesized via a one-pot reaction then investigated in a rat model of lung fibrosis induced by bleomycin (BLM).Results: Results revealed significant attenuation of the tested pro-inflammatory cytokines, fibrotic genes and apoptotic markers; however, Bcl-2 was upregulated, indicating a protective effect against fibrosis. Moreover, the molecular docking studies highlighted promising interactions between compounds 4b and 4c and specific amino acids within the protein pockets of caspase-3 (ARG341 and THR177), malondialdehyde (LYS195, LYS118 and ARG188) and TNF-α (SER99 and NME102).Conclusion: Compounds 4b and 4c emerge as promising candidates for further preclinical investigation as pulmonary antifibrotic agents.
[Box: see text].
RESUMO
Since its first synthesis in 2004, graphene has been widely studied and several different synthesis methods has been developed. Solvent exfoliation of graphite and the reduction of graphene oxide previously obtained through graphite oxidation are the most employed. In this work, we exploited synthesis conditions of a method usually employed for obtaining graphene oxide (the Tour's method) for directly obtaining a very poorly oxidised material with characteristics like reduced graphene oxide. For the first time, a one-pot synthesis of reduced graphene oxide (rGO) is reported avoiding the use of a post-synthesis chemical or thermal reduction of the graphene oxide that requires further reagents, heat and time.
RESUMO
Tunable luminescence-assisted information storage and encryption holds increasing significance in today's society. A promising approach to incorporating the benefits of both organic long persistent luminescent (LPL) materials and rare-earth (RE) luminescence lies in utilizing organic host materials to sensitize RE luminescence, as well as employing Förster resonance energy transfer from hydrogen-bonded organic framework (HOF) phosphorescence to RE compound luminescence. This work introduces a one-pot, inâ situ pyrolytic condensation method, achieved through high-temperature melting calcination, to synthesize lanthanide ion-doped HOF materials. This method circumvents the drawback of molecular triplet energy annihilation, enabling the creation of organic LPL materials with RE characteristics. The HOF material serves as the host, exhibiting blue phosphorescence and cyan LPL. By fine-tuning the doping amount, the composite material U-Tb-100 achieves green LPL with a luminescent quantum yield of 56.4 %, and an LPL duration of approximately 2-3â s, demonstrating tunable persistence. Single-crystal X-ray diffraction, spectral analysis, and theoretical calculation unveil that U-Tb-100 exhibits exceptional quantum yield and long-lived luminescence primarily due to the efficient sensitization of U monomer to RE ions and the PRET process between U and RE complexes. This ingenious strategy not only expands the repertoire of HOF materials but also facilitates the design of multifunctional LPL materials.
RESUMO
Itaconic acid (IA) is one of the twelve high value-added platform compounds applied in various fields including coatings, adhesives, plastics, resins, and biofuels. In this study, we established a one-pot catalytic synthesis system for IA from citric acid based on the engineered salt-tolerant bacterial strain Halomonas bluephagenesis TDZI-08 after investigating factors that hindered the process and optimizing the carbon source, nitrogen source, inducer addition time, and surfactant dosage. The open, non-sterile, one-pot synthesis with TDZI-08 in a 5 L fermenter achieved the highest IA titer of 40.50 g/L, with a catalytic yield of 0.68 g IA/g citric acid during the catalytic stage and a total yield of 0.42 g IA/g (citric acid+gluconic acid). The one-pot synthesis system established in this study is simple and does not need sterilization or aseptic operations. The findings indicate the potential of H. bluephagenesis for industrial production of IA.
Assuntos
Halomonas , Succinatos , Halomonas/metabolismo , Halomonas/genética , Succinatos/metabolismo , Engenharia Metabólica , Microbiologia Industrial , Ácido Cítrico/metabolismo , FermentaçãoRESUMO
Copper catalyzed intramolecular annulation of 2-((2benzylidene-1-phenylhydrazineyl)methyl)pyridine derivatives was described. It was found that Cu(II) is reduced under the reaction condition to Cu(I). Synthesized 1, 2-dihydro [1,2,4] triazinium salt showed fluorescence activity in solid state. On treating with base, an instant increase in fluorescence was observed. A detailed physicochemical assessment underscored the robust DNA-binding prowess of the [1,2,4] triazinium cationic species (C1-C3) via intercalative mechanisms. Notably, binding assays with BSA accentuated the heightened nucleic acid affinity of these cationic species.
RESUMO
The synthesis of Octakis [3- (3-amino propyl triethoxysilane) propyl] octa-silsesquioxane (APTPOSS), a derivative of polyhedral oligomeric silsesquioxane, was utilized to produce an efficient nanocomposite. MNPs@Silica/APTPOSS was characterized through scanning electron microscopy, Fourier transform infrared spectroscopy, vibrating sample magnetometry, X-ray diffraction, and Thermogravimetric analysis. These magnetic nanoparticles, a combination of organic-inorganic hybrid polyhedral oligomeric silsesquioxane, were utilized as a proficient heterogeneous catalyst in the one-pot synthesis of spirooxindoles derivatives. Furthermore, they could be swiftly isolated and reused six times while maintaining their catalytic efficiency.
RESUMO
Conventional wound dressings have poor tissue adhesion and mechanical stability, restricting their applications in dynamic motion environments. Tannic acid (TA) was ideal candidates for current dressing materials due to their well-known antioxidant and anti-inflammatory properties. However, the inevitable polymerization problem of TA limited the one-step synthesis of dressings. Herein, we reported a simple one-pot method to prepare double-network hydrogels containing N-acryloyl glycinamide (NAGA), N-hydroxyethyl acrylamide (HEAA) and TA. The resulting NHT hydrogel exhibited excellent tensile properties, fatigue resistance, and notch insensitivity to ensure mechanical stability under large deformation and stress in vitro. The NHT hydrogel also demonstrated room-temperature self-healing, broad adhesion to various substrates, synergistic swelling ability. In addition, catechol and benzene rings from TA helped shield against UV radiation and acted as free radical scavengers to relieve oxidative stress in wound damage. As a result, full-layer wounds in mice treated with NHT patches showed a higher healing rate, in which epithelialization was completed within 14 days. The integrated function enables hydrogel to maintain mechanical stability in dynamic motion environments with high strain and defects, with great potential for future clinical translation.
Assuntos
Hidrogéis , Taninos , Cicatrização , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/síntese química , Taninos/química , Taninos/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/síntese química , PolifenóisRESUMO
Given the importance of energy storage and its hybridization with renewable technologies for the energy transition, the development of redox flow batteries (RFB) is receiving particular attention. Among the various emerging technologies, aqueous organic redox flow batteries (AORFBs) are of particular interest, as the objectives in terms of durability, cost, and safety can be achieved thanks to the possibilities offered by molecular engineering. While anthraquinones have been widely explored as negolytes, few works report the use of naphthoquinones. This work aims to exploit an innovative in situ and cost-effective method for the one-pot synthesis of water-soluble naphthoquinones for application as a negolyte in redox flow batteries. As exemplified with alizarin, the energy of the naphthoquinone synthetic reaction in fuel cell mode can be recovered and the electrolyte solution used directly in redox flow batteries without purification. A 0.3 M naphthoquinone solution paired with 0.6 M ferrocyanide demonstrated good stability compared with other naphthoquinones, with a capacity fade rate of 0.017%/cycle (0.84%/day) over 320 cycles. Additionally, the system exhibited one of the highest energy efficiencies (82%) and a power density of 80-105 mW cm-2 at 50% SOC. These first results are promising for further exploration of new water-soluble naphthoquinones efficiently synthesized from hydroxyanthraquinones for application in AORFBs.
RESUMO
A novel group of 5,6-dihydropyrido [2',1':2,3]imidazo [4,5-c]quinolines was prepared via a microwave assisted one-pot telescopic approach. The synthetic sequence involves the formation of an amine precursor of imidazo [1,2-a]pyridine via condensation and reduction under microwave irradiation. Subsequently, the Pictet-Spengler cyclisation reaction occurs with ketones (cyclic or acyclic) to obtain substituted 5,6-dihydropyrido [2',1':2,3]imidazo [4,5-c]quinolines in excellent yields. The compounds were tested as neuroprotective agents. Observed protection of neuron-like cells, SH-SY5Y differentiated with ATRA, in Parkinson's and Huntington's disease models inspired further mechanistic studies of protective activity against damage induced by 1-methyl-4-phenylpyridinium (MPP+), a compound causing Parkinson's disease. The novel compounds exhibit similar or higher potency than ebselen, an established drug with antioxidant activity, in the cells against MPP + -induced total cellular superoxide production and cell death. However, they exhibit a significantly higher capacity to reduce mitochondrial superoxide and preserve mitochondrial membrane potential. We also observed marked differences between a selected derivative and ebselen in terms of normalizing MPP + -induced phosphorylation of Akt and ERK1/2. The cytoprotective activity was abrogated when signaling through cannabinoid receptor CB2 was blocked. The compounds also inhibit both acetylcholine and butyrylcholine esterases. Overall the data show that novel 5,6-dihydropyrido [2',1':2,3]imidazo [4,5-c]quinoline have a broad cytoprotective activity which is mediated by several mechanisms including mitoprotection.
Assuntos
Inibidores da Colinesterase , Fármacos Neuroprotetores , Quinolinas , Receptor CB2 de Canabinoide , Transdução de Sinais , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/síntese química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/síntese química , Quinolinas/farmacologia , Quinolinas/química , Quinolinas/síntese química , Relação Estrutura-Atividade , Transdução de Sinais/efeitos dos fármacos , Receptor CB2 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/antagonistas & inibidores , Estrutura Molecular , Relação Dose-Resposta a Droga , Linhagem Celular Tumoral , AnimaisRESUMO
AIM AND OBJECTIVES: There are different approaches to the synthesis of benzimidazole. In this article, five new benzimidazole derivatives, BMPO, Me-BMPO, Di-MeBMPO, F-BMPO and Cl-BMPO where (BMPO=3-[(1H)-benzo[d]imidazol-2-yl]pyridin-2(1H)-one), have been prepared. Another study was carried out on luminescence properties and their potential applications for the detection of transition metal ions. MATERIALS AND METHODS: From the one-pot synthesis approach, all the derivatives of the benzimidazole compounds were obtained. The compounds were characterized using HRMS, 1HNMR, 13CNMR, and X-ray crystallography. Herein, a mechanism has been deciphered by predicting the release of HCl(g). RESULTS: All compounds showed a strong deep blue emission when dissolved in dimethylacetamide (DMA), with emission wavelengths at 423, 428, 435, 423, and 421 nm, and half-times of 3.64, 2.77, 2, 19, 3.42 and 3.52 ns, respectively. In addition, their emission quantum yields were determined to be 72, 50, 42, 73 and 80%. CONCLUSION: Five new benzimidazole derivatives, BMPO, Me-BMPO, Di-MeBIPO, F-BIPO, and Cl-BIPO, have been successfully synthesized by the one-pot synthesis method, and their structures are characterized and confirmed. The compounds exhibited exceptional luminescence by emitting a strong blue light in DMA with high fluorescence quantum yields between 42~80%.
RESUMO
Conventionally obtained silicon quantum dots (Si QDs) generally suffer from the disadvantages of a cumbersome preparation process, large fluctuation in the quality of Si QDs, poor water solubility, and aggregation-caused quenching (ACQ) phenomenon. Here we report a facile one-pot strategy to synthesize a novel Si QDs-based fluorescent nanomaterial in which Si QDs are confined into dendritic mesoporous silica, named as SiQDs@DMSNs. The prepared SiQDs@DMSNs, with adjustable particle sizes ranging from 140 to 300 nm, emit blue fluorescence around 410 nm upon excitation by ultraviolet light at a wavelength of 300 nm. It is found that the addition of sodium salicylate (NaSAL) plays a crucial role in the in situ generation of Si QDs. The obtained SiQDs@DMSNs exhibit excellent fluorescence intensity, water solubility, and stability, facilitating easy surface modification, without being limited by the ACQ phenomenon. It is expected to be widely used in many fields such as biosensors, nanomedicines, in vivo imaging, fingerprint identification, and anticounterfeiting labels.
RESUMO
A simple, cost-effective, one-pot method was proposed to introduce bis-phosphonic groups onto alginic acid and carboxymethyl cellulose (CMC). New derivatives were characterized by means of nuclear magnetic resonance, X-ray photoelectron, and attenuated total reflectance Fourier transform infrared spectroscopy. These analyses confirmed the successful transformation of carboxylic groups present in alginic acid and CMC into bis-phosphonic groups. Additionally, thermogravimetric analysis coupled with differential scanning calorimetry was employed to investigate the thermal properties of the bis-phosphonic derivatives of alginate and CMC. The results clearly demonstrate the char-forming ability of both studied bis-phosphonated polycarbohydrates, suggesting their potential as intumescent materials.
Assuntos
Alginatos , Alginatos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Varredura Diferencial de Calorimetria , Carboximetilcelulose Sódica/química , Espectroscopia de Ressonância Magnética , Termogravimetria , Espectroscopia Fotoeletrônica , Organofosfonatos/química , Organofosfonatos/síntese químicaRESUMO
The combination of silica nanoparticles with fluorescent molecularly imprinted polymers (Si-FMIPs) prepared by a one-pot sol-gel synthesis method to act as chemical sensors for the selective and sensitive determination of captopril is described. Several analytical parameters were optimized, including reagent ratio, solvent, concentration of Si-FMIP solutions, and contact time. Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), and the ninhydrin assay were used for characterization. The selectivity was evaluated against molecules belonging to other drug classes, such as fluoroquinolones, nonacid nonopioids, benzothiadiazine, alpha amino acids, and nitroimidazoles. Under optimized conditions, the Si-FMIP-based sensor exhibited a working range of 1-15 µM, with a limit of detection (LOD) of 0.7 µM, repeatability of 6.4% (n = 10), and suitable recovery values at three concentration levels (98.5% (1.5 µM), 99.9% (3.5 µM), and 99.2% (7.5 µM)) for wastewater samples. The sensor provided a working range of 0.5-15 µM for synthetic urine samples, with an LOD of 0.4 µM and a repeatability of 7.4% (n = 10) and recovery values of 93.7%, 92.9%, and 98.0% for 1.0 µM, 3.5 µM, and 10 µM, respectively. In conclusion, our single-vessel synthesis approach for Si-FMIPs proved to be highly effective for the selective determination of captopril in wastewater and synthetic urine samples.
Assuntos
Captopril , Limite de Detecção , Nanopartículas , Águas Residuárias , Captopril/urina , Captopril/análise , Captopril/química , Águas Residuárias/análise , Nanopartículas/química , Polímeros Molecularmente Impressos/química , Corantes Fluorescentes/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/urina , Dióxido de Silício/química , Impressão Molecular , HumanosRESUMO
Utilizing microwave heating and an aqueous saturated solution of K2CO3 as a catalyst, a rapidone-pot synthesis of oxospiro[chromene-4.3-indoline] derivatives was produced in high yields. The experimental results confirmed that the saturated solution of K2CO3 gives outstanding yield to dangerous metals and strong bases during investigations into high-performance catalysts. The used catalyst is green, affordable, incredibly mild, and widely accessible. However, it generates samples, reduces the amount of byproducts, and is expected to be used in industrial-scale heterocyclic derivatives. New oxospiro[chromene-4.3-indoline] derivatives have been created from various isatin by condensing with various phenols. The biological activities results showed that when compared to erlotinib, the derivatives 3b, 4b, 5b, and 6b were the most effective analogues on A549, MCF-7, HepG-2, and HCT-116 cells, with an IC50 range of 3.32 to 11.88 µM. In A549 cells, compounds 3b, 4b, 5b, and 6b induced apoptosis, as shown by the up-regulation of Bax, the up-regulation of Bcl-2, and the stimulation of caspase-3 and -9. With IC50 value of 0.19 ± 0.09, compound3b was demonstrated to be the most effective against EGFRWT. Compounds 4b and 6b have good antibacterial activity toward Staphylococcus aureus, comparable to ciprofloxacin, and about half as much activity as ampicillin, according to the MIC value. Compound 6b's MIC is about 25% lower than clotrimazole drug. The in silico molecular docking outcomes of compounds 3b, 4b, 5b, and 6b in the EGFR active site depicted their ability to adopt essential binding interactions compared to the reference Erlotinib. Moreover, the investigation of the physicochemical properties of the most promising dual acting antiproliferative and antimicrobial compounds 4b and 6b through the egg-boiled method illustrated acceptable lipophilicity, GIT absorption, and blood-brain barrier penetration characteristics.
RESUMO
We report a one-pot synthesis of well-defined A5B and A8B miktoarm star-shaped polymers where N,N-dimethylaminoethyl methacrylate (DMAEMA) and various cyclic esters such as ε-caprolactone (ε-CL), lactide (LA) and glycolide (GA) were used for the synthesis. Miktopolymers were obtained by simultaneously carrying out atom transfer radical polymerization (ATRP) of DMAEMA, ring-opening polymerization (ROP) of cyclic esters, and click reaction between the azide group in gluconamide-based (GLBr5-Az) or lactonamide-based (GLBr8-Az) ATRP initiators and 4-pentyn-1-ol. The relatively low dispersity indices of the obtained miktoarm stars (D = 1.2-1.6) indicate that control over the polymerization processes was sustained despite almost complete monomers conversions (83-99%). The presence of salts from phosphate-buffered saline (PBS) in polymer solutions affects the phase transition, increasing cloud point temperatures (TCP) values. The critical aggregation concentration (CAC) values increased with a decreasing number of average molecular weights of the hydrophobic fraction. Hydrolytic degradation studies revealed that the highest reduction of molecular weight was observed for polymers with PCL and PLGCL arm. The influence of the composition on the miktopolymers hydrophilicity was investigated via water contact angle (WCA) measurement. Thermogravimetric analysis (TGA) disclosed that the number of arms and their composition in the miktopolymer affects its weight loss under the influence of temperature.
RESUMO
Cu/SAPO-34 synthesized via a one-pot method with relatively low silicon content and copper loading at around 2 wt.% facilitated continuous oxidation of methane to methanol with a methanol space time yield of 504 µmolCH3OH/gcat/h. Remarkably, the methanol yield exceeded 1800 mmolCH3OH/molCu/h at 623 K. Typically, the presence of trace oxygen in the system was the key to maintaining the high selectivity to methanol. Characterization results from a series of techniques, including XRD, SEM, TEM, H2-TPR, NH3-TPD, UV-vis, and FTIR, indicated that Cu2+ existed in the position where it moves from hexagonal rings to elliptical cages as the active center.
RESUMO
Supramolecular flame retardants have attracted increasing attention recently due to their simple and eco-friendly preparation process. In this study, a novel flame retardant HEPFR was prepared using supramolecular self-assembly technology between piperazine and 1-hydroxy ethylidene-1,1-diphosphonic acid (HEDP). It was introduced into polyvinyl alcohol (PVA) matrix to form PVA/HEPFR composite film. Subsequently, the transparency, mechanical properties, thermal stability, and flame retardancy of PVA/HEPFR films were studied. Due to the hydrogen bonded cross-linked network structure between PVA and HEPFR, the mechanical properties of PVA/HEPFR films have been improved, while maintaining good transparency. With 10 wt% addition of HEPFR, PVA films can reach the VTM-0 level in UL-94 testing. And the limiting oxygen index can be increased from 18.5% of pure PVA to 26.5%. The peak heat release rate was reduced by 61.5%. The flame retardancy and thermal stability of PVA/HEPFR films have been greatly improved. This study provides a "one stone, three birds" strategy for preparing flame-retardant, transparent, and robust PVA film.