Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
J Phys Condens Matter ; 36(44)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39042110

RESUMO

Molecular dynamics simulations of Fe-V binary alloys with body-centered cubic as the underlying lattice were performed using a classical potential for chemically ordered and disordered states at finite temperatures for a common set of volumes. The equation of state was fitted to the computational data to obtain temperature- and chemical-order-dependent state functions via the Moruzzi-Janak-Schwarz approximation. Additionally, vibrational entropies that account for both thermal and chemical disorder were calculated for the equiatomic compositions from phonon density-of-states curves computed using effective force constants obtained from fits to the simulations. The latter predicts that the vibrational entropy at room temperature at equiatomicity is higher for the ordered phase than for the solid solution, a peculiar behavior previously observed experimentally. The internal energy of mixing favors ordering at all compositions, with a maximum at equiatomicity that decreases as the solute concentration decreases. The configurational entropy contribution to the free energy of mixing is almost entirely responsible for the stability of the high-temperature disordered phase.

2.
Adv Mater ; 36(35): e2311041, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39007252

RESUMO

2D single-phase multiferroic materials with the coexistence of electric and spin polarization offer a tantalizing potential for high-density multilevel data storage. One of the current limitations for application is the scarcity of the materials, especially those combine ferromagnetism and ferroelectricity at high temperatures. Here, robust ferrimagnetism and ferroelectricity in 2D ɛ-Fe2O3 samples with both single-crystalline and polycrystalline form are demonstrated. Interestingly, the polycrystalline nanosheets also exhibit easily switchable ferroelectric polarizations comparable to that of single crystals. The existence of grain boundary does not hinder the switching and retention of ferroelectric polarization. Furthermore, the ɛ-Fe2O3 nanosheets show ferrimagnetic and ferroelectric Curie temperatures up to 800 K, which reaches record highs in 2D single-phase multiferroic materials. This work provides important progress in the exploration of 2D high-temperature single-phase multiferroics for potentially compact high-temperature information nanodevices.

3.
Biopolymers ; 115(5): e23604, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38818788

RESUMO

Schizophyllan is a triple helical ß-1,3-D-glucan, and shows the cooperative order-disorder transition in the aqueous solution at the triple helix state. In this paper, the solvent stabilizing effects of two carboxylic acids, acetic acid and citric acid, on the cooperative order-disorder transition of aqueous schizophyllan solution were investigated from DSC and SEC-MALS measurements. The transition temperature (Tr) was shifted to higher temperature with increasing the molar fraction of carboxylic acid in the mixture (x). The transition enthalpy (ΔHr) was increased with increasing x. These solvent stabilizing effects indicate that these carboxylic acid molecules were selectively associated with the branched side chains of schizophyllan to stabilize the ordered state. The composition dependencies of Tr and ΔHr were analyzed by the linear cooperative transition theory to estimate the association parameters between the side chains and carboxylic acid. The theoretical parameters obtained were compared with those for the other active substances for the transition to discuss the molecular interactions between the triple helix and carboxylic acid.


Assuntos
Ácidos Carboxílicos , Sizofirano , Solventes , Termodinâmica , Água , Solventes/química , Água/química , Ácidos Carboxílicos/química , Sizofirano/química , Ácido Cítrico/química , Temperatura de Transição , Varredura Diferencial de Calorimetria , Ácido Acético/química
4.
Adv Sci (Weinh) ; 11(26): e2306488, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38704680

RESUMO

Solid-state methods for cooling and heating promise a sustainable alternative to current compression cycles of greenhouse gases and inefficient fuel-burning heaters. Barocaloric effects (BCE) driven by hydrostatic pressure (p) are especially encouraging in terms of large adiabatic temperature changes (|ΔT| ≈ 10 K) and isothermal entropy changes (|ΔS| ≈ 100 J K-1 kg-1). However, BCE typically require large pressure shifts due to irreversibility issues, and sizeable |ΔT| and |ΔS| seldom are realized in a same material. Here, the existence of colossal and reversible BCE in LiCB11H12 is demonstrated near its order-disorder phase transition at ≈380 K. Specifically, for Δp ≈ 0.23 (0.10) GPa, |ΔSrev| = 280 (200) J K-1 kg-1 and |ΔTrev| = 32 (10) K are measured, which individually rival with state-of-the-art BCE figures. Furthermore, pressure shifts of the order of 0.1 GPa yield huge reversible barocaloric strengths of ≈2 J K-1 kg-1 MPa-1. Molecular dynamics simulations are performed to quantify the role of lattice vibrations, molecular reorientations, and ion diffusion on the disclosed BCE. Interestingly, lattice vibrations are found to contribute the most to |ΔS| while the diffusion of lithium ions, despite adding up only slightly to the entropy change, is crucial in enabling the molecular order-disorder phase transition.

5.
Elife ; 122024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376371

RESUMO

Angiogenesis is a morphogenic process resulting in the formation of new blood vessels from pre-existing ones, usually in hypoxic micro-environments. The initial steps of angiogenesis depend on robust differentiation of oligopotent endothelial cells into the Tip and Stalk phenotypic cell fates, controlled by NOTCH-dependent cell-cell communication. The dynamics of spatial patterning of this cell fate specification are only partially understood. Here, by combining a controlled experimental angiogenesis model with mathematical and computational analyses, we find that the regular spatial Tip-Stalk cell patterning can undergo an order-disorder transition at a relatively high input level of a pro-angiogenic factor VEGF. The resulting differentiation is robust but temporally unstable for most cells, with only a subset of presumptive Tip cells leading sprout extensions. We further find that sprouts form in a manner maximizing their mutual distance, consistent with a Turing-like model that may depend on local enrichment and depletion of fibronectin. Together, our data suggest that NOTCH signaling mediates a robust way of cell differentiation enabling but not instructing subsequent steps in angiogenic morphogenesis, which may require additional cues and self-organization mechanisms. This analysis can assist in further understanding of cell plasticity underlying angiogenesis and other complex morphogenic processes.


Blood vessels are vital for transporting blood containing oxygen, nutrients and waste around the body. To maintain this function, new blood vessels are continually formed through a process called angiogenesis. Often triggered in areas requiring oxygen, new blood vessels form from existing vessels as 'sprouts' in response to elevated levels of a signaling molecule called vascular endothelial growth factor (or VEGF for short). For 'sprouting' to occur, endothelial cells lining the parental blood vessel must become either 'Tip' or 'Stalk' cells. Tip cells lead the extension of the blood vessel sprouts, while Stalk cells proliferate rapidly, ensuring the growth of the sprout. Correct spatial arrangement of these different cell types is crucial for the development of functional blood vessels. Previous work has shown that VEGF promotes differentiation of endothelial cells lining blood vessels into different cell types. In neighboring cells, a signaling pathway known as NOTCH is activated due to interactions between adjacent cells, promoting differentiation of Tip cells and Stalk cells. Ideally, Tip cells are spaced out by intervals of Stalk cells to allow separate sprouts to form. Throughout this process, a single cell can receive contradictory signals, with VEGF promoting Tip cell formation and NOTCH signaling promoting Stalk cell differentiation. It remained unclear how the right cells are formed in the right places when surrounded by these conflicting inputs. To better understand these dynamics Kang, Bocci et al. combined a laboratory model of angiogenesis with mathematical modelling. Experiments using these approaches showed that the overall pattern of cell type specification induced by VEGF and NOTCH signaling is consistent with so-called order-disorder transition, commonly observed in crystals in other ordered structures. For blood vessel cells, this transition means that they can still robustly take on either the Tip or Stalk cell identities, but this fate selection is not stable in time. Additionally, the overall pattern is much more sensitive to additional cues and self-organization mechanisms. Further analysis revealed that one such cue can be local fluctuations the density of fibronectin, a key pro-angiogenic extracellular component, leading to formation of sprouts that tend to distance themselves as much as possible from other fully formed sprouts. These findings provide a framework for understanding NOTCH-mediated patterning processes in the context of responding to a variety of environmental cues. This sensitivity in cell type specification is important for determining the dynamic nature of the initial steps of angiogenesis and may be crucial for understanding growth of new blood vessels in damaged organs, cancer and other diseases.


Assuntos
Células Endoteliais , Transdução de Sinais , Comunicação Celular , Morfogênese , Diferenciação Celular
6.
J Colloid Interface Sci ; 662: 1044-1051, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387366

RESUMO

Shear thickening of multimodal suspensions has proven difficult to understand because the rheology depends largely on the microscopic details of stress-induced frictional contacts at different particle size distributions (PSDs). Our discrete particle simulations below a critical volume fraction ϕc over a broad range of shear rates and PSDs elucidate the basic mechanism of order-disorder transition. Around the theoretical optimal PSD (relative content of small particles ζ1= 0.26), particles order into a layered structure in the Newtonian regime. At the onset of shear thickening, this layered structure transforms to a disordered one, accompanied by an abrupt viscosity jump. Minor increase in large-large particle contacts after the order-disorder transition causes apparent increase in radial force along the compressional axis. Bidisperse suspensions with less regular but stable layered structure at ζ1= 0.50 show good fluidity in the shear thickening regime. This work shows that in inertial flows where particle collisions dominate, order-disorder transition could play an essential role in shear thickening for bidisperse suspensions.

7.
Adv Mater ; 36(9): e2307490, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37939231

RESUMO

Photocatalytic technology based on carbon nitride (C3 N4 ) offers a sustainable and clean approach for hydrogen peroxide (H2 O2 ) production, but the yield is severely limited by the sluggish hot carriers due to the weak internal electric field. In this study, a novel approach is devised by fragmenting bulk C3 N4  into smaller pieces (CN-NH4 ) and then subjecting it to a directed healing process to create multiple order-disorder interfaces (CN-NH4 -NaK). The resulting junctions in CN-NH4 -NaK significantly boost charge dynamics and facilitate more spatially and orderly separated redox centers. As a result, CN-NH4 -NaK demonstrates outstanding photosynthesis of H2 O2 via both two-step single-electron and one-step double-electron oxygen reduction pathways, achieving a remarkable yield of 16675 µmol h-1  g-1 , excellent selectivity (> 91%), and a prominent solar-to-chemical conversion efficiency exceeding 2.3%. These remarkable results surpass pristine C3 N4 by 158 times and outperform previously reported C3 N4 -based photocatalysts. This work represents a significant advancement in catalyst design and modification technology, inspiring the development of more efficient metal-free photocatalysts for the synthesis of highly valued fuels.

8.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 79(Pt 2): 176-183, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36920872

RESUMO

Compounds with the general formula Ln3+(SeO3)(HSeO3)·2H2O, where Ln = Sm3+, Tb3+, Nd3+ and Lu3+, are characterized by orthorhombic symmetry with space group P212121 and unit-cell parameters in the ranges a ∼ 6.473-6.999, b ∼ 6.845-7.101, c ∼ 16.242-16.426 Å. Light-purple irregularly shaped crystals of a new monoclinic polytype of neodymium selenite Nd(SeO3)(HSeO3)·2H2O have been obtained during a mild-condition hydrothermal synthesis. The monoclinic unit-cell parameters are: a = 7.0815 (2), b = 6.6996 (2), c = 16.7734 (5) Å, ß = 101.256 (1)°, V = 780.48 (6) Å3; space group P21/c. The crystal structures of Nd(SeO3)(HSeO3)·2H2O polymorphs show order-disorder (OD) character and can be described using the same OD groupoid family, more precisely a family of OD structures built up from two kinds of non-polar layers (category IV). The first monoclinic maximum degree order (MDO) structure (MDO1-polytype) with space group P21/c can be obtained when the inversion centre is active in the L2n-type layers, while the second MDO structure (MDO2-polytype) is orthorhombic with space group P212121 and can be obtained when the [21--] operation is active in the L2n-type layers. The structural complexity parameters and DFT calculations of both polytypes show that the polytype structures are extremely close energy-wise and almost equally viable from the point of total energy of the structure.

9.
Nanomaterials (Basel) ; 13(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36678122

RESUMO

Copper-based chalcogenides have emerged as promising thermoelectric materials due to their high thermoelectric performance, tunable transport properties, earth abundance and low toxicity. We have presented an overview of experimental results and first-principal calculations investigating the thermoelectric properties of various polymorphs of Cu2SnS3 (CTS), Cu2ZnSnS4 (CZTS), and Cu2ZnSnSe4 (CZTSe) synthesized by high-energy reactive mechanical alloying (ball milling). Of particular interest are the disordered polymorphs of these materials, which exhibit phonon-glass-electron-crystal behavior-a decoupling of electron and phonon transport properties. The interplay of cationic disorder and nanostructuring leads to ultra-low thermal conductivities while enhancing electronic transport. These beneficial transport properties are the consequence of a plethora of features, including trap states, anharmonicity, rattling, and conductive surface states, both topologically trivial and non-trivial. Based on experimental results and computational methods, this report aims to elucidate the details of the electronic and lattice transport properties, thereby confirming that the higher thermoelectric (TE) performance of disordered polymorphs is essentially due to their complex crystallographic structures. In addition, we have presented synchrotron X-ray diffraction (SR-XRD) measurements and ab initio molecular dynamics (AIMD) simulations of the root-mean-square displacement (RMSD) in these materials, confirming anharmonicity and bond inhomogeneity for disordered polymorphs.

10.
Adv Biol (Weinh) ; 7(6): e2200282, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36651118

RESUMO

This study measures the uptake of various dyes into HeLa cells and determines simultaneously the degree of membrane lipid chain order on a single cell level by spectral analysis of the membrane-embedded dye Laurdan. First, this study finds that the mean generalized polarization (GP) value of single cells varies within a population in a range that is equivalent to a temperature variation of 9 K. This study exploits this natural variety of membrane order to examine the uptake as a function of GP at constant temperature. It is shown that transport across the cell membrane correlates with the membrane phase state. Specifically, higher membrane transport with increasing lipid chain order is observed. As a result, hypothermal-adapted cells with reduced lipid membrane order show less transport. Environmental factors influence transport as well. While increasing temperature reduces lipid order, it is found that locally high cell densities increase lipid order and in turn lead to increased dye uptake. To demonstrate the physiological relevance, membrane state and transport during an in vitro wound healing process are analyzed. While the uptake within a confluent cell layer is high, it decreases toward the center where the membrane lipid chain order is lowest.


Assuntos
Corantes Fluorescentes , Lipídeos de Membrana , Humanos , Células HeLa , Membrana Celular , Temperatura
11.
Chemistry ; 29(2): e202202916, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36237174

RESUMO

Dielectric switches have drawn renewed attention to the study of their many potential applications with the adjustable switch temperatures (Ts ). Herein, a novel antimony-based halide semiconductor, (N,N-diisopropylethylamine) tetrachloroantimonate ((DIPEA)SbCl4 , DIPEA+ =N,N-diisopropylethylamine), with dielectric relaxation behavior and dielectric switches has been successfully synthesized. This compound, consisting of coordinated anion S b C l 4 ∞ - ${{\left[{{\rm S}{\rm b}{\rm C}{\rm l}}_{4}\right]}_{\infty }^{-}}$ chains and isolated DIPEA+ cations, undergoes an isostructural order-disorder phase transition and shows a step-like dielectric anomaly, which can function as a frequency-tuned dielectric switch with highly adjustable switch temperature (Ts ). Variable-temperature single-crystal structure analyses and first-principles molecular dynamics simulations give information about the general mechanisms of molecular dynamics. This work enriches the dielectric switch family and proves that hybrid metal halides are promising candidates for switchable physical or chemical properties.

12.
Adv Sci (Weinh) ; : e2204315, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36281692

RESUMO

Currently, predominant high-performance permanent magnets contain rare-earth elements. In the search for rare-earth-free alternates, body-centered tetragonal Fe-Ni is notable. The ordering to form this phase from the usual cubic close-packed Fe-Ni is understood to be possible only below a critical temperature, commonly accepted to be 593 K. The ordering is first demonstrated by using neutron irradiation to accelerate atomic diffusion. The tetragonal phase, designated as the mineral tetrataenite, is found in Fe-based meteorites, its formation attributed to ultra-slow cooling. Despite many attempts with diverse approaches, bulk synthesis of tetrataenite has not been reported. Here it is shown that with appropriate alloy compositions, bulk synthesis of tetrataenite is possible, even in conventional casting at cooling rates 11-15 orders of magnitude higher than in meteorites. The barrier to obtaining tetrataenite (slow ordering from cubic close-packed to body-centered tetragonal) is circumvented, opening a processing window for potential rare-earth-free permanent magnets. The formation of tetrataenite on industrially practicable timescales also throws into question the interpretation of its formation in meteorites and their associated cooling rates.

13.
Biochim Biophys Acta Gen Subj ; 1866(10): 130199, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35780978

RESUMO

BACKGROUND: The permeability of a lipid bilayer is a function of its phase state and depends non-linearly on thermodynamic variables such as temperature, pressure or pH. We investigated how shear forces influence the phase state of giant unilamellar vesicles and their membrane permeability. METHODS: We determined the permeability of giant unilamellar vesicles composed of different phospholipid species under shear flow in a tube at various temperatures around and far off the melting point by analyzing the release of fluorescently labelled dextran. Furthermore, we quantified phase state changes of these vesicles under shear forces using spectral decomposition of the membrane embedded fluorescent dye Laurdan. RESULTS: We observed that the membrane permeability follows a step function with increasing permeability at the transition from the gel to the fluid phase and vice versa. Second, there was an all-or-nothing permeabilization near the main phase transition temperature and a gradual dye release far off the melting transition. Third, the Laurdan phase state analysis suggests that shear forces induce a reversible melting temperature shift in giant unilamellar vesicle membranes. MAJOR CONCLUSIONS: The observed effects can be explained best in a scenario in which shear forces directly induce membrane pores that possess relatively long pore lifetimes in proximity to the phase transition. GENERAL SIGNIFICANCE: Our study elucidates the release mechanism of thermo-responsive drug carriers as we found that liposome permeabilization is not continuous but quantized. Furthermore, the shear force induced melting temperature shift must be taken into consideration when thermo-responsive liposomes are designed.


Assuntos
Bicamadas Lipídicas , Lipossomas Unilamelares , Bicamadas Lipídicas/química , Permeabilidade , Transição de Fase , Estresse Mecânico , Lipossomas Unilamelares/química
14.
Polymers (Basel) ; 14(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35890623

RESUMO

The backbone of the Janus double-brush copolymer may break during long-term service, but whether this breakage affects the self-assembled phase state and microphase transitions of the material is still unknown. For the Janus double-brush copolymers with a periodicity in molecular architecture ranging from 1 to 10, the influences of the architectural periodicity on their phase diagrams and order-disorder transitions (ODT) were investigated by the self-consistent mean field theory (SCFT). In total, nine microphases with long-range order were found. By comparing the phase diagrams between copolymers of different periodicity, a decrease in periodicity or breakage along the copolymer backbone had nearly no influence on the phase diagrams unless the periodicity was too short to be smaller than 3. For copolymers with neutral backbones, a decrease in periodicity or breakage along the copolymer backbone reduced the critical segregation strengths of the whole copolymer at ODT. The equations for the critical segregation strengths at ODT, the architectural periodicity, and the volume fraction of the backbone were established for the Janus double-brush copolymers. The theoretical calculations were consistent with the previous theoretical, experimental, and simulation results.

15.
Acta Crystallogr C Struct Chem ; 78(Pt 6): 332-337, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35662132

RESUMO

The cocrystal hexamethylenetetramine-tridecanedioic acid (1/1) (HMT-C13), C6H12N4·C13H24O4, was investigated by single-crystal X-ray diffraction techniques at several temperatures during cooling and heating processes. Our results show the formation of two crystalline phases, separated by a large temperature phase co-existence between 290 and 340 K. Phase I, stable above 341 K, presents an orthorhombic structure described in the space group Bmmb, with one N4(CH2)6·C13H22O4 adduct in its asymmetric unit. Phase II, stable below 290 K, presents a monoclinic symmetry described by the space group P21/c, with two N4(CH2)6·C13H22O4 adducts in its asymmetric unit. The phase co-existence is observed both upon cooling and heating, and seems to be related to a complex domain-growth dynamic within the crystal.

16.
Materials (Basel) ; 15(11)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35683287

RESUMO

Single-phase high-entropy alloys with compositionally disordered elemental arrangements have excellent strength, but show a serious embrittlement effect with increasing strength. Precipitation-hardened high-entropy alloys, such as those strengthened by L12-type ordered intermetallics, possess a superior synergy of strength and ductility. In this work, we employ first-principles calculations and thermodynamic simulations to explore the atomic interactions and order-disorder transitions in FeCoNiAl1-xTix high-entropy alloys. Our calculated results indicate that the atomic interactions depend on the atomic size of the alloy components. The thermodynamic stability behaviors of L12 binary intermetallics are quite diverse, while their atomic arrangements are short-range in FeCoNiAl1-xTix high-entropy alloys. Moreover, the order-disorder transition temperatures decrease with increasing Ti content in FeCoNiAl1-xTix high-entropy alloys, the characteristics of order-disorder transition from first-principles calculations are in line with experimental observations and CALPHAD simulations. The results of this work provide a technique strategy for proper control of the order-disorder transitions that can be used for further optimizing the microstructure characteristics as well as the mechanical properties of FeCoNiAl1-xTixhigh-entropy alloys.

17.
Entropy (Basel) ; 24(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35741473

RESUMO

We discuss novel many-fermions thermodynamics' features. They refer to the energy cost associated to order-disorder changes. Our thermal quantum statistical scenario is controlled by suitable fermion-fermion interactions. We deal with two well-known quantum interactions that operate within an exactly solvable model. This model is able to adequately describe some aspects of fermion-dynamics, particularly level-crossings. We describe things via employment of Gibbs' canonical ensemble strictures. We show that judicious manipulation of the energy cost associated to statistical order (disorder) variations generates useful information-quantifiers. The underlying idea is that changes in the degree of order are intimately linked to level-crossings energetic costs.

18.
Small ; 18(24): e2201943, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35570752

RESUMO

Lead-free Cs2 AgBiBr6 double perovskite is considered to be a promising alternative to the traditional lead-based analogues due to its long carrier lifetime, high structural stability, and non-toxicity. However, the large band gap limits its absorption of visible light, which is not conducive to further optoelectronic applications. Herein, a thermochromic strategy is reported to decrease the band gap of Cs2 AgBiBr6 by approximately 0.36 eV, obtaining the smallest reported band gap of 1.69 eV under ambient conditions. The experimental data indicate that after annealing the Cs2 AgBiBr6 single crystals at 400 °C, the silver (Ag) and bismuth (Bi) atoms occupy the B-site in a random way and form a partially disordered configuration. The formation of the antisite defects broadens the band edges and decreases the band gap. This work offers new insights into the preparation of narrow band gap lead-free double perovskites, and a deep understanding of their structural and electronic properties for further development in photoelectric devices.

19.
Int J Mol Sci ; 23(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35628178

RESUMO

The order-disorder transitions (ODT) of core-shell bottle brush copolymer and its structural isomers were investigated by dissipative particle dynamics simulations and theoretically by random phase approximation. Introducing a chain topology parameter λ which parametrizes linking points between M diblock chains each with N monomers, the degree of incompatibility at ODT ((χN)ODT; χ being the Flory-Huggins interaction parameter between constituent monomers) was predicted as a function of chain topology parameter (λ) and the number of linked diblock chains per bottle brush copolymer (M). It was found that there exists an optimal chain topology about λ at which (χN)ODT gets a minimum while the domain spacing remains nearly unchanged. The prediction provides a theoretical guideline for designing an optimal copolymer architecture capable of forming sub-10 nm periodic structures even with non-high χ components.


Assuntos
Polímeros , Polímeros/química
20.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35165195

RESUMO

Mg2GeO4 is important as an analog for the ultrahigh-pressure behavior of Mg2SiO4, a major component of planetary interiors. In this study, we have investigated magnesium germanate to 275 GPa and over 2,000 K using a laser-heated diamond anvil cell combined with in situ synchrotron X-ray diffraction and density functional theory (DFT) computations. The experimental results are consistent with the formation of a phase with disordered Mg and Ge, in which germanium adopts eightfold coordination with oxygen: the cubic, Th3P4-type structure. DFT computations suggest partial Mg-Ge order, resulting in a tetragonal [Formula: see text] structure indistinguishable from [Formula: see text] Th3P4 in our experiments. If applicable to silicates, the formation of this highly coordinated and intrinsically disordered phase may have important implications for the interior mineralogy of large, rocky extrasolar planets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA