Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
J Control Release ; 373: 31-37, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38971429

RESUMO

In this contribution to the Orations - New Horizons of the Journal of Controlled Release, I discuss the research that we have conducted on gut hormone stimulation as a therapeutic strategy in oral peptide delivery. One of the greatest challenges in oral drug delivery involves the development of new drug delivery systems that enable the absorption of therapeutic peptides into the systemic circulation at therapeutically relevant concentrations. This scenario is especially challenging in the treatment of chronic diseases (such as type 2 diabetes mellitus), wherein daily injections are often needed. However, for certain peptides, there may be an alternative in drug delivery to meet the need for increased peptide bioavailability; this is the case for gut hormone mimetics (including glucagon-like peptide (GLP)-1 or GLP-2). One plausible alternative for improved oral delivery of these peptides is the co-stimulation of the endogenous secretion of the hormone to reach therapeutic levels of the peptide. This oration will be focused on studies conducted on the stimulation of gut hormones secreted from enteroendocrine L cells in the treatment of gastrointestinal disorders, including a critical discussion of the limitations and future perspectives of implementing this approach in the clinical setting.

2.
Adv Sci (Weinh) ; : e2400843, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884149

RESUMO

Oral peptide delivery is trending again. Among the possible reasons are the recent approvals of two oral peptide formulations, which represent a huge stride in the field. For the first time, gastrointestinal (GI) permeation enhancers (PEs) are leveraged to overcome the main limitation of oral peptide delivery-low permeability through the intestinal epithelium. Despite some success, the application of current PEs, such as salcaprozate sodium (SNAC), sodium caprylate (C8), and sodium caprate (C10), is generally resulting in relatively low oral bioavailabilities (BAs)-even for carefully selected therapeutics. With several hundred peptide-based drugs presently in the pipeline, there is a huge unmet need for more effective PEs. Aiming to provide useful insights for the development of novel PEs, this review summarizes the biological hurdles to oral peptide delivery with special emphasis on the epithelial barrier. It describes the concepts and action modes of PEs and mentions possible new targets. It further states the benchmark that is set by current PEs, while critically assessing and evaluating emerging PEs regarding translatability, safety, and efficacy. Additionally, examples of novel PEs under preclinical and clinical evaluation and future directions are discussed.

3.
Mol Pharm ; 21(8): 3880-3888, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38941485

RESUMO

Oral delivery of potent peptide drugs provides key formulation challenges in the pharmaceutical industry: stability, solubility, and permeability. Intestinal permeation enhancers (PEs) can overcome the low oral bioavailability by improving the drug permeability. Conventional in vitro and ex vivo models for assessing PEs fail to predict efficacy in vivo. Here, we compared Caco-2 cells cultured in the conventional static Transwell model to a commercially available continuous flow microfluidic Gut-on-a-Chip model. We determined baseline permeability of FITC-Dextan 3 kDa (FD3) in Transwell (5.3 ± 0.8 × 10-8 cm/s) vs Chip (3.2 ± 1.8 × 10-7 cm/s). We screened the concentration impact of two established PEs sodium caprate and sucrose monolaurate and indicated a requirement for higher enhancer concentration in the Chip model to elicit equivalent efficacy e.g., 10 mM sodium caprate in Transwells vs 25 mM in Chips. Fasted and fed state simulated intestinal fluids (FaSSIF/FeSSIF) were introduced into the Chip and increased basal FD3 permeability by 3-fold and 20-fold, respectively, compared to 4-fold and 4000-fold in Transwells. We assessed the utility of this model to peptides (Insulin and Octreotide) with PEs and observed much more modest permeability enhancement in the Chip model in line with observations in ex vivo and in vivo preclinical models. These data indicate that microfluidic Chip models are well suited to bridge the gap between conventional in vitro and in vivo models.


Assuntos
Absorção Intestinal , Peptídeos , Permeabilidade , Células CACO-2 , Humanos , Peptídeos/química , Absorção Intestinal/efeitos dos fármacos , Administração Oral , Dispositivos Lab-On-A-Chip , Ácidos Decanoicos/química , Disponibilidade Biológica , Sacarose/química , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Solubilidade , Composição de Medicamentos/métodos
4.
Int J Pharm ; 661: 124353, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38909926

RESUMO

Labrafac™ MC60 (glycerol monocaprylocaprate) is a lipid-based excipient used in oral formulations as a solubiliser. Due to the high proportions of established permeability enhancers, caprylate (C8) and caprate (C10), in Labrafac™ MC60, we hypothesised that it might behave as an intestinal permeation enhancer. We therefore evaluated this using two paracellular markers (ex vivo) and insulin (in vivo) as model molecules. Ex vivo studies were conducted in isolated muscle-stripped rat colonic mucosae mounted in Ussing chambers. Apical addition of Labrafac™ MC60 (8, 12, and 16 mg/ml) enhanced the apparent permeability coefficients (Papp) of [14C] mannitol and FITC-dextran 4 kDa (FD4) across colonic mucosae. Similar effects were observed in isolated jejunal mucosae, but at higher concentrations (40 mg/ml). The enhancing capacity of Labrafac™ MC60 was transient due to reversibility of reductions in transepithelial electrical resistance (TEER) upon wash-out and effects on fluxes were molecular weight-dependent (MW) as suggested by fluxes of a set of high MW FITC-dextrans. The permeability enhancing effects of Labrafac™ MC60 ex vivo were maintained in the presence of simulated intestinal fluids, FaSSIF and FaSSCoF, in both jejunal and colonic mucosae, respectively. Following intra-intestinal regional instillations to rats, the relative bioavailability of 50 IU/kg insulin ad-mixed with Labrafac™ MC60 was 5 % in jejunum (40 mg/ml) and 6 % in colon (8 mg/ml). When Labrafac™ MC60 was combined with PEG-60 hydrogenated castor oil (1 % v/v), this further increased the bioavailability of insulin to 8 % in jejunum. Absorption enhancement was also maintained in the presence of FaSSIF in jejunal instillations. Histology after 120 min exposure to Labrafac™ MC60 in vivo for both jejunum and colon was similar to untreated control. Labrafac™ MC60 therefore acts as a non-damaging intestinal permeation enhancer for macromolecules and can be considered as another excipient in screening programmes to develop orally administered macromolecules.


Assuntos
Dextranos , Excipientes , Fluoresceína-5-Isotiocianato , Glicerídeos , Absorção Intestinal , Mucosa Intestinal , Permeabilidade , Animais , Masculino , Absorção Intestinal/efeitos dos fármacos , Dextranos/farmacocinética , Dextranos/administração & dosagem , Excipientes/química , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Glicerídeos/química , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/farmacocinética , Fluoresceína-5-Isotiocianato/administração & dosagem , Insulina , Ratos , Manitol , Ratos Wistar , Colo/metabolismo , Colo/efeitos dos fármacos , Jejuno/metabolismo , Jejuno/efeitos dos fármacos
5.
PeerJ ; 12: e17252, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708345

RESUMO

Background: Periodontitis is a chronic infectious disease, characterized by an exacerbated inflammatory response and a progressive loss of the supporting tissues of the teeth. Porphyromonas gingivalis is a key etiologic agent in periodontitis. Cystatin C is an antimicrobial salivary peptide that inhibits the growth of P. gingivalis. This study aimed to evaluate the antimicrobial activity of this peptide and its effect on cytokine production, nitric oxide (NO) release, reactive oxygen species (ROS) production, and programmed cell death in human macrophages infected with P. gingivalis. Methods: Monocyte-derived macrophages generated from peripheral blood were infected with P. gingivalis (MOI 1:10) and stimulated with cystatin C (2.75 µg/ml) for 24 h. The intracellular localization of P. gingivalis and cystatin C was determined by immunofluorescence and transmission electron microscopy (TEM). The intracellular antimicrobial activity of cystatin C in macrophages was assessed by counting Colony Forming Units (CFU). ELISA assay was performed to assess inflammatory (TNFα, IL-1ß) and anti-inflammatory (IL-10) cytokines. The production of nitrites and ROS was analyzed by Griess reaction and incubation with 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA), respectively. Programmed cell death was assessed with the TUNEL assay, Annexin-V, and caspase activity was also determined. Results: Our results showed that cystatin C inhibits the extracellular growth of P. gingivalis. In addition, this peptide is internalized in the infected macrophage, decreases the intracellular bacterial load, and reduces the production of inflammatory cytokines and NO. Interestingly, peptide treatment increased ROS production and substantially decreased bacterial-induced macrophage apoptosis. Conclusions: Cystatin C has antimicrobial and immuno-regulatory activity in macrophages infected with P. gingivalis. These findings highlight the importance of understanding the properties of cystatin C for its possible therapeutic use against oral infections such as periodontitis.


Assuntos
Cistatina C , Macrófagos , Óxido Nítrico , Porphyromonas gingivalis , Espécies Reativas de Oxigênio , Porphyromonas gingivalis/imunologia , Humanos , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/microbiologia , Cistatina C/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Óxido Nítrico/metabolismo , Citocinas/metabolismo , Periodontite/microbiologia , Periodontite/imunologia , Periodontite/tratamento farmacológico , Periodontite/patologia , Apoptose/efeitos dos fármacos
6.
Small ; 20(27): e2307618, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38308358

RESUMO

This study aims to compare the potential of Polyethylene glycol (PEG-free and PEG-based self-emulsifying drug delivery systems (SEDDS) for the oral administration of insulin glargine (IG). Hydrophobic ion pairs (HIPs) of IG are formed using various counterions. HIPs are assessed for log P octanol/water and dissociation behavior. They are incorporated into SEDDS based on polyglycerol (PG) and zwitterionic surfactant (ZW) using response surface methodology and compared to conventional PEG-SEDDS in size, stability, and log D SEDDS/release medium. Oral IG bioavailability in PG/ZW-SEDDS and PEG-SEDDS is evaluated in rats. Among the various counterions studied, IG-BIS (bis(isotridecyl)sulfosuccinate) HIPs demonstrated the highest log P and an improved dissociation profile. PG/ZW-SEDDS and PEG-SEDDS have similar ≈40 nm sizes and are stable over 24 h. Both formulations have log D > 4 in water and >2 in 50 mM phosphate buffer pH 6.8. PG/ZW-SEDDS yielded an oral bioavailability of 2.13 ± 0.66% for IG, while the employment of PEG-SEDDS resulted in an oral bioavailability of 1.15 ± 0.35%. This study highlights the prospective utilization of PEG-free SEDDS involving the concurrent application of PG and ZW surfactants, an alternative to conventional PEG surfactants, for improved oral therapeutic (poly) peptide delivery.


Assuntos
Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Peptídeos , Polietilenoglicóis , Polietilenoglicóis/química , Sistemas de Liberação de Medicamentos/métodos , Administração Oral , Animais , Peptídeos/química , Peptídeos/farmacocinética , Emulsões/química , Ratos , Masculino , Ratos Sprague-Dawley , Tensoativos/química , Glicerol/química , Glicerol/análogos & derivados
7.
J Control Release ; 366: 621-636, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38215986

RESUMO

Semaglutide is the first oral glucagon-like peptide-1 (GLP-1) analog commercially available for the treatment of type 2 diabetes. In this work, semaglutide was incorporated into poly(lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-PEG) nanoparticles (NPs) to improve its delivery across the intestinal barrier. The nanocarriers were surface-decorated with either a peptide or an affibody that target the human neonatal Fc receptor (hFcRn), located on the luminal cell surface of the enterocytes. Both ligands were successfully conjugated with the PLGA-PEG via maleimide-thiol chemistry and thereafter, the functionalized polymers were used to produce semaglutide-loaded NPs. Monodisperse NPs with an average size of 170 nm, neutral surface charge and 3% of semaglutide loading were obtained. Both FcRn-targeted NPs exhibited improved interaction and association with Caco-2 cells (cells that endogenously express the hFcRn), compared to non-targeted NPs. Additionally, the uptake of FcRn-targeted NPs was also observed to occur in human intestinal organoids (HIOs) expressing hFcRn through microinjection into the lumen of HIOs, resulting in potential increase of semaglutide permeability for both ligand-functionalized nanocarriers. Herein, our study demonstrates valuable data and insights that the FcRn-targeted NPs has the capacity to promote intestinal absorption of therapeutic peptides.


Assuntos
Diabetes Mellitus Tipo 2 , Peptídeos Semelhantes ao Glucagon , Lactatos , Nanopartículas , Polietilenoglicóis , Recém-Nascido , Humanos , Células CACO-2 , Peptídeos , Receptores Fc
8.
Mol Pharm ; 21(1): 313-324, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38054599

RESUMO

Transient permeation enhancers (PEs) have been widely used to improve the oral absorption of macromolecules. During pharmaceutical development, the correct selection of the macromolecule, PE, and the combination needs to be made to maximize oral bioavailability and ensure successful clinical development. Various in vitro and in vivo methods have been investigated to optimize this selection. In vitro methods are generally preferred by the pharmaceutical industry to reduce the use of animals according to the "replacement, reduction, and refinement" principle commonly termed "3Rs," and in vitro methods typically have a higher throughput. This paper compares two in vitro methods that are commonly used within the pharmaceutical industry, being Caco-2 and an Ussing chamber, to two in vivo models, being in situ intestinal instillation to rats and in vivo administration via an endoscope to pigs. All studies use solution formulation of sodium caprate, which has been widely used as a PE, and two macromolecules, being FITC-dextran 4000 Da and MEDI7219, a GLP-1 receptor agonist peptide. The paper shares our experiences of using these models and the challenges with the in vitro models in mimicking the processes occurring in vivo. The paper highlights the need to consider these differences when translating data generated using these in vitro models for evaluating macromolecules, PE, and combinations thereof for enabling oral delivery.


Assuntos
Absorção Intestinal , Mucosa Intestinal , Humanos , Ratos , Animais , Suínos , Mucosa Intestinal/metabolismo , Células CACO-2 , Intestinos , Administração Oral , Permeabilidade
9.
J Control Release ; 365: 654-667, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38030081

RESUMO

Peptide immune checkpoint inhibitors in cancer immunotherapy have attracted great attention recently, but oral delivery of these peptides remains a huge challenge due to the harsh gastrointestinal environment, large molecular size, high hydrophilic, and poor transmembrane permeability. Here, for the first time, a fish oil-based microemulsion was developed for oral delivery of programmed death-1/programmed cell death-ligand 1 (PD-1/PD-L1) blocking model peptide, OPBP-1. The delivery system was characterized, in vitro and in vivo studies were conducted to evaluate its overall implication. As a result, this nutraceutical microemulsion was easily formed without the need of co-surfactants, and it appeared light yellow, transparent, good flowability with a particle size of 152 ± 0.73 nm, with a sustained drug release manner of 56.45 ± 0.36% over 24 h and a great stability within the harsh intestinal environment. It enhanced intestinal drug uptake and transportation over human intestinal epithelial Caco-2 cells, and drastically elevated the oral peptide bioavailability of 4.1-fold higher than that of OPBP-1 solution. Meanwhile, the mechanism of these dietary droplets permeated over the intestinal enterocytic membrane was found via clathrin and caveolae-mediated endocytic pathways. From the in vivo studies, the microemulsion facilitated the infiltration of CD8+ T lymphocytes in tumors, with increased interferon-γ (IFN-γ) secretion. Thus, it manifested a promising immune anti-tumor effect and significantly inhibited the growth of murine colonic carcinoma (CT26). Furthermore, it was found that the fish oil could induce ferroptosis in tumor cells and exhibited synergistic effect with OPBP-1 for cancer immunotherapy. In conclusion, this fish oil-based formulation demonstrated great potential for oral delivery of peptides with its natural property in reactive oxygen species (ROS)-related ferroptosis of tumor cells, which provides a great platform for functional green oral delivery system in cancer immunotherapy.


Assuntos
Ferroptose , Neoplasias , Humanos , Animais , Camundongos , Receptor de Morte Celular Programada 1 , Células CACO-2 , Óleos de Peixe , Antígeno B7-H1 , Peptídeos , Imunoterapia , Linhagem Celular Tumoral
10.
Int J Pharm ; 647: 123507, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37848166

RESUMO

In the present study, various surfactants were combined with insulin (INS), bovine serum albumin (BSA) and horseradish peroxidase (HRP) via hydrophobic ion pairing to increase lipophilicity and facilitate incorporation into self-emulsifying drug delivery systems (SEDDS). Lipophilicity of model proteins was successfully increased, achieving log Dn-butanol/water values up to 3.5 (INS), 3.2 (BSA) and 1.2 (HRP). Hereby, key factors responsible for complex formation were identified. In particular, surfactants with branched alkyl chains or chain lengths greater than C12 showed favorable properties for hydrophobic ion pairs (HIP). Furthermore, flexibility of the carbon chain resulted in higher lipophilicity and suitability of polar head groups of surfactants for HIP decreased in the rank order sulfonate > sulfosuccinate > phosphate = sulfate > carbonate > phosphonic acids = sulfobetaines. Stability studies of formed HIP complexes were performed in various gastrointestinal fluids and their solubility was determined in commonly used SEDDS excipients. Formed complexes were stable in simulated gastrointestinal fluids and could be incorporated into SEDDS formulations (C1: 10% caprylocaproyl polyoxyl-8 glycerides, 20% PEG-40 hydrogenated castor oil, 20% medium-chain triglycerides, 50% n-butanol; C2: 10% caprylocaproyl polyoxyl-8 glycerides, 20% PEG-40 hydrogenated castor oil, 20% medium-chain triglycerides, 40% n-butanol, 10% 1,2-butanediol), resulting in suitable payloads of up to 11.9 mg/ml for INS, 1.0 mg/ml for BSA and 1.6 mg/ml for HRP.


Assuntos
1-Butanol , Óleo de Rícino , Emulsões/química , Tensoativos/química , Sistemas de Liberação de Medicamentos/métodos , Solubilidade , Soroalbumina Bovina/química , Glicerídeos/química , Insulina/química , Triglicerídeos
11.
Adv Healthc Mater ; 12(31): e2302034, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37696266

RESUMO

Alternative methods to hydrophobic ion pairing for the formation of lipophilic complexes of peptide drugs to incorporate them in lipid-based nanocarriers such as self-emulsifying drug delivery systems (SEDDS) for oral administration are highly on demand. Such an alternative might be reverse micelles. Within this study, SEDDS containing dry reverse micelles (dRMsPMB ) formed with an anionic (sodium docusate; AOT), cationic (dimethyl-dioctadecyl-ammonium bromide; DODAB), amphoteric (soy lecithin; SL), or non-ionic (polysorbate 85; P85) surfactant loaded with the model peptide drug polymyxin B (PMB) are developed. They are characterized regarding size, payload, release kinetics, cellular uptake, and peptide activity. SEDDS exhibit sizes from 22.2 ± 1.7 (AOT-SEDDS-dRMsPMB ) to 61.7 ± 3.2 nm (P85-SEDDS-dRMsPMB ) with payloads up to 2% that are approximately sevenfold higher than those obtained via hydrophobic ion pairing. Within 6 h P85-SEDDS-dRMsPMB and AOT-SEDDS-dRMsPMB show no release of PMB in aqueous medium, whereas DODAB-SEDDS-dRMsPMB and SL-SEDDS-dRMsPMB show a sustained release. DODAB-SEDDS-dRMsPMB improves uptake by Caco-2 cells most efficiently reaching even ≈100% within 4 h followed by AOT-SEDDS-dRMsPMB with ≈20% and P85-/SL-SEDDS-dRMsPMB with ≈5%. The peptide drug maintains its antimicrobial activity in all SEDDS-dRMsPMB . According to these results, SEDDS containing dRMs might be a game changing strategy for oral peptide drug delivery.


Assuntos
Emulsificantes , Micelas , Humanos , Emulsificantes/química , Células CACO-2 , Peptídeos/química , Tensoativos/química , Sistemas de Liberação de Medicamentos/métodos , Emulsões/química , Administração Oral , Solubilidade
12.
Int J Pharm ; 639: 122964, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37100259

RESUMO

In spite of recent progress made in the field of peptide and protein delivery, oral administration of insulin and similar drugs remains a challenge. In this study, lipophilicity of insulin glargine (IG) was successfully increased via hydrophobic ion pairing (HIP) with sodium octadecyl sulfate to enable incorporation into self-emulsifying drug delivery systems (SEDDS). Two SEDDS formulations (F1: 20% Labrasol®ALF, 30% polysorbate 80, 10% Croduret 50, 20% oleyl alcohol, 20% Maisine® CC; F2: 30% Labrasol®ALF, 20% polysorbate 80, 30% Kolliphor® HS 15, 20% Plurol® oleique CC 497) were developed and loaded with the IG-HIP complex. Further experiments confirmed increased lipophilicity of the complex, achieving LogDSEDDS/release medium values of 2.5 (F1) and 2.4 (F2) and ensuring sufficient amounts of IG within the droplets after dilution. Toxicological assays indicated minor toxicity and no toxicity inherent to the incorporated IG-HIP complex. SEDDS formulations F1 and F2 were administered to rats via oral gavage and resulted in a bioavailability of 0.55% and 0.44%, corresponding to a 7.7-fold and 6.2-fold increased bioavailability, respectively. Thus, incorporation of complexed insulin glargine into SEDDS formulations provides a promising approach to facilitate its oral absorption.


Assuntos
Sistemas de Liberação de Medicamentos , Polissorbatos , Ratos , Animais , Insulina Glargina , Emulsões/química , Sistemas de Liberação de Medicamentos/métodos , Peptídeos , Administração Oral
13.
Int J Pharm ; 632: 122569, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36592893

RESUMO

Semi-solid extrusion (SSE) 3D printing technology was utilized for the encapsulation of octreotide acetate (OCT) into 3D-printed oral dosage forms in ambient conditions. The inks and the OCT-loaded 3D-printed oral dosage forms were characterized by means of rheology, Fourier-transform infrared (FTIR) spectroscopy and Nuclear Magnetic Resonance (NMR). In vitro studies demonstrated that the formulations released OCT in a controlled manner. The application of these formulations to Caco-2 cell monolayers revealed their capability to induce the transient opening of tight junctions in a reversible manner as evidenced by Transepithelial Resistance (TEER) measurements. Cellular assays (CCK-8 assay) demonstrated the viability of intestinal cells in the presence of these formulations. The in vitro transport studies across Caco-2 monolayers demonstrated the ability of these formulations to enhance the OCT uptake across the cell monolayer over time due to opening of the tight junctions.


Assuntos
Octreotida , Impressão Tridimensional , Humanos , Células CACO-2 , Composição de Medicamentos/métodos , Formas de Dosagem , Liberação Controlada de Fármacos , Tecnologia Farmacêutica/métodos
14.
Mol Pharm ; 20(2): 929-941, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36592951

RESUMO

Sodium caprate (C10) has been widely evaluated as an intestinal permeation enhancer for the oral delivery of macromolecules. However, the effect of C10 on the intestinal absorption of peptides with different physicochemical properties and its permeation-enhancing effect in vivo remains to be understood. Here, we evaluated the effects of C10 on intestinal absorption in rats with a glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GIP-GLP1) dual agonist peptide (LY) and semaglutide with different enzymatic stabilities and self-association behaviors as well as the oral exposure of the LY peptide in minipigs. Furthermore, we investigated the mechanism of action (MoA) of C10 for improving the intestinal absorption of the LY peptide in vivo via live imaging of the rat intestinal epithelium and tissue distribution of the LY peptide in minipigs. The LY peptide showed higher proteolytic stability in pancreatin and was a monomer in solution compared to that in semaglutide. C10 increased in vitro permeability in the minipig intestinal organoid monolayer to a greater extent for the LY peptide than for semaglutide. In the rat jejunal closed-loop model, C10 increased the absorption of LY peptide better than that of semaglutide, which might be attributed to higher in vitro proteolytic stability and permeability of the LY peptide. Using confocal live imaging, we observed that C10 enabled the rapid oral absorption of a model macromolecule (FD4) in the rat intestine. In the duodenum tissues of minipigs, C10 was found to qualitatively reduce the tight junction protein level and allow peptide uptake to the intestinal cells. C10 decreased the transition temperature of the artificial lipid membrane, indicating an increase in membrane fluidity, which is consistent with the above in vivo imaging results. These data indicated that the LY's favorable physicochemical properties combined with the effects of C10 on the intestinal mucosa resulted in an ∼2% relative bioavailability in minipigs.


Assuntos
Polipeptídeo Inibidor Gástrico , Peptídeo 1 Semelhante ao Glucagon , Suínos , Ratos , Animais , Polipeptídeo Inibidor Gástrico/metabolismo , Polipeptídeo Inibidor Gástrico/farmacologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Porco Miniatura/metabolismo , Ácidos Decanoicos/farmacologia , Absorção Intestinal , Mucosa Intestinal/metabolismo , Peptídeos/metabolismo
15.
J Drug Target ; 31(1): 65-73, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35861405

RESUMO

For the successful oral delivery of peptide drugs, considerable barriers created by the harsh environment of the gastrointestinal tract, mucus, and epithelial cells must be overcome. This study was to establish a core-shell structure with chitosan (CS) nanoparticles (NP) as the core and poly-N-(2-hydroxypropyl) methacrylamide (pHPMA) as the intelligent escape shell to overcome pH and mucus barriers and improve the delivery efficiency of peptide drugs. A core-shell system (COS) composed of pHPMA-AT-1002-cys-chitosan (LRA-PA-CNPs) was prepared and used for the treatment of type 2 diabetes mellitus with the large-molecule peptide drug liraglutide (LRA). The complete COS system was observed through electron microscopy; the particle size of the LRA-PA-CNPs was approximately 160 nm; the encapsulation efficiency was approximately 69% ± 5%; the zeta potential was close to neutral; the mucus and epithelial penetration of the COS system were increased; and animal experiments showed that the COS system enhanced the oral hypoglycaemic effect of LRA.HIGHLIGHTSIntelligent escape material of poly-N-(2-hydroxypropyl) methacrylamide as the shell.Core-shell nanoparticles penetrate the mucus layer and exposing the chitosan core.Overcome pH and mucus barriers to improve the delivery efficiency of peptide drugs.


Assuntos
Quitosana , Diabetes Mellitus Tipo 2 , Nanopartículas , Animais , Portadores de Fármacos/química , Quitosana/química , Insulina , Diabetes Mellitus Tipo 2/tratamento farmacológico , Preparações de Ação Retardada , Administração Oral , Nanopartículas/química , Muco , Trato Gastrointestinal , Concentração de Íons de Hidrogênio
16.
Int J Pharm ; 631: 122526, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36565770

RESUMO

The oral delivery of proteins and peptides provides an attractive dosing option due to its high patient compliance. However, as oral formulations of such macromolecules require the addition of typically poorly compactable permeation enhancers, the compression behaviour in tableting processes can become challenging. In this study, we show that poor compression behaviour can be overcome by tailoring the properties of peptide or protein particles, especially in high-dose tablet formulations. Spray-dried particles with varying particle size and morphology were produced and characterized. The particles were then evaluated for tabletability in well- and poorly tabletable formulations. Tabletability was found to be enhanced most with small and non-hollow spray-dried insulin particles in both formulations. The enhancement was more pronounced in the poorly tabletable formulation than in the well-tabletable one. Thus, the API particle properties play a key role, when evaluating manufacturability of poorly tabletable formulations.


Assuntos
Insulina , Peptídeos , Humanos , Composição de Medicamentos , Comprimidos/química , Tamanho da Partícula , Pós
17.
J Control Release ; 353: 792-801, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493948

RESUMO

The bioavailability of peptides co-delivered with permeation enhancers following oral administration remains low and highly variable. Two factors that may contribute to this are the dilution of the permeation enhancer in the intestinal fluid, as well as spreading of the released permeation enhancer and peptide in the lumen by intestinal motility. In this work we evaluated an Intestinal Administration Device (IAD) designed to reduce the luminal dilution of drug and permeation enhancer, and to minimize movement of the dosage form in the intestinal lumen. To achieve this, the IAD utilizes an expanding design that holds immediate release mini tablets and places these in contact with the intestinal epithelium, where unidirectional drug release can occur. The expanding conformation limits movement of the IAD in the intestinal tract, thereby enabling drug release at a single focal point in the intestine. A pig model was selected to study the ability of the IAD to promote intestinal absorption of the peptide MEDI7219 formulated together with the permeation enhancer sodium caprate. We compared the IAD to intestinally administered enteric coated capsules and an intestinally administered solution. The IAD restricted movement of the immediate release tablets in the small intestine and histological evaluation of the mucosa indicated that high concentrations of sodium caprate were achieved. Despite significant effect of the permeation enhancer on the integrity of the intestinal epithelium, the bioavailability of MEDI7219 was of the same order of magnitude as that achieved with the solution and enteric coated capsule formulations (2.5-3.8%). The variability in plasma concentrations of MEDI7219 were however lower when delivered using the IAD as compared to the solution and enteric coated capsule formulations. This suggests that dosage forms that can limit intestinal dilution and control the position of drug release can be a way to reduce the absorptive variability of peptides delivered with permeation enhancers but do not offer significant benefits in terms of increasing bioavailability.


Assuntos
Mucosa Intestinal , Intestinos , Animais , Suínos , Mucosa Intestinal/metabolismo , Peptídeos/química , Absorção Intestinal , Administração Oral , Comprimidos , Disponibilidade Biológica
18.
Int J Pharm ; 631: 122476, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36528188

RESUMO

Hydrophobic ion pairing and subsequent incorporation into self-emulsifying drug delivery systems (SEDDS) is a promising strategy to orally deliver hydrophilic macromolecular drugs. Within this study, hydrophobic ion pairs (HIP) between salmon calcitonin (sCT) and highly lipophilic sulfosuccinate counterions were formed and compared to frequently applied commercially available counterions. Bis(isotridecyl) sulfosuccinate resulted in HIPs of the highest lipophilicity and in significantly higher solubility in lipophilic co-solvents. Thus, bis(isotridecyl) sulfosuccinate allowed efficient solubilization of sCT in a SEDDS preconcentrate based on a lipophilic co-solvent and an indigestible lipid, but omitting hydrophilic co-solvents. In addition to the increased solubility in the lipidic matrix, markedly reduced dissociation in biorelevant media resulted in high distribution coefficients between oil droplet and FaSSGF or FaSSIF (logD) of 2.98 ± 0.12 or 2.77 ± 0.14, respectively. The composition of the lipidic matrix preserved integrity of the oil droplets after emulsification and subsequent lipolysis, allowing to fully exploit the potential of the HIP attributed to the high logD. Oral administration of the HIP-loaded SEDDS resulted in an excellent relative pharmacological activity of 13.8 ± 5.6 % measured as hypocalcaemic effect in rats.


Assuntos
Conservadores da Densidade Óssea , Calcitonina , Ratos , Animais , Emulsões/química , Succinatos , Sistemas de Liberação de Medicamentos/métodos , Administração Oral , Solubilidade , Solventes , Disponibilidade Biológica
19.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36232463

RESUMO

Isoleucine-Proline-Proline (IPP) and Leucine-Lysine-Proline (LKP) are food-derived tripeptides whose antihypertensive functions have been demonstrated in hypertensive rat models. However, peptides display low oral bioavailability due to poor intestinal epithelial permeability and instability. IPP and LKP were formulated into nanoparticles (NP) using chitosan (CL113) via ionotropic gelation and then coated with zein. Following addition of zein, a high encapsulation efficiency (EE) (>80%) was obtained for the NP. In simulated gastric fluid (SGF), 20% cumulative release of the peptides was achieved after 2 h, whereas in simulated intestinal fluid (SIF), ~90% cumulative release was observed after 6 h. Higher colloidal stability (39−41 mV) was observed for the coated NP compared to uncoated ones (30−35 mV). In vitro cytotoxicity studies showed no reduction in cellular viability of human intestinal epithelial Caco-2 and HepG2 liver cells upon exposure to NP and NP components. Administration of NP encapsulating IPP and LKP by oral gavage to spontaneously hypertensive rats (SHR) attenuated systolic blood pressure (SBP) for 8 h. This suggests that the NP provide appropriate release to achieve prolonged hypotensive effects in vivo. In conclusion, chitosan-zein nanoparticles (CZ NP) have potential as oral delivery system for the encapsulation of IPP and LKP.


Assuntos
Quitosana , Nanopartículas , Zeína , Administração Oral , Animais , Anti-Hipertensivos/farmacologia , Células CACO-2 , Portadores de Fármacos , Humanos , Leucina , Lisina , Oligopeptídeos , Tamanho da Partícula , Peptídeos , Prolina , Ratos , Ratos Endogâmicos SHR
20.
Int J Pharm ; 628: 122238, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36174850

RESUMO

This paper reviews many of the properties of a peptide that need to be considered prior to development as an oral dosage form when co-formulated with a permeation enhancer to improve oral bioavailability, including the importance and implications of peptide half-life on variability in pharmacokinetic profiles. Clinical considerations in terms of food and drug-drug interactions are also discussed. The paper further gives a brief overview how permeation enhancers overcome barriers that limit oral absorption of peptides and thereby improve their oral bioavailability, albeit bioavailabilities are still low single digit and variability is high.


Assuntos
Sistemas de Liberação de Medicamentos , Peptídeos , Administração Oral , Peptídeos/química , Disponibilidade Biológica , Meia-Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA