Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.788
Filtrar
1.
Acta Pharm Sin B ; 14(9): 4164-4173, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39309499

RESUMO

Viruses often manipulate ubiquitination pathways to facilitate their replication and pathogenesis. CUL2ZYG11B known as the substrate receptor of cullin-2 RING E3 ligase, is bound by SARS-CoV-2 ORF10 to increase its E3 ligase activity, leading to degradation of IFT46, a protein component of the intraflagellar transport (IFT) complex B. This results in dysfunctional cilia, which explains certain symptoms that are specific to COVID-19. However, the precise molecular mechanism of how ORF10 recognizes CUL2ZYG11B remains unknown. Here, we determined the crystal structure of CUL2ZYG11B complexed with the N-terminal extension (NTE) of SARS-CoV-2 ORF10 (2.9 Å). The structure reveals that the ORF10 N-terminal heptapeptide (NTH) mimics the Gly/N-degron to bind CUL2ZYG11B. Mutagenesis studies identified key residues within ORF10 that are key players in its interaction with CUL2ZYG11B both in ITC assay and in vivo cells. In addition, we prove that enhancement of CUL2ZYG11B activity for IFT46 degradation by which ORF10-mediated correlates with the binding affinity between ORF10 and CUL2ZYG11B. Finally, we used a Global Protein Stability system to show that the NTH of ORF10 mimics the Gly/N-degron motif, thereby binding competitively to CUL2ZYG11B and inhibiting the degradation of target substrates bearing the Gly/N-degron motif. Overall, this study sheds light on how SARS-CoV-2 ORF10 exploits the ubiquitination machinery for proteasomal degradation, and offers valuable insights for optimizing PROTAC-based drug design based on NTH CUL2ZYG11B interaction, while pinpointing a promising target for the development of treatments for COVID-19.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39316038

RESUMO

OBJECTIVE: The most common genetic cause of amyotrophic lateral sclerosis (ALS) is the C9orf72 expansion. A high incidence of this expansion has been detected in Sweden and Finland. This Norwegian population-based study aimed to identify the prevalence, geographic distribution, ancestry, and relatedness of ALS patients with a C9orf72 expansion (C9pos). Further, we compared C9pos and C9neg patients' clinical presentation, family history of ALS and other neurodegenerative disorders, and sociodemographic status. METHODS: We recruited ALS patients from all 17 Departments of neurology in Norway. Blood samples and questionnaires regarding clinical characteristics, sociodemographic status and family history of ALS, and other neurodegenerative disorders were collected. The C9orf72 expansion was examined for all patients. RESULTS: The study enrolled 500 ALS patients, 8.8% of whom were C9pos, with half being sporadic ALS cases. The proportion of C9pos cases differed between regions, ranging from 17.9% in the Northern region to 1.9% in the Western region. The majority of C9pos patients had non-Finnish European descent and were not closely related. C9pos patients exhibited a significantly shorter mean survival time, had a higher frequency of relatives with ALS or dementia, and were more often unmarried/single and childless than C9neg patients. CONCLUSION: C9pos patients constitute a large portion of the Norwegian ALS population. Ancestry and relatedness do not adequately explain regional differences. Relying on clinical information to identify C9pos patients has proven to be challenging. Half of C9pos patients were reported as having sporadic ALS, underlining the importance of carefully assessing family history and the need for genetic testing.

3.
Vet Res ; 55(1): 123, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39334484

RESUMO

Porcine epidemic diarrhea virus (PEDV) has emerged in American countries, and it has reemerged in Asia and Europe, causing significant economic losses to the pig industry worldwide. In the present study, the 17GXCZ-1ORF3d strain, which has a naturally large deletion at the 172-554 bp position of the ORF3 gene, together with the 17GXCZ-1ORF3c strain, was serially propagated in Vero cells for up to 120 passages. The adaptability of the two strains gradually increased through serial passages in vitro. Genetic variation analysis of the variants of the two strains from different generations revealed that the naturally truncated ORF3 gene in the 17GXCZ-1ORF3d variants was stably inherited. Furthermore, the survival, viral shedding and histopathological lesions following inoculation of piglets demonstrated that the virulence of 17GXCZ-1ORF3d-P120 was significantly attenuated. These results indicate that the naturally truncated ORF3 gene may accelerate the attenuation of virulence and is involved in PEDV virulence together with mutations in other structural genes. Importantly, immunization of sows with G2b 17GXCZ-1ORF3d-P120 increased PEDV-specific IgG and IgA antibody levels in piglets and conferred partial passive protection against heterologous G2a PEDV strains. Our findings suggest that an attenuated strain with a truncated ORF3 gene may be a promising candidate for protection against PEDV.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/patogenicidade , Vírus da Diarreia Epidêmica Suína/fisiologia , Suínos , Doenças dos Suínos/virologia , Virulência , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Células Vero , Chlorocebus aethiops , Variação Genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
4.
Life (Basel) ; 14(9)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39337941

RESUMO

The unique chaperone-like properties of C19orf53, discovered in 2020 as a "hero" protein, make it an intriguing subject for research in relation to ischemic stroke (IS). Our pilot study aimed to investigate whether C19orf53 SNPs are associated with IS. DNA samples from 2138 Russian subjects (947 IS and 1308 controls) were genotyped for 7 C19orf53 SNPs using probe-based PCR. Dominant (D), recessive (R), and log-additive (A) regression models in relation to the effect alleles (EA) were used to interpret associations. An increased risk of IS was associated with rs10104 (EA G; Pbonf(R) = 0.0009; Pbonf(A) = 0.0004), rs11666524 (EA A; Pbonf(R) = 0.003; Pbonf(A) = 0.02), rs346158 (EA C; Pbonf(R) = 0.006; Pbonf(A) = 0.045), and rs2277947 (EA A; Pbonf(R) = 0.002; Pbonf(A) = 0.01) in patients with obesity; with rs11666524 (EA A; Pbonf(R) = 0.02), rs346157 (EA G; Pbonf(R) = 0.036), rs346158 (EA C; Pbonf(R) = 0.005), and rs2277947 (EA A; Pbonf(R) = 0.02) in patients with low fruit and vegetable intake; and with rs10104 (EA G; Pbonf(R) = 0.03) and rs11666524 (EA A; Pbonf(R) = 0.048) in patients with low physical activity. In conclusion, our pilot study provides comprehensive genetic and bioinformatic evidence of the involvement of C19orf53 in IS risk.

5.
Molecules ; 29(18)2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39339364

RESUMO

Abnormal intracellular phase transitions in mutant hnRNP A1 may underlie the development of several neurodegenerative diseases. The risk of these diseases increases upon C9Orf72 repeat expansion and the accumulation of the corresponding G-quadruplex (G4)-forming RNA, but the link between this RNA and the disruption of hnRNP A1 homeostasis has not been fully explored so far. Our aim was to clarify the mutual effects of hnRNP A1 and C9Orf72 G4 in vitro. Using various optical methods and atomic force microscopy, we investigated the influence of the G4 on the formation of cross-beta fibrils by the mutant prion-like domain (PLD) of hnRNP A1 and on the co-separation of the non-mutant protein with a typical SR-rich fragment of a splicing factor (SRSF), which normally drives the assembly of nuclear speckles. The G4 was shown to act in a holdase-like manner, i.e., to restrict the fibrillation of the hnRNP A1 PLD, presumably through interactions with the PLD-flanking RGG motif. These interactions resulted in partial unwinding of the G4, suggesting a helicase-like activity of hnRNP A1 RGG. At the same time, the G4 was shown to disrupt hnRNP A1 co-separation with SRSF, suggesting its possible contribution to pathology through interference with splicing regulation.


Assuntos
Proteína C9orf72 , Quadruplex G , Ribonucleoproteína Nuclear Heterogênea A1 , Transição de Fase , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/genética , Humanos , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , RNA/metabolismo , RNA/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Ligação Proteica , Dobramento de Proteína , Fatores de Processamento de Serina-Arginina/metabolismo , Fatores de Processamento de Serina-Arginina/genética
6.
Cells ; 13(18)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39329715

RESUMO

Transforming Growth Factor-ß (TGF-ß) can have both tumour-promoting and tumour-suppressing activity in breast cancer. Elucidating the key downstream mediators of pro-tumorigenic TGF-ß signalling in this context could potentially give rise to new therapeutic opportunities and/or identify biomarkers for anti-TGF-ß directed therapy. Here, we identify C1orf106 (also known as innate immunity activator INAVA) as a novel TGF-ß target gene which is induced in a SMAD3-dependent but SMAD2/SMAD4-independent manner in human and murine cell lines. C1orf106 expression positively correlates with tumourigenic or metastatic potential in human and murine breast cancer cell line models, respectively, and is required for enhanced migration and invasion in response to TGF-ß stimulation. C1orf106 promoted self-renewal and colony formation in vitro and may promote tumour-initiating frequency in vivo. High C1orf106 mRNA expression correlates with markers of aggressiveness and poor prognosis in human breast cancer. Taken together, our findings indicate that C1orf106 may act as a tumour promoter in breast cancer.


Assuntos
Neoplasias da Mama , Regulação Neoplásica da Expressão Gênica , Proteína Smad3 , Fator de Crescimento Transformador beta , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Proteína Smad3/metabolismo , Proteína Smad3/genética , Fator de Crescimento Transformador beta/metabolismo , Prognóstico , Animais , Linhagem Celular Tumoral , Camundongos , Movimento Celular/genética , Transdução de Sinais
7.
Mol Plant ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39327731

RESUMO

Thousands of nuclear-encoded proteins are transported into chloroplasts through the TOC-TIC translocon spanning the chloroplast envelope membranes. A motor complex pulls the translocated proteins out of the TOC-TIC complex into the chloroplast stroma by hydrolyzing ATP. The Orf2971-FtsHi complex was suggested to serve as the ATP-hydrolyzing motor in Chlamydomonas reinhardtii, but little is known about its architecture and assembly. Here, we report the 3.2-Å resolution structure of the Chlamydomonas Orf2971-FtsHi complex. The 20-subunit complex spans the chloroplast inner envelope with two bulky modules protruding into the intermembrane space and stromal matrix. Six subunits form a hetero-hexamer potentially providing the pulling force through ATP hydrolysis. The remaining subunits, including potential enzymes/chaperones, likely facilitate the complex assembly and regulate its proper function. Our results provide the structural foundation for mechanistic understanding of chloroplast protein translocation.

8.
Cell Rep ; 43(9): 114719, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39255062

RESUMO

Neuroinflammation and dysregulated energy metabolism are linked to motor neuron degeneration in amyotrophic lateral sclerosis (ALS). The egl-9 family hypoxia-inducible factor (EGLN) enzymes, also known as prolyl hydroxylase domain (PHD) enzymes, are metabolic sensors regulating cellular inflammation and metabolism. Using an oligonucleotide-based and a genetic approach, we showed that the downregulation of Egln2 protected motor neurons and mitigated the ALS phenotype in two zebrafish models and a mouse model of ALS. Single-nucleus RNA sequencing of the murine spinal cord revealed that the loss of EGLN2 induced an astrocyte-specific downregulation of interferon-stimulated genes, mediated via the stimulator of interferon genes (STING) protein. In addition, we found that the genetic deletion of EGLN2 restored this interferon response in patient induced pluripotent stem cell (iPSC)-derived astrocytes, confirming the link between EGLN2 and astrocytic interferon signaling. In conclusion, we identified EGLN2 as a motor neuron protective target normalizing the astrocytic interferon-dependent inflammatory axis in vivo, as well as in patient-derived cells.


Assuntos
Esclerose Lateral Amiotrófica , Astrócitos , Neurônios Motores , Peixe-Zebra , Animais , Astrócitos/metabolismo , Neurônios Motores/metabolismo , Peixe-Zebra/metabolismo , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Humanos , Interferons/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Modelos Animais de Doenças , Células-Tronco Pluripotentes Induzidas/metabolismo
9.
Biophys J ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39340152

RESUMO

Intrinsically disordered proteins (IDPs) often contain proline residues, which undergo cis/trans isomerisation. While molecular dynamics (MD) simulations have the potential to fully characterise the proline cis and trans sub-ensembles, they are limited by the slow timescales of isomerisation and force field inaccuracies. Nuclear magnetic resonance (NMR) spectroscopy can report on ensemble-averaged observables for both the cis-proline and trans-proline states, but a full atomistic characterisation of these conformers is challenging. Given the importance of proline cis/trans isomerisation for influencing the conformational sampling of disordered proteins, we employed a combination of all-atom MD simulations with enhanced sampling (metadynamics), NMR, and small-angle X-ray scattering (SAXS) to characterise the two sub-ensembles of the ORF6 C-terminal region (ORF6CTR) from SARS-CoV-2 corresponding to the proline-57 (P57) cis and trans states. We performed MD simulations in three distinct force fields: AMBER03ws, AMBER99SB-disp, and CHARMM36m, which are all optimised for disordered proteins. Each simulation was run for an accumulated time of 180-220 µs until convergence was reached, as assessed by blocking analysis. A good agreement between the cis-P57 populations predicted from metadynamic simulations in AMBER03ws was observed with populations obtained from experimental NMR data. Moreover, we observed good agreement between the radius of gyration predicted from the metadynamic simulations in AMBER03ws and that measured using SAXS. Our findings suggest that both the cis-P57 and trans-P57 conformations of ORF6CTR are extremely dynamic and that interdisciplinary approaches combining both multi-scale computations and experiments offer avenues to explore highly dynamic states that cannot be reliably characterised by either approach in isolation.

10.
Auris Nasus Larynx ; 51(6): 933-939, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39340975

RESUMO

Perrault syndrome is an autosomal recessive condition characterized by hearing loss and ovarian failure. Hearing loss in Perrault syndrome has been reported as sensorineural; however, only two cases in a single report have comprehensively investigated hearing in Perrault syndrome with TWNK variant, and the association between this variant and auditory neuropathy has not been established. The proband presented with hearing difficulties and primary amenorrhea. Hearing tests revealed mild hearing loss. Maximum speech intelligibility score was 95 % with normal otoacoustic emission. However, no auditory brainstem responses were observed, leading to the diagnosis of auditory neuropathy. Genetic tests identified compound heterozygous variants of TWNK (p.Ile253Met and p.Arg391His), which lead to the genetic diagnosis of Perrault syndrome. Electrocochleography suggests a decreased cochlear nerve function. The patient's sister was also subsequently genetically diagnosed with Perrault syndrome upon identification of the same TWNK variant and had auditory neuropathy with low-tone hearing loss on pure-tone audiometry. These cases highlight the importance of detailed hearing tests, including auditory brainstem response and genetic tests in patients with Perrault syndrome, even in cases of mild hearing loss, for accurate diagnosis and appropriate management.

11.
Acta Neuropathol Commun ; 12(1): 152, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39289761

RESUMO

A hexanucleotide repeat expansion (HRE) in C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Human brain imaging and experimental studies indicate early changes in brain structure and connectivity in C9-ALS/FTD, even before symptom onset. Because these early disease phenotypes remain incompletely understood, we generated iPSC-derived cerebral organoid models from C9-ALS/FTD patients, presymptomatic C9ORF72-HRE (C9-HRE) carriers, and controls. Our work revealed the presence of all three C9-HRE-related molecular pathologies and developmental stage-dependent size phenotypes in cerebral organoids from C9-ALS/FTD patients. In addition, single-cell RNA sequencing identified changes in cell type abundance and distribution in C9-ALS/FTD organoids, including a reduction in the number of deep layer cortical neurons and the distribution of neural progenitors. Further, molecular and cellular analyses and patch-clamp electrophysiology detected various changes in synapse structure and function. Intriguingly, organoids from all presymptomatic C9-HRE carriers displayed C9-HRE molecular pathology, whereas the extent to which more downstream cellular defects, as found in C9-ALS/FTD models, were detected varied for the different presymptomatic C9-HRE cases. Together, these results unveil early changes in 3D human brain tissue organization and synaptic connectivity in C9-ALS/FTD that likely constitute initial pathologies crucial for understanding disease onset and the design of therapeutic strategies.


Assuntos
Esclerose Lateral Amiotrófica , Proteína C9orf72 , Demência Frontotemporal , Células-Tronco Pluripotentes Induzidas , Organoides , Sinapses , Humanos , Organoides/patologia , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Proteína C9orf72/genética , Células-Tronco Pluripotentes Induzidas/patologia , Sinapses/patologia , Sinapses/genética , Masculino , Feminino , Córtex Cerebral/patologia , Expansão das Repetições de DNA/genética
12.
Brain Tumor Pathol ; 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39244726

RESUMO

High-grade supratentorial tumors harboring ZFTA::NCOA1/2 fusion in infants presenting with mixed histology of embryonal-appearing components resembling ependymoma and mesenchymal sarcomatous components have recently been reported as ependymoma-like tumors with mesenchymal differentiation (ELTMDs). In contrast, we describe herein a pathologically similar case with a novel ZFTA::RELA fusion in an adult. A frontal lobe lesion was resected from a 30-year-old woman and displayed mixed components on pathological examination, showing ependymoma-like and sarcomatous parts. The absence of perivascular pseudorosettes was inconsistent with a diagnosis of ependymoma. Fluorescence in situ hybridization analysis confirmed ZFTA::RELA fusion. The DKFZ methylation classifier (v12.8) did not categorize this case among established methylation classes. In addition, t-distributed stochastic neighbor embedding analysis using DNA methylation data revealed that the present case was distant from ependymomas but close to two previously reported cases of ELTMD involving ZFTA::NCOA1/2 fusion. Taken together, we concluded that this tumor should be considered under the entity of ELTMD. This represents the first description of an adult patient with ELTMD harboring ZFTA::RELA fusion analyzed by DNA methylation profiling, supporting the establishment of ELTMD as a possible new tumor type.

13.
Ophthalmic Genet ; : 1-7, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232248

RESUMO

BACKGROUND: CFAP410 (Cilia and Flagella Associated Protein 410) encodes a protein that has an important role in the development and function of cilia. In ophthalmology, pathogenic variants in CFAP410 have been described in association with cone rod dystrophy, retinitis pigmentosa, with or without macular staphyloma, or with systemic abnormalities such as skeletal dysplasia and amyotrophic lateral sclerosis. Herein, we report a consanguineous family with a novel homozygous CFAP410 c.335_346del variant with cone only degeneration and no systemic features. METHODS: A retrospective analysis of ophthalmic history, examination, retinal imaging, electrophysiology and microperimetry was performed as well as genetic testing with in silico pathogenicity predictions and a literature review. RESULTS: A systemically well 28-year-old female of Pakistani ethnicity with parental consanguinity and no relevant family history, presented with childhood-onset poor central vision and photophobia. Best-corrected visual acuity and colour vision were reduced (0.5 LogMAR, 6/17 Ishihara plates (right) and 0.6 LogMAR, 3/17 Ishihara plates (left). Fundus examination showed no pigmentary retinopathy, no macular staphyloma and autofluorescence was unremarkable. Optical coherence tomography showed subtle signs of intermittent disruption of the ellipsoid zone. Microperimetry demonstrated a reduction in central retinal sensitivity. Electrodiagnostic testing confirmed a reduction in cone-driven responses. Whole-genome sequencing identified an in-frame homozygous deletion of 12 base pairs at c.335_346del in CFAP410. CONCLUSIONS: The non-syndromic cone dystrophy phenotype reported herein expands the genotypic and phenotypic spectra of CFAP410-associated ciliopathies and highlights the need for light of potential future genetic therapies.

14.
Bio Protoc ; 14(17): e5060, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39282230

RESUMO

A hexanucleotide GGGGCC repeat expansion in the C9orf72 gene is the most frequent genetic cause of amyotrophic lateral sclerosis (ALS) and frontal temporal dementia (FTD). C9orf72 repeat expansions are currently identified with long-range PCR or Southern blot for clinical and research purposes, but these methods lack accuracy and sensitivity. The GC-rich and repetitive content of the region cannot be amplified by PCR, which leads traditional sequencing approaches to fail. We turned instead to PacBio single-molecule sequencing to detect and size the C9orf72 repeat expansion without amplification. We isolated high molecular weight genomic DNA from patient-derived iPSCs of varying repeat lengths and then excised the region containing the C9orf72 repeat expansion from naked DNA with a CRISPR/Cas9 system. We added adapters to the cut ends, capturing the target region for sequencing on PacBio's Sequel, Sequel II, or Sequel IIe. This approach enriches the C9orf72 repeat region without amplification and allows the repeat expansion to be consistently and accurately sized, even for repeats in the thousands. Key features • This protocol is adapted from PacBio's previous "no-amp targeted sequencing utilizing the CRISPR-Cas9 system." • Optimized for sizing C9orf72 repeat expansions in patient-derived iPSCs and applicable to DNA from any cell type, blood, or tissue. • Requires high molecular weight naked DNA. • Compatible with Sequel I and II but not Revio.

15.
J Virol ; : e0088624, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287387

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that can cause several cancers, such as Kaposi sarcoma and primary effusion lymphoma (PEL). We and others have recently demonstrated that Forkhead box (FOX) transcription factors can be dysregulated by KSHV, and they can affect KSHV infection. Herein, we focus on dissecting the role of two FOXK subfamily members, FOXK1 and FOXK2, in the KSHV life cycle. FOXK proteins are key host regulators of cellular functions, yet their role in KSHV infection remains unknown. Here, we demonstrated that both FOXK proteins are essential for efficient KSHV lytic reactivation in PEL cells. FOXK1 and FOXK2 are unique as they are the only FOX proteins that contain a Forkhead-associated (FHA) domain. The FHA domain is a specialized protein binding domain that recognizes a short linear serine/threonine-rich (S/T) motif. Through an unbiased motif survey, we found that KSHV viral protein ORF45 and its gammaherpesvirus homologs contain a putative FHA-binding motif. ORF45 is an immediate early tegument protein, vital for lytic reactivation and virus production. We demonstrated that ORF45 uses its novel conserved motif to interact with the FHA domain containing FOXK factors in the nucleus of infected cells. A single-point mutation of the conserved threonine residue in the motif within ORF45 abolished the ORF45-FOXK1/2 interaction. Our data indicates that FOXK proteins interact with ORF45 homologs encoded by murine gammaherpesvirus 68 (MHV68) and Rhesus macaque rhadinovirus (RRV), and that the FHA domains of FOXK proteins are sufficient for their interactions, highlighting a conserved mechanism.IMPORTANCEThe dysregulation of Forkhead transcription factors contributes to many different human diseases, including cancers, but their impact on herpesvirus lifecycle and pathogenesis is less understood. Our study uncovers a critical pro-lytic function of the FOXK subfamily and its requirement for KSHV lytic reactivation in PEL. We found that FOXK proteins bind to a key immediate early KSHV protein ORF45 using its novel short linear S/T motif. Notably, even though ORF45 homologs in gammaherpesviruses are highly diverse, we identified a similar S/T short linear motif in ORF45 homologs and also showed an evolutionary conserved interaction between FOXK proteins and ORF45 homologs of MHV68 and RRV. Our study provides a basis for future studies in animal models to evaluate the role of FOXK proteins and the impact of their interactions with ORF45 in gammaherpesvirus infection and pathogenesis. Targeting these interactions could allow a novel way to limit gammaherpesvirus infections.

16.
Hum Mol Genet ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39222049

RESUMO

The hexanucleotide G4C2 repeat expansion (HRE) in C9ORF72 gene is the major cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), leading to both loss- and gain-of-function pathomechanisms. The wide clinical heterogeneity among C9ORF72 patients suggests potential modifying genetic and epigenetic factors. Notably, C9ORF72 HRE often co-occurs with other rare variants in ALS/FTD-associated genes, such as NEK1, which encodes for a kinase involved in multiple cell pathways, including DNA damage response and ciliogenesis. In this study, we generated induced pluripotent stem cells (iPSCs) and differentiated motoneurons (iPSC-MNs) from an ALS patient carrying both C9ORF72 HRE and a NEK1 loss-of-function mutation to investigate the biological effect of NEK1 haploinsufficiency on C9ORF72 pathology in a condition of oligogenicity. Double mutant C9ORF72/NEK1 cells showed increased pathological C9ORF72 RNA foci in iPSCs and higher DNA damage levels in iPSC-MNs compared to single mutant C9ORF72 cells, but no effect on DNA damage response. When we analysed the primary cilium, we observed a defective ciliogenesis in C9ORF72 iPSC-MNs which was not worsened by NEK1 haploinsufficiency in the double mutant iPSC-MNs. Altogether, our study shows that NEK1 haploinsufficiency influences differently DNA damage and cilia length, potentially acting as a modifier at biological level in an in vitro ALS patient-derived disease model of C9ORF72 pathology.

17.
J Neurol Sci ; 466: 123209, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39260140

RESUMO

A cluster of cases of amyotrophic lateral sclerosis (ALS) exists in the southern part of the Kii Peninsula in Japan. Although both genetic and environmental factors are thought to be causative, the critical cause of this cluster has not been identified. C9orf72 is the most common genetic factor in both familial and sporadic C9orf72-related ALS in people of European ancestry, but it is rare among Japanese populations. However, a previous report revealed that the frequency of C9orf72-related ALS was significantly higher in the cluster area. We evaluated the proportion of C9orf72 hexanucleotide repeat expansions in 99 cases of ALS diagnosed in Wakayama Prefecture, including the cluster area, by using repeat-primed polymerase chain reaction and fluorescence fragment length analysis. We found that 2 of the 99 patients (0 % of those with familial ALS and 2.4 % of those with sporadic ALS) had hexanucleotide repeat expansions in C9orf72, and long-read sequencing revealed that these expansions were causative. No expansions were observed among 90 patients with Parkinson's disease or among 90 healthy controls. Haplotype analysis with long-read sequencing data revealed that the two patients with repeat expansions shared the common haplotype with that previously reported in Finnish patients with C9orf72-related ALS, which suggests a founder effect. C9orf72 was thought to be a rare causative gene in Japan, but this study revealed that it may be relatively common in Wakayama Prefecture.

18.
Brain Commun ; 6(5): fcae282, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39229486

RESUMO

Frontotemporal dementia and amyotrophic lateral sclerosis are neurodegenerative diseases with considerable clinical, genetic and pathological overlap. The most common cause of both diseases is a hexanucleotide repeat expansion in C9orf72. The expansion is translated to produce five toxic dipeptides, which aggregate in patient brain. Neuroinflammation is a feature of frontotemporal dementia and amyotrophic lateral sclerosis; however, its causes are unknown. The nod-like receptor family, pyrin domain-containing 3 inflammasome is implicated in several other neurodegenerative diseases as a driver of damaging inflammation. The inflammasome is a multi-protein complex which forms in immune cells in response to tissue damage, pathogens or aggregating proteins. Inflammasome activation is observed in models of other neurodegenerative diseases such as Alzheimer's disease, and inflammasome inhibition rescues cognitive decline in rodent models of Alzheimer's disease. Here, we show that a dipeptide arising from the C9orf72 expansion, poly-glycine-arginine, activated the inflammasome in microglia and macrophages, leading to secretion of the pro-inflammatory cytokine, interleukin-1ß. Poly-glycine-arginine also activated the inflammasome in organotypic hippocampal slice cultures, and immunofluorescence imaging demonstrated formation of inflammasome specks in response to poly-glycine-arginine. Several clinically available anti-inflammatory drugs rescued poly-glycine-arginine-induced inflammasome activation. These data suggest that C9orf72 dipeptides contribute to the neuroinflammation observed in patients, and highlight the inflammasome as a potential therapeutic target for frontotemporal dementia and amyotrophic lateral sclerosis.

19.
J Clin Exp Neuropsychol ; : 1-14, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258714

RESUMO

OBJECTIVE: Cognitive decline is common in patients with amyotrophic lateral sclerosis (ALS), especially in carriers of the mutation C9ORF72HRE. However, cognitive impairment is poorly understood in carriers of mutations in other genes causing ALS. We performed a comprehensive neuropsychological testing in patients with mutations in the SOD1 (mSOD1) gene. METHODS: We examined 5 cognitive domains in 48 symptomatic patients with either hereditary or sporadic ALS. These were compared with 37 matched controls. RESULTS: Carriers of SOD1-mutations and sporadic ALS had circumscribed deficits, but in a pattern different from C9ORF72HRE. All groups had deficits in working memory, although mSOD1-carriers significantly outperform sporadic ALS and C9ORF72HRE in an attention-driven visuospatial task involving copying a complex figure. Carriers of the D90A-SOD1 mutation overall performed as well as or better than carriers of other SOD1-mutations, except complex working memory. Bayesian analyses suggest (with evidence of moderate strength) that tasks involving the language domain did not differ between controls, mSOD1 and sporadic ALS. CONCLUSION: Distinct cognitive impairments are prevalent in different ALS-syndromes and vary in patients with different pathogenic SOD1 mutations. The type and degree of impairment differed depending on genotype and was significantly least pronounced in patients homozygous for the D90A SOD1 mutation. The presence of cognitive deficits may influence optimal clinical management and intervention. We propose that cognitive assessment should be included in the routine examination of new patients suspected of ALS. Neuropsychological assessment is an under-recognized outcome parameter in clinical drug trials.

20.
Epigenomics ; : 1-12, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258797

RESUMO

Genes involved in immune response, inflammation and metabolism are among those most likely affected by changes in DNA methylation (DNAm) and expression levels in amyotrophic lateral sclerosis (ALS) tissues. Unfortunately, it is still largely unclear whether any of these changes precede the onset of disease symptoms or whether most of them are the result of the muscular and metabolic changes that follow symptoms onset. In this article the author discusses the strengths and limitations of the available studies of DNAm in ALS and provides some suggestions on what, in his opinion, could be done in the near future for a better understanding of the DNAm changes occurring in ALS, their link with environmental exposures and their potential clinical utility.


[Box: see text].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA