Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.974
Filtrar
1.
Environ Res ; 260: 119629, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39025349

RESUMO

From the beginning of May 2023 to the end of August 2023, the Northern Hemisphere experienced significant wildfire activity with the most widespread fires occurring in Canada. Forest fires in Canada destroyed more than 15.6 million hectares of forests. These wildfires worsened air quality across the region and other parts of the world. The smoke reached southern Europe by the end of June 2023. To better understand the consequences of such forest fires far from the site of origin, aerosol optical, microphysical and radiative properties were analyzed during this event for southern Europe using data from the Visible Infrared Imaging Radiometer Suite (VIIRS), TROPOspheric Monitoring Instrument (TROPOMI), and Aerosol Robotic Network (AERONET). TROPOMI aerosol index (AI) and the carbon monoxide (CO) product confirm that the smoke originated directly from these forest fires. AERONET data from the El Arenosillo site in southern Spain showed maximum aerosol optical depth (AOD) values on June 27 reached 2.36. Data on Angstrom Exponent (AE), aerosol volume size distribution (VSD), single scattering albedo (SSA), fine mode fraction (FMF), volume particle concentration, effective radius (REff), absorption AOD (AAOD), extinction AE (EAE) and absorption AE (AAE) showed that fine-mode particles with carbonaceous aerosols contribution predominated in the atmosphere above the El Arenosillo site. Direct aerosol radiative forcing (DARF) at the top (DARFTOA) and bottom of atmosphere (DARFBOA) were -103.1 and -198.93 Wm-2, respectively. The atmospheric aerosol radiative forcing (DARFATM) was found to be 95.83 Wm-2 and with a heating rate 2.69 K day-1, which indicates the resulting warming of the atmosphere.

2.
Nanomaterials (Basel) ; 14(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39057889

RESUMO

We report a two-step growth process of MoS2 nanoflakes using a low-pressure chemical vapor deposition technique. In the first step, a MoS2 layer was synthesized on a c-plane sapphire substrate. This layer was subsequently re-evaporated at a higher temperature to form mono- or few-layer MoS2 flakes. As a result, the close proximity re-evaporation enabled the growth of pristine MoS2 nanoflakes. Atomic force microscopy analysis confirmed the synthesis of nanoclusters/nanoflakes with lateral dimensions of over 10 µm and a flake height of approximately 1.3 nm, demonstrating bi-layer MoS2, whereas transmission electron microscopy analysis revealed triangular MoS2 nanoflakes, with a diffraction pattern proving the presence of single crystalline hexagonal MoS2. Raman data revealed the typical modes of high-quality MoS2 nanoflakes. Finally, we presented the photocurrent dependence of a MoS2-based photoresist under illumination with light-emitting diode of 405 nm wavelength. The measured current-voltage dependence across various luminous flux outlined the sensitivity of MoS2 to polarized light and thus opens further opportunities for applications in high-performance photodetectors with polarization sensitivity.

3.
Environ Sci Technol ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058895

RESUMO

Dissolved organic matter (DOM), the most reactive fraction of forest soil organic matter, is increasingly impacted by wildfires worldwide. However, few studies have quantified the temporal changes in soil DOM quantity and quality after fire. Here, soil samples were collected after the Qipan Mountain Fire (3-36 months) from pairs of burned and unburned sites. DOM contents and characteristics were analyzed using carbon quantification and various spectroscopic and spectrometric techniques. Compared with the unburned sites, burned sites showed higher contents of bulk DOM and most DOM components 3 months after the fire but lower contents of them 6-36 months after the fire. During the sharp drop of DOM from 3 to 6 months after the fire, carboxyl-rich alicyclic molecule-like and highly unsaturated compounds had greater losses than condensed aromatics. Notably, the burned sites had consistently higher abundances of oxygen-poor dissolved black nitrogen and fluorescent DOM 3-36 months after the fire, particularly the abundance of pyrogenic C2 (excitation/emission maxima of <250/∼400 nm) that increased by 150% before gradually declining. This study advances the understanding of temporal variations in the effects of fire on different soil DOM components, which is crucial for future postfire environmental management.

4.
J Prosthodont ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985129

RESUMO

PURPOSE: The objective of this study was to evaluate the effect of (Er,Cr: YSGG) laser debonding treatment on optical properties and surface roughness of veneers made of different ceramic materials. MATERIALS AND METHODS: Thirty bovine incisors were prepared to receive laminate veneers and divided into three groups (n = 10) according to ceramic material where group (E): IPS e.max CAD, group (S): Vita Suprinity, and group (C): Celtra Duo. Blocks were sectioned into 0.5 mm thickness plates and cemented on the labial surface of incisors using resin cement. The Er,Cr: YSGG laser was applied to each specimen at 4.5 W and 25 Hz for group E and at 6 W and 25 Hz for groups S and C. Color change (△E00), translucency parameter (TP) and surface roughness in µm (Ra) values were measured and calculated before and after laser treatment. Data were analyzed using two-way mixed model ANOVA at a significance level of p < 0.05. RESULTS: The highest mean △E00 value was recorded in group E (1.35 ± 0.09) followed by group S (1.08 ± 0.16) and then group C (0.93 ± 0.10) with a significant difference between them (p < 0.001). All groups exceeded the perceptibility threshold but remained below the acceptability threshold. No statistically significant difference was found in TP except for group E (p = 0.019). Ra values after laser debonding showed significantly higher values than before laser treatment in all three groups (p < 0.001). CONCLUSION: Er,Cr: YSGG laser can be safely used for debonding ceramic veneers without altering the optical properties but it does increase the roughness of debonded ceramic restorations.

5.
Sci Rep ; 14(1): 15505, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969692

RESUMO

The progression of optical materials and their associated applications necessitates a profound comprehension of their optical characteristics, with the Judd-Ofelt (JO) theory commonly employed for this purpose. However, the computation of JO parameters (Ω2, Ω4, Ω6) entails wide experimental and theoretical endeavors, rendering traditional calculations often impractical. To address these challenges, the correlations between JO parameters and the bulk matrix composition within a series of Rare-Earth ions doped sulfophosphate glass systems were explored in this research. In this regard, a novel soft computing technique named genetic expression programming (GEP) was employed to derive formulations for JO parameters and bulk matrix composition. The predictor variables integrated into the formulations consist of JO parameters. This investigation demonstrates the potential of GEP as a practical tool for defining functions and classifying important factors to predict JO parameters. Thus, precise characterization of such materials becomes crucial with minimal or no reliance on experimental work.

6.
Clin Exp Dent Res ; 10(4): e918, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38970231

RESUMO

AIMS AND OBJECTIVES: To evaluate the effect of coffee thermocycling on color stability and translucency of CAD-CAM polychromatic high translucent zirconia compared with lithium disilicate glass ceramic. METHODS: Sixteen rectangular plates (14 × 16 × 1.0 mm) of two ceramic materials (IPS E.max CAD (IEC), IPS E.max ZirCAD Prime [IZP]) were prepared. Each specimen was measured for color coordinates using a spectrophotometer following 30,000 cycles of coffee thermocycling. CIELAB formula was used to determine color and translucency differences (ΔE and ΔTP). The means of ΔE and ΔTP were compared using independent samples t-test and were evaluated using their respective 50%:50% perceptibility and acceptability thresholds (PT and AT). One-way analysis of variance was performed to evaluate the translucency parameter (TP) and surface roughness (Ra) of each material. RESULTS: Mean ΔE values of IEC (4.69) and IZP (4.64) were higher than the AT (ΔE ≤ 2.7) with no significant difference found between the two groups (p = 0.202). Considering the TP, only IEC showed a statistically significant increase in TP value (p < 0.001). However, the mean ΔTP of IEC (3.25) remained within the range of acceptability (1.3 < ΔTP ≤ 4.4). CONCLUSIONS: Within the limitations of this current study, the color stability of all materials was clinically affected by coffee thermocycling. In terms of translucency, only lithium disilicate glass ceramic was influenced by coffee thermocycling. High translucent zirconia had superior translucency stability compared to lithium disilicate glass ceramic.


Assuntos
Cerâmica , Café , Cor , Desenho Assistido por Computador , Porcelana Dentária , Teste de Materiais , Propriedades de Superfície , Zircônio , Cerâmica/química , Porcelana Dentária/química , Zircônio/química , Café/química , Humanos , Espectrofotometria , Materiais Dentários/química
7.
J Phys Condens Matter ; 36(42)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38986477

RESUMO

Both macroscopic Ginzburg-Landau Lagrangian and microscopic gauge-invariant kinetic equation suggest a finite Higgs-mode generation in the second-order optical response of superconductors at clean limit, whereas the previous derivations through the path-integral approach and Eilenberger equation within the Matsubara formalism failed to give such generation. The crucial treatment leading to this controversy lies at an artificial scheme that whether the external optical frequency is taken as continuous variable or bosonic Matsubara frequency to handle the gap dynamics within the Matsubara formalism. To resolve this issue, we derive the effective action of the superconducting gap nearTcin the presence of the vector potential through the path-integral approach, to fill in the long missing gap of the microscopic derivation of the Ginzburg-Landau Lagrangian in superconductors. It is shown that only by taking optical frequency as continuous variable within the Matsubara formalism, can one achieve the fundamental Ginzburg-Landau Lagrangian, and in particular, the finite Ginzburg-Landau kinetic term leads to a finite Higgs-mode generation at clean limit. To further eliminate the confusion of the Matsubara frequency through a separate framework, we apply the Eilenberger equation within the Keldysh formalism, which is irrelevant to the Matsubara space. By calculating the gap dynamics in the second-order response, it is analytically proved that the involved optical frequency is a continuous variable rather than bosonic Matsubara frequency, causing a finite Higgs-mode generation at clean limit.

8.
Molecules ; 29(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38999086

RESUMO

Orthoconic antiferroelectric liquid crystals (OAFLCs) represent unique self-organized materials with significant potential for applications in photonic devices due to their sub-microsecond switching times and high optical contrast in electro-optical effects. However, almost all known OALFCs suffer from low chemical stability and short helical pitch values. This paper presents the synthesis and study results of two chiral AFLCs, featuring a four-ring structure in the rigid core and high chemical stability. The mesomorphic properties of these compounds were investigated using polarizing optical microscopy and differential scanning calorimetry. Spectrometry and electro-optical studies were employed to estimate the helical pitch, tilt angle, and spontaneous polarization of the synthesized compounds and the prepared mixtures. All studied compounds exhibit enantiotropic chiral smectic mesophases including the SmA*, the SmC*, and a very broad temperature range of the SmCA* phase. Doping top-modern antiferroelectric mixture with synthesized compounds offers benefits such as increased helical pitch and tilt angle values without significantly influencing spontaneous polarization. This allows the prepared mixture to be regarded as an OAFLC with high optical contrast, characterized by an almost perfect dark state. These valuable physicochemical and optical properties suggest significant potential of studied materials for practical applications.

9.
Sci Rep ; 14(1): 15146, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956108

RESUMO

Nd0.9Zn0.1FeO3 was prepared in a single-phase with an average crystallite size of 25.82 nm using a citrate combustion technique. The energy dispersive X-ray assures the chemical formula of the sample. The elemental mapping of Zn-doped NdFeO3 illustrates the good homogeneous distribution of the elements in the sample. Nd0.9Zn0.1FeO3 has antiferromagnetic properties with weak ferromagnetic components and has good UV absorbance. The values of the band gap for the direct and indirect transitions are 1.473 eV and 1.250 eV, respectively. The adsorption of nickel(II), cobalt(II), chrome(VI), cadmium(II), and lead(II) ions has been studied at pH 7. The highest removal efficiency (η = 73.72%) was observed for the lead ions from water. The current study has examined the kinetics, recoveries, and mechanisms of utilizing Nd0.90Zn0.10FeO3 to remove Pb2+ ions from water. The optimum conditions for the absorbing Pb2+ are pH 7 and a contact time of 60 min. The Freundlich isotherm model is the best model for the absorption of Pb2+ ions. While, the pseudo-second-order kinetic model describes the kinetic adsorption data. The sample has a good efficiency for removing Pb2+ ions from water several times.

10.
Sci Rep ; 14(1): 15227, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956146

RESUMO

Methylene blue dye, being toxic, carcinogenic and non-biodegradable, poses a serious threat for human health and environmental safety. The effective and time-saving removal of such industrial dye necessitates the use of innovative technologies such as silver nanoparticle-based catalysis. Utilizing a pulsed Nd:YAG laser operating at the second harmonic generation of 532 nm with 2.6 J energy per pulse and 10 ns pulse duration, Ag nanoparticles were synthesized via an eco-friendly method with sodium dodecyl sulphate (SDS) as a capping agent. Different exposure times (15, 30, and 45 min) resulted in varying nanoparticle sizes. Characterization was achieved through UV-Vis absorption spectroscopy, scanning electron microscopy (SEM) imaging, and energy dispersive X-ray (EDX). Lorentzian fitting was used to model nanoparticle size, aligning well with SEM results. Mie's theory was applied to evaluate the absorption, scattering, and extinction cross-sectional area spectra. EDX revealed increasing Ag and carbon content with exposure time. The SDS-caped AgNPs nanoparticles were tested as catalyst for methylene blue degradation, achieving up to 92.5% removal in just 12 min with a rate constant of 0.2626 min-1, suggesting efficient and time-saving catalyst compared to previously reported Ag-based nanocatalysts.

11.
Biomed Phys Eng Express ; 10(5)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38955138

RESUMO

This work aims to improve the post stabilty of reusable potassium iodide hydrogel dosimter. A reusable and low-cost radiochromic dosimeter containing a gel matrix of polyvinyl alcohol, potassium iodide dye, froctose as reducing agent and glutaraldehyde as cross-linking agent was developed for dose calibration in radiotherapy. The gel samples were exposed to different absorbed doses using a medical linear acceleration. UV-vis Spectrophotometry was utilized to investigate the changes in optical-properties of irradiated gels with regard to peak wavelength of 353 nm. The stability of the gel (one of the most limitation of using this dosimeter) was improved significantly by the addition of certain concentrations of dimethyl sulfoxide. The two-dimensional optical imaging system of charge-coupled-device (CCD) camera with a uniform RGB light-emitting-diode (LED) array source was used for diffusion coefficient purpose using two dimensional gel template. The value of diffusion coefficient reported is significant and highly reduced compared with other dosimeters reported in the literatures. Moreover, heating the improved gels to certain temperatures results in resetting their optical properties, which makes it possible to reuse for multiple times.


Assuntos
Estudos de Viabilidade , Álcool de Polivinil , Iodeto de Potássio , Dosímetros de Radiação , Álcool de Polivinil/química , Iodeto de Potássio/química , Calibragem , Géis/química , Humanos , Hidrogéis/química , Radiometria/métodos , Radiometria/instrumentação , Dimetil Sulfóxido/química , Glutaral/química , Difusão , Temperatura
12.
J Mol Model ; 30(8): 243, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955842

RESUMO

CONTEXT: This study investigates the impact of arsenic doping on the optical characteristics and electronic structure of zigzag (8, 0) and armchair (4, 4) gallium phosphide nanotubes using first-principles calculations based on the GaP1-xAsx system, where x = 0, 0.25, 0.5, 0.75, and 1. The electronic calculations showed that doping more arsenic atoms reduces the energy band gap for zigzag and armchair GaPAs nanotubes. PDOS analysis indicates that Ga-4p and P-3p orbitals play a significant role in determining the electronic properties of the GaP nanotube. The dominance of Ga-4p and P-3p orbitals in both the valence and conduction bands indicates their importance across the energy spectrum of the material. The complex dielectric function and absorption coefficient of zigzag and armchair GaP1-xAsx nanotubes are calculated for incident radiation with energies ranging from 1 to 6.2 eV. Optical results revealed that both zigzag and armchair GaPNTs exhibit strong absorption in the UV-visible regions due to electronic transitions between different Van Hove singularities. Also, due to quantum confinement effects, pure zigzag gallium phosphide nanotube exhibited two absorption edges at wavelengths (273 and 375 nm). These edges stand from the energy level's quantization in the nanotube construction, affecting the absorption characteristics. Substitutional doping by arsenic atoms changes the absorption edge to the long wavelengths due to decreased bandgap energy. Investigating electronic structures and optical properties of nanotubes proposes several advantages, such as understanding the doping effects on the nanotube structure and contributing to the direction of the experimental studies. These computational studies play a key role in developing the applications of nanomaterials. METHODS: Calculations of density functional theory (DFT) are achieved via the SIESTA package. SIESTA is a powerful and effective tool for executing DFT calculations on a large system of atoms. It generates numerous output files covering detailed information about the electronic structure, optical properties, total energy, optimized geometry, and other computed properties. The generalized gradient approximation GGA with Perdew-Burke-Ernzerhof PBE functional was used. A vacuum region of 10 A0 was applied to avoid the interactions of adjacent nanotubes.

13.
Materials (Basel) ; 17(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38998324

RESUMO

In this communication, the design and fabrication of optical active metamaterials were developed by the incorporation of graphene and joining it to different substrates with variable spectroscopical properties. It focuses on how graphene and its derivatives could generate varied optical setups and materials considering modified and enhanced optics within substrates and surfaces. In this manner, it is discussed how light could be tuned and modified along its path from confined nano-patterned surfaces or through a modified micro-lens. In addition to these optical properties generated from the physical interaction of light, it should be added that the non-classical light pathways and quantum phenomena could participate. In this way, graphene and related carbon-based materials with particular properties, such as highly condensed electronics, pseudo-electromagnetic properties, and quantum and luminescent properties, could be incorporated. Therefore, the modified substrates could be switched by photo-stimulation with variable responses depending on the nature of the material constitution. Therefore, the optical properties of graphene and its derivatives are discussed in these types of metasurfaces with targeted optical active properties, such as within the UV, IR, and terahertz wavelength intervals, along with their further properties and respective potential applications.

14.
J Mol Model ; 30(8): 276, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028369

RESUMO

CONTEXT AND RESULTS : In this paper, the crystal structure, electronic, optical, and mechanical properties of SrVO3 have been systematically studied by first-principles calculation. The results show that the calculated lattice parameters are in good agreement with the experimental values of X-ray diffraction. The density of states is described in detail in this paper. By analyzing the crystal structure and electronic properties of SrVO3, the magnetic properties of SrVO3 are obtained from the one unpaired electrons of V and the exchange interaction between two V ions. At the same time, a detailed analysis of the optical properties of SrVO3 was conducted, and it was found that it is transparent in the visible light range. Finally, the mechanical properties of SrVO3 are calculated, which can provide some references for future research. COMPUTATIONAL METHOD: In this paper, a first-principles method based on density functional theory (DFT) is reported for PBE-GGA analysis using the plane wave-pseudo potential method in a quantum concentrate packet, U value of 7 eV to V-d and a U value of 2 eV to O-p, Grimme correction by DFT-D method. The k points in the Brillouin region are set to 4 × 4 × 4. The energy convergence criterion for self-consistent field calculation is set at 5.0 × 10-6 eV/atom, and the cutoff energy is 1170 eV. In this paper, the force acting on each atom is not more than 0.01 eV/Å, the maximum stress is not more than 0.02GPa, and the maximum atomic displacement is 5 × 10-4 Å.

15.
Nanotechnology ; 35(41)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39008956

RESUMO

Due to its capacity to achieve nanometre-scale machining and lithography, a focused ion beam (FIB) is an extended tool for semiconductor device fabrication and development, in particular, for diamond-based devices. However, some technological steps are still not fully optimized for its use. Indeed, ion implantation seems to affect the crystalline structure and electrical properties of diamond. For this study, a boron-doped ([B] ∼ 1017atoms·cm-3) diamond layer grown by chemical vapour deposition was irradiated using Ga+by FIB, with 1 nA current and 5, 20, and 30 keV of acceleration voltage. The Ga+implanted diamond layer has been analysed through cathodoluminescence (CL) and scanning transmission electron microscopy (STEM)-related techniques. The beam penetration depth has been simulated by Monte Carlo calculations of both Ga+(FIB) and e-(CL) beams at different energies. The comparative CL analysis of the layer as-grown and after implantation revealed peaks related to defects, such as A band, H3 centre, and defects present in the green band region. The STEM studies for the 30 keV implanted sample showed that the diamond lattice is affected by the damage, evidencing amorphisation in the layer with a sp2/sp3ratio of 1.37, estimated by electron energy loss spectroscopy. Therefore, this study highlights the effects of the Ga+implantation on the optical and structural characteristics of diamond, using different methods.

16.
Sci Rep ; 14(1): 16511, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019955

RESUMO

Recent advancements in the efficiency of lead-based halide perovskite solar cells (PSCs), exceeding 25%, have raised concerns about their toxicity and suitability for mass commercialization. As a result, tin-based PSCs have emerged as attractive alternatives. Among diverse types of tin-based PSCs, organic-inorganic metal halide materials, particularly FASnI3 stands out for high efficiency, remarkable stability, low-cost, and straightforward solution-based fabrication process. In this work, we modelled the performance of FASnI3 PSCs with four different hole transporting materials (Spiro-OMeTAD, Cu2O, CuI, and CuSCN) using SCAPS-1D program. Compared to the initial structure of Ag/Spiro-OMeTAD/FASnI3/TiO2/FTO, analysis on current-voltage and quantum efficiency characteristics identified Cu2O as an ideal hole transport material. Optimizing device output involved exploring the thickness of the FASnI3 layer, defect density states, light reflection/transmission at the back and front metal contacts, effects of metal work function, and operational temperature. Maximum performance and high stability have been achieved, where an open-circuit voltage of 1.16 V, and a high short-circuit current density of 31.70 mA/cm2 were obtained. Further study on charge carriers capture cross-section demonstrated a PCE of 32.47% and FF of 88.53% at a selected capture cross-section of electrons and holes of 1022 cm2. This work aims to guide researchers for building and manufacturing perovskite solar cells that are more stable with moderate thickness, more effective, and economically feasible.

17.
Heliyon ; 10(13): e33651, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39044960

RESUMO

Integrating ceramic and metallic properties in MAX phases makes them highly desirable for diverse technological applications. In this study, through first-principles density functional theory (DFT), we investigated the physical properties of two new 312 MAX compounds, M3GaB2 (M = Ti, Hf). Chemical stability is confirmed via formation energy assessment, while mechanical stability is established by determining elastic stiffness constants. A thorough analysis of mechanical behaviors includes bulk modulus, shear modulus, Young's modulus, and hardness parameters. M3GaB2 demonstrates elastic constants and moduli closely aligned with other 312 carbides. Understanding the electronic band structure and density of states (DOS) sheds light on metallic properties, with anisotropy in electrical conductivity clarified through energy dispersion analysis. Investigation of photon interaction with titled compounds, including dielectric constants (real and imaginary parts), refractive index, absorption coefficient, photoconductivity, reflectivity, and energy loss function, has been carried out. The potential of M3GaB2 borides as a coating to reduce solar is evaluated based on the reflectivity spectra. These findings deepen our understanding of material properties and suggest diverse applications for M3GaB2 in various technological domains.

18.
Sci Rep ; 14(1): 15434, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965393

RESUMO

In the paper, high specific surface area (SSA) mono and bimetallic zeolitic imidazolate frameworks (ZIFs) based on zinc and cobalt metals are successfully synthesized at room temperature using different ratios of Zn to Co salts as precursors and ammonium as a solvent to tailor the properties of the produced ZIF and optimize the efficiency of the particles in water treatment from dye and copper ions, simultaneously. The results declare that monometallic and bimetallic ZIF microparticles are formed using ammonium and the tuning of pore sizes and also increasing the SSA by inserting the Co ions in Zn-ZIF particles is accessible. It leads to a significant increase in the thermal stability of bimetallic Zn/Co-ZIF and the appearance of an absorption band in the visible region due to the existence of Co in the bimetallic structures. The bandgap energies of bimetallic ZIFs are close to that of the monometallic Co-ZIF-8, indicating controlling the bandgap by Co ZIF. Furthermore, the ZIFs samples are applied for water treatment from copper ions (10 and 184 ppm) and methylene blue (10 ppm) under visible irradiation and the optimized multifunctional bimetallic Zn/Co ZIF is introduced as an admirable candidate for water treatment even in acidic conditions.

19.
Photochem Photobiol ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38991850

RESUMO

This study presents a versatile and efficient method to synthesize large-size lead sulfide (PbS) quantum dots (QDs) that display emission in the short-wave infrared (SWIR) region, using accessible and stable diethylammonium diethyldithiocarbamate (C2)2DTCA and octylammonium octyldithiocarbamate (C8DTCA) as sulfur sources. As these sulfur sources enable the formation of well-dispersed, large-size PbS QDs in a very convenient way, this method can further be taken up for scale-up studies. Importantly, this approach allows precise control over QD sizes, thereby enhancing their SWIR optical properties. By adjusting the hot injection temperatures and sulfur source concentrations, different synthesis routes are explored, providing flexibility for the desired QD characteristics. The results presented here offer a promising opportunity to leverage the synthesized PbS QDs in applications such as optoelectronics, sensors, and imaging technology.

20.
Adv Sci (Weinh) ; : e2404465, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995100

RESUMO

Low-dimensional lead halide perovskites demonstrate remarkable nonlinear optical characteristics attributed to their distinctive physical structures and electronic properties. Nevertheless, the investigation into their nonlinear optical properties remains in its incipient stages. This study addresses this gap by precisely controlling solvent volumes to synthesize both 0D Cs4PbBr6 and Cs4PbBr6/CsPbBr3 perovskites. Remarkably, as saturable absorbers, both pure Cs4PbBr6 and Cs4PbBr6/CsPbBr3 composites exhibit favorable nonlinear optical properties within the C-band, showcasing modulation depths of 9.22% and 16.83%, respectively. Moreover, for the first time, Cs4PbBr6 and Cs4PbBr6/CsPbBr3 composites have been successfully integrated into erbium-doped fiber lasers to realize the mode-locking operations. The utilization of the Cs4PbBr6/CsPbBr3 composites as a saturable absorber that enables the generation of conventional soliton mode-locked laser pulses with a pulse duration of 688 fs, and a repetition frequency of 10.947 MHz at a central wavelength of 1557 nm. Cs4PbBr6 is instrumental in generating laser pulses at a frequency of 10.899 MHz, producing pulse widths of 642 fs at the central wavelength of 1531.2 nm and 1.02 ps at the central wavelength of 1565.3 nm, respectively. The findings of this investigation underscore the potential utility of 0D Cs4PbBr6 and Cs4PbBr6/CsPbBr3 composites as promising materials for optical modulation within fiber laser applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA