Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Invertebr Pathol ; 199: 107948, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37276935

RESUMO

Crayfish have strong ecological impacts in freshwater systems, yet our knowledge of their parasites is limited. This study describes the first systemic microsporidium (infects multiple tissue types) Alternosema astaquatica n. sp. (Enterocytozoonida) isolated from a crayfish host, Faxonius virilis, using histopathology, transmission electron microscopy, gene sequencing, and phylogenetics. The parasite develops in direct contact with the host cell cytoplasm producing mature spores that are monokaryotic and ellipsoid in shape. Spores have 9-10 coils of the polar filament and measure 3.07 ± 0.26 µm (SD) in length and 0.93 ± 0.08 µm (SD) in width. Our novel isolate has high genetic similarity to Alternosema bostrichidis isolated from terrestrial beetles; however, genetic data from this parasite is restricted to a small fragment (396 bp) of the SSU gene. Additional data related to spore morphology and development, host, environment, and ecology indicate that our novel isolate is distinct from A. bostrichidis, which supports a new species description. Alternosema astaquatica n. sp. represents a novel member of the Orthosomella-like group which appears to be a set of opportunists within the Enterocytozoonida. The presence of this microsporidium in F. virilis could be relevant for freshwater ecosystems across this crayfish's broad geographic range in North America and may affect interactions between F. virilis and invasive rusty crayfish Faxonius rusticus in the Midwest USA.


Assuntos
Microsporídios , Parasitos , Animais , Microsporídios/genética , Astacoidea , Ecossistema , Filogenia
2.
J Invertebr Pathol ; 199: 107949, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37276936

RESUMO

Crayfishes are among the most widely introduced freshwater taxa and can have extensive ecological impacts. Knowledge of the parasites crayfish harbor is limited, yet co-invasion of parasites is a significant risk associated with invasions. In this study, we describe a novel microsporidium, Cambaraspora faxoni n. sp. (Glugeida: Tuzetiidae), from two crayfish hosts in the Midwest USA, Faxonius virilis and Faxonius rusticus. We also expand the known host range of Cambaraspora floridanus to include Procambarus spiculifer. Cambaraspora faxoni infects muscle and heart tissue of F. rusticus and develops within a sporophorous vesicle. The mature spore measures 3.22 ± 0.14 µm in length and 1.45 ± 0.13 µm in width, with 8-9 turns of the polar filament. SSU sequencing indicates the isolates from F. virilis and F. rusticus were identical (100%) and 93.49% similar to C. floridanus, supporting the erection of a new species within the Cambaraspora genus. The novel parasite was discovered within the native range of F. rusticus (Ohio, USA) and within a native congeneric (F. virilis) in the invasive range of F. rusticus (Wisconsin, USA). Faxonius virilis is invasive in other regions. This new parasite could have been introduced to Wisconsin with F. rusticus or it may be a generalist species with a broad distribution. In either case, this parasite infects two crayfish species that have been widely introduced to new drainages throughout North America and could have future effects on invasion dynamics or impacts.


Assuntos
Microsporídios , Animais , Microsporídios/genética , Astacoidea/parasitologia , Meio Ambiente , Wisconsin
3.
Int J Parasitol ; 51(10): 855-864, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33891934

RESUMO

Canonical microsporidians are a group of obligate intracellular parasites of a wide range of hosts comprising ~1,300 species of >220 genera. Microsporidians are related to fungi, and many characterised and uncharacterized groups closely related to them have been discovered recently, filling the knowledge gaps between them. These groups assigned to the superphylum Opisthosporidia have provided several important insights into the evolution of diverse intracellular parasitic lineages within the tree of eukaryotes. The most studied among opisthosporidians, canonical microsporidians, were known to science more than 160 years ago, however, the classification of canonical Microsporidia has been challenging due to common morphological homoplasy, and accelerated evolutionary rates. Instead of morphological characters, ssrRNA sequences have been used as the primary data for the classification of canonical microsporidians. Previous studies have produced a useful backbone of the microsporidian phylogeny, but provided only some nodal support, causing some confusion. Here, we reconstructed phylogenetic trees of canonical microsporidians using Bayesian and Maximum Likelihood inferences. We included rRNA sequences of 126 described/named genera, by far the broadest taxon coverage to date. Overall, our trees show similar topology and recovered four of the five main clades demonstrated in previous studies (Clades 1, 3, 4 and 5). Family level clades were well resolved within each major clade, but many were discordant with the recently revised classification. Therefore, revision and some reshuffling, especially within and between Clades 1 and 3 are required. We also reconstructed phylogenetic trees of Opisthosporidia to better integrate the evolutionary history of canonical microsporidians in a broader context. We discuss several traits shared only by canonical microsporidians that may have contributed to their striking ecological success in diverse metazoans. More targeted studies on the neglected host groups will be of value for a better understanding of the evolutionary history of these interesting intracellular parasites.


Assuntos
Microsporídios , Teorema de Bayes , Eucariotos , Microsporídios/genética , Filogenia , RNA Ribossômico
4.
J Invertebr Pathol ; 171: 107345, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32067978

RESUMO

Crayfish are a vital ecological asset in their native range but can be highly damaging as invasive species. Knowledge of their diseases, including high levels of research on Aphanomyces astaci (crayfish plague), show that disease plays a vital role during crayfish invasions. Microsporidian diseases in crayfish are less studied but are thought to have important links to crayfish health and invasion dynamics. In this study we provide a systematic description of a novel microsporidian parasite from the Floridian crayfish, Procambarus paeninsulanus, with additional genetic identification from related Microsporidia from Procambarus fallax, Cambarellus shufeldtii and Cambarellus blacki. This novel microsporidium from P. paeninsulanus is described in a new genus, Cambaraspora, and species, Cambaraspora floridanus, and represents a novel member of the Clade V Microsporidia within the Glugeidae. The parasite develops in the muscle tissue of P. paeninsulanus, within a sporophorous vesicle, and produces a spore with 19-21 turns of the polar filament measuring 6.136 ± 0.84 µm in length and 2.12 ± 0.23 µm in width. The muscle-infecting nature of the parasite suggests that it is horizontally transmitted. Genetic data for the 18S of the parasite from all hosts confirms its assignment to Clade V and reveal it to be a relative of multiple fish-infecting parasites. It shows closest genetic relationship to Glugea plecoglossi, but branches alongside multiple microsporidia from fish, crustaceans and eDNA isolates. The information presented here suggests that this novel parasite may have the potential to infect piscine hosts and is a likely mortality driver in the P. paeninsulanus population. Its potential as a control agent or wildlife disease invasion threat is explored, as well as the placement of this novel microsporidium within the Glugeidae.


Assuntos
Astacoidea/microbiologia , Interações Hospedeiro-Patógeno , Pansporablastina/classificação , Pansporablastina/fisiologia , Animais , Florida , Microscopia Eletrônica de Transmissão , Pansporablastina/genética , Pansporablastina/ultraestrutura , RNA Fúngico/análise , RNA Ribossômico 18S/análise
5.
Curr Biol ; 29(23): 4093-4101.e4, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31735677

RESUMO

The Fungi are a diverse kingdom, dominating terrestrial environments and driving important ecologies. Although fungi, and the related Opisthosporidia, interact with photosynthetic organisms on land and in freshwater as parasites, symbionts, and/or saprotrophic degraders [1, 2], such interactions in the marine environment are poorly understood [3-8]. One newly identified uncultured marine lineage has been named novel chytrid-like-clade-1 (NCLC1) [4] or basal-clone-group-I [5, 6]. We use ribosomal RNA (rRNA) encoding gene phylogenies to demonstrate that NCLC1 is a distinct branch within the Opisthosporidia (Holomycota) [7]. Opisthosporidia are a diverse and largely uncultured group that form a sister branch to the Fungi or, alternatively, the deepest branch within the Fungi, depending on how the boundary to this kingdom is inferred [9]. Using culture-free lineage-specific rRNA-targeted fluorescent in situ hybridization (FISH) microscopy, we demonstrate that NCLC1 cells form intracellular infection of key diatom species, establishing that intracellular colonization of a eukaryotic host is a consistent lifestyle across the Opisthosporidia [8-11]. NCLC1 infection-associated loss and/or envelopment of the diatom nuclei infers a necrotrophic-pathogenic interaction. Diatoms are one of the most diverse and ecologically important phytoplankton groups, acting as dominant primary producers and driving carbon fixation and storage in many aquatic environments [12-14]. Our results provide insight into the diversity of microbial eukaryotes that interact with diatoms. We suggest that such interactions can play a key role in diatom associated ecosystem functions, such as the marine carbon pump through necrotrophic-parasitism, facilitating the export of diatoms to the sediment [15, 16].


Assuntos
Diatomáceas/parasitologia , Fungos/fisiologia , Interações Hospedeiro-Parasita , Fungos/classificação , Hibridização in Situ Fluorescente , Filogenia , Fitoplâncton/parasitologia
6.
J Eukaryot Microbiol ; 66(6): 911-924, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31077482

RESUMO

The aphelids (phylum Aphelida) are phagotrophic parasitoids of algae and represent the most basal branch in superphylum Opisthosporidia, which contains the Microsporidia, Rozellosporidia and Aphelida. Being the closest group to traditional fungi, the aphelids should have ancestral features of both phyla. As in chytrids and other zoosporic fungi, the structure of zoospores is the most informative and important morphological feature for the phylogeny and taxonomy of aphelids. Though a general zoospore description exists for some aphelid species, their flagellar apparatus (kinetid) structure, which contains pivotal taxonomic and phylogenetic characters, has not been studied. Here we represent the kinetid structure in two genera, Aphelidium and Paraphelidium, and demonstrate independent reduction in the kinetid in each genus. The kinetid-mitochondrion connection found in Aphelidium and Paraphelidium is rare for opisthokonts in general, but present in the most basal branches of Fungi and Opisthosporidia. We suggest, therefore, that this connection represents an ancestral character for both these phyla.


Assuntos
Evolução Biológica , Fungos/ultraestrutura , Fungos/classificação , Microscopia Eletrônica de Transmissão
7.
Front Microbiol ; 5: 112, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24734027

RESUMO

The aphelids are a small group of intracellular parasitoids of common species of eukaryotic phytoplankton with three known genera Aphelidium, Amoeboaphelidium, and Pseudaphelidium, and 10 valid species, which form along with related environmental sequences a very diversified group. The phyla Microsporidia and Cryptomycota, and the class Aphelidea have recently been considered to be a deep branch of the Holomycota lineage forming the so called the ARM-clade which is sister to the fungi. In this review we reorganize the taxonomy of ARM-clade, and establish a new superphylum the Opisthosporidia with three phyla: Aphelida phyl. nov., Cryptomycota and Microsporidia. We discuss here all aspects of aphelid investigations: history of our knowledge, life cycle peculiarities, the morphology (including the ultrastructure), molecular phylogeny, ecology, and provide a taxonomic revision of the phylum supplied with a list of species. We compare the aphelids with their nearest relatives, the species of Rozella, and improve the diagnosis of the phylum Cryptomycota.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA