Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Front Mol Neurosci ; 17: 1376128, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952419

RESUMO

Deafness-causing deficiencies in otoferlin (OTOF) have been addressed preclinically using dual adeno-associated virus (AAV)-based approaches. However, timing of transduction, recombination of mRNA, and protein expression with dual hybrid AAV methods methods have not previously been characterized. Here, we have established an ex vivo assay to determine the kinetics of dual-AAV mediated expression of OTOF in hair cells of the mouse utricle. We utilized two different recombinant vectors that comprise DB-OTO, one containing the 5' portion of OTOF under the control of the hair cell-specific Myo15 promoter, and the other the 3' portion of OTOF. We explored specificity of the Myo15 promoter in hair cells of the mouse utricle, established dose response characteristics of DB-OTO ex vivo in an OTOF-deficient mouse model, and demonstrated tolerability of AAV1 in utricular hair cells. Furthermore, we established deviations from a one-to-one ratio of 5' to 3' vectors with little impact on recombined OTOF. Finally, we established a plateau in quantity of recombined OTOF mRNA and protein expression by 14 to 21 days ex vivo with comparable recovery timing to that in vivo model. These findings demonstrate the utility of an ex vivo model system for exploring expression kinetics and establish in vivo and ex vivo recovery timing of dual AAV-mediated OTOF expression.

2.
Int J Pediatr Otorhinolaryngol ; 177: 111870, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38290274

RESUMO

OBJECTIVES: Gene therapy for monogenic hearing loss is on the horizon. The first trials in patients with Auditory Neuropathy Spectrum Disorder (ANSD) due to pathogenic variants in the Otoferlin (OTOF) gene will open this year. In the UK, the new NHS Genomic Medicine Service (GMS) offers genetic testing in each child diagnosed with congenital or early onset sensorineural hearing loss. This survey study aims to map preexisting clinical pathways for the diagnosis and management of children with ANSD and identify opportunities for improvement in early identification of OTOF- related ANSD. METHODS: A Google form with 24 questions in English covering the ANSD clinical pathway was developed with clinicians involved in the diagnosis and management ANSD. The survey was disseminated via email to all Lead clinicians of NHS Tertiary Paediatric Audiology and Cochlear Implant Services within the UK. RESULTS: Data was received from 27 (34 %) NHS Tertiary Paediatric Audiology Services and 8 (n = 57 %) Paediatric Cochlear Implant Services. Services follow existing national guidance and provide multidisciplinary care with structured patient pathways for referral, diagnosis, and management of children with ANSD and multidisciplinary input throughout. Clinicians are aware of the genetic causes of ANSD and new processes for genetic testing, but do not uniformly refer children with ANSD for testing for OTOF pathogenic variants. As such, they had difficulty estimating numbers of children with OTOF pathogenic variants under their care. CONCLUSION: Those results highlight the urgency of implementing hearing gene panel sequencing for all children with ANSD to provide opportunities for early diagnosis and candidacy for OTOF gene therapy trials.


Assuntos
Perda Auditiva Central , Proteínas de Membrana , Criança , Humanos , Audiologia , Implante Coclear , Implantes Cocleares , Perda Auditiva Central/genética , Perda Auditiva Central/terapia , Medicina Estatal , Proteínas de Membrana/genética , Ensaios Clínicos como Assunto
3.
Int J Mol Sci ; 24(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38139069

RESUMO

Auditory neuropathy spectrum disorder (ANSD) associated with mutations of the OTOF gene is one of the common types of sensorineural hearing loss of a hereditary nature. Due to its high genetic heterogeneity, ANSD is considered one of the most difficult hearing disorders to diagnose. The dataset from 270 known annotated single amino acid substitutions (SAV) related to ANSD was created. It was used to estimate the accuracy of pathogenicity prediction using the known (from dbNSFP4.4) method and a new one. The new method (ConStruct) for the creation of the protein-centric classification model is based on the use of Random Forest for the analysis of missense variants in exons of the OTOF gene. A system of predictor variables was developed based on the modern understanding of the structure and function of the otoferlin protein and reflecting the location of changes in the tertiary structure of the protein due to mutations in the OTOF gene. The conservation values of nucleotide substitutions in genomes of 100 vertebrates and 30 primates were also used as variables. The average prediction of balanced accuracy and the AUC value calculated by the 5-fold cross-validation procedure were 0.866 and 0.903, respectively. The model shows good results for interpreting data from the targeted sequencing of the OTOF gene and can be implemented as an auxiliary tool for the diagnosis of ANSD in the early stages of ontogenesis. The created model, together with the results of the pathogenicity prediction of SAVs via other known accurate methods, were used for the evaluation of a manually created set of 1302 VUS related to ANSD. Based on the analysis of predicted results, 16 SAVs were selected as the new most probable pathogenic variants.


Assuntos
Perda Auditiva Central , Perda Auditiva Neurossensorial , Proteínas de Membrana , Animais , Perda Auditiva Central/diagnóstico , Perda Auditiva Central/genética , Perda Auditiva Neurossensorial/genética , Mutação , Mutação de Sentido Incorreto , Proteínas de Membrana/genética , Humanos
4.
Front Mol Neurosci ; 16: 1299509, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38152587

RESUMO

Afferent synapses of cochlear inner hair cells (IHCs) employ a unique molecular machinery. Otoferlin is a key player in this machinery, and its genetic defects cause human auditory synaptopathy. We employed site-directed mutagenesis in mice to investigate the role of Ca2+ binding to the C2F domain of otoferlin. Substituting two aspartate residues of the C2F top loops, which are thought to coordinate Ca2+-ions, by alanines (OtofD1841/1842A) abolished Ca2+-influx-triggered IHC exocytosis and synchronous signaling in the auditory pathway despite substantial expression (~60%) of the mutant otoferlin in the basolateral IHC pole. Ca2+ influx of IHCs and their resting membrane capacitance, reflecting IHC size, as well as the number of IHC synapses were maintained. The mutant otoferlin showed a strong apex-to-base abundance gradient in IHCs, suggesting impaired protein targeting. Our results indicate a role of the C2F domain in otoferlin targeting and of Ca2+ binding by the C2F domain for IHC exocytosis and hearing.

5.
Mol Ther ; 31(12): 3520-3530, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37915172

RESUMO

Otoferlin (OTOF) gene mutations represent the primary cause of hearing impairment and deafness in auditory neuropathy. The c.2485C>T (p. Q829X) mutation variant is responsible for approximately 3% of recessive prelingual deafness cases within the Spanish population. Previous studies have used two recombinant AAV vectors to overexpress OTOF, albeit with limited efficacy. In this study, we introduce an enhanced mini-dCas13X RNA base editor (emxABE) delivered via an AAV9 variant, achieving nearly 100% transfection efficiency in inner hair cells. This approach is aimed at treating OTOFQ829X, resulting in an approximately 80% adenosine-to-inosine conversion efficiency in humanized OtofQ829X/Q829X mice. Following a single scala media injection of emxABE targeting OTOFQ829X (emxABE-T) administered during the postnatal day 0-3 period in OtofQ829X/Q829X mice, we observed OTOF expression restoration in nearly 100% of inner hair cells. Moreover, auditory function was significantly improved, reaching similar levels as in wild-type mice. This enhancement persisted for at least 7 months. We also investigated P5-P7 and P30 OtofQ829X/Q829X mice, achieving auditory function restoration through round window injection of emxABE-T. These findings not only highlight an effective therapeutic strategy for potentially addressing OTOFQ829X-induced hearing loss but also underscore emxABE as a versatile toolkit for treating other monogenic diseases characterized by premature termination codons.


Assuntos
Surdez , Perda Auditiva Central , Perda Auditiva , Animais , Camundongos , Edição de Genes , Perda Auditiva/genética , Perda Auditiva/terapia , Mutação
6.
Pak J Med Sci ; 39(5): 1456-1461, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680836

RESUMO

Objective: To find possible association of R1939W and P1987R variants of OTOF gene with severe to profound NSSHL in cochlear implant subjects. Methods: It was a case control study, conducted from June 2021 to February 2022, comprising 50 cases of severe to profound NSSHL who had received cochlear implant from ENT Department, CMH Rawalpindi and 50 age-matched healthy controls from PEMH Rawalpindi. Blood samples were collected from all the subjects, followed by DNA extraction and allele-specific polymerase chain reaction, performed at Multi-disciplinary Laboratory of Department of Biochemistry and Molecular Biology, Army Medical College Rawalpindi. Statistical analysis was done using 'SPSS' and 'XLSTAT', followed by genetic analysis using 'SNPstat'. Results: Mean age of the cases was 5.96 ± 4.62 years (N=50), comprising 58% males and 42% females. All had bilateral and prelingual HL. Parental consanguinity was 72%, whereas 62% cases had a positive family history of deafness. Alleles of R1939W and P1987R were not associated with NSSHL, as shown by their p values of 0.56 and 0.89 respectively. For R1939W ORs were 0.71 (dominant model) and 0.80 (overdominant model), indicating negative association with NSSHL. Regarding P1987R OR was 0.96 (log-additive model). Genotypes of both variants were not in HW Equilibrium (p <0.0001), whereas their alleles showed high LD (D'=0.92). Conclusion: High percentage of parental consanguinity was observed among cochlear implant candidates. The OTOF variants R1939W and P1987R were found to have protective roles against NSSHL in study population.

7.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37445728

RESUMO

Otoferlin mRNA expression is increased in JDM patients' PBMCs and muscle compared to healthy controls. This study aims to evaluate the role of otoferlin in JDM disease pathophysiology and its association with disease activity in untreated children with JDM. A total of 26 untreated JDM (88.5% female, 92.3% white, non-Hispanic) and 15 healthy controls were included in this study. Otoferlin mRNA expression was determined by qRT-PCR before and a few months after therapy. Detailed flow cytometry of various cell surface markers and cytoplasmic otoferlin was performed to identify cells expressing otoferlin. In addition, muscle otoferlin expression was evaluated in situ in six untreated JDM patients and three healthy controls. There was a significant increase in otoferlin expression in JDM children compared to controls (Median 67.5 vs. 2.1; p = 0.001). There was a positive correlation between mRNA otoferlin expression and the following disease activity markers: disease activity scores (DAS)-total (rs = 0.62, p < 0.001); childhood myositis assessment scale (CMAS) (rs = -0.61, p = 0.002); neopterin (rs = 0.57, p = 0.004) and von Willebrand factor antigen (vWF: Ag) (rs = 0.60, p = 0.004). Most of the otoferlin-positive cells were unswitched B cells (63-99.4%), with 65-75% of them expressing plasmablast markers (CD19+, IgM+, CD38hi, CD24-). The findings of this pilot study suggest that otoferlin expression is associated with muscle weakness, making it a possible biomarker of disease activity. Additionally, B cells and plasmablasts were the primary cells expressing otoferlin.


Assuntos
Dermatomiosite , Criança , Humanos , Feminino , Masculino , Dermatomiosite/complicações , Dermatomiosite/genética , Projetos Piloto , Linfócitos B/metabolismo , Debilidade Muscular , RNA Mensageiro/genética
8.
Neurosci Lett ; 803: 137178, 2023 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-36914046

RESUMO

Otof, which encodes otoferlin, knockout mice are considered model mice for auditory neuropathy spectrum disorder, which is characterized by an absent auditory brainstem response (ABR) despite preserved distortion product otoacoustic emission (DPOAE). Although otoferlin-deficient mice lack neurotransmitter release at the inner hair cell (IHC) synapse, it remains unclear how the Otof mutation affects spiral ganglions. Thus, we used Otof-mutant mice carrying the Otoftm1a(KOMP)Wtsi allele (Otoftm1a) and analyzed spiral ganglion neurons (SGNs) in Otoftm1a/tm1a mice by immunolabeling type Ⅰ SGNs (SGN-Ⅰ) and type II SGNs (SGN-II). We also examined apoptotic cells in SGNs. Four-week-old Otoftm1a/tm1a mice had an absent ABR but normal DPOAEs. The number of SGNs was significantly lower in Otoftm1a/tm1a mice on postnatal day 7 (P7), P14, and P28 compared with that of wild-type mice. Moreover, significantly more apoptotic SGNs were observed in Otoftm1a/tm1a mice than in wild-type mice on P7, P14, and P28. SGN-IIs were not significantly reduced in Otoftm1a/tm1a mice on P7, P14, and P28. No apoptotic SGN-IIs were observed under our experimental conditions. In summary, Otoftm1a/tm1a mice showed a reduction in SGNs accompanied by apoptosis of SGN-Ⅰs even before the onset of hearing. We speculate that the reduction in SGNs with apoptosis is a secondary defect caused by a lack of otoferlin in IHCs. Appropriate glutamatergic synaptic inputs may be important for the survival of SGNs.


Assuntos
Neurônios , Gânglio Espiral da Cóclea , Animais , Camundongos , Gânglio Espiral da Cóclea/metabolismo , Neurônios/metabolismo , Apoptose/fisiologia , Transmissão Sináptica/fisiologia , Camundongos Knockout , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
9.
Medicina (Kaunas) ; 59(2)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36837553

RESUMO

Background and objectives: Otoferlin is a multi-C2 domain protein implicated in neurotransmitter-containing vesicle release and replenishment of the cochlear inner hair cell (IHC) synapses. Mutations in the OTOF gene have been associated with two different clinical phenotypes: a prelingual severe-to-profound sensorineural hearing loss (ANSD-DFNB9); and the peculiar temperature-sensitive auditory neuropathy (TS-ANSD), characterized by a baseline mild-to-moderate hearing threshold that worsens to severe-to-profound when the body temperature rises that returns to a baseline a few hours after the temperature has fallen again. The latter clinical phenotype has been described only with a few OTOF variants with an autosomal recessive biallelic pattern of inheritance. Case report: A 7-year-old boy presented a picture compatible with TS-ANSD exacerbated by febrile states or physical exercise with mild-to-moderate hearing loss at low and medium frequencies and a decrease in speech discrimination that worsened with an unfavorable speech-to-noise ratio. Otoacoustic emissions (OAEs) were present whereas auditory brainstem responses (ABRs) evoked by a click or tone-burst were generally absent. No inner ear malformations were described from the CT scan or MRI. Next-generation sequencing (NGS) of the known deafness genes and multi-phasic bioinformatic analyses of the data detected in OTOF a c.2521G>A missense variant and the deletion of 7.4 Kb, which was confirmed by array-comparative genomic hybridization (array-CGH). The proband's parents, who were asymptomatic, were tested by Sanger sequencing and the father presented the c.2521G>A missense variant. Conclusions: The picture presented by the patient was compatible with OTOF-induced TS-ANSD. OTOF has been generally associated with an autosomal recessive biallelic pattern of inheritance; in this clinical report, two pathogenic variants never previously associated with TS-ANSD were described.


Assuntos
Perda Auditiva Central , Perda Auditiva Neurossensorial , Humanos , Hibridização Genômica Comparativa , Perda Auditiva Central/genética , Perda Auditiva Neurossensorial/genética , Proteínas de Membrana/genética , Mutação , Temperatura , Masculino , Criança
10.
J Physiol ; 600(10): 2461-2497, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35439328

RESUMO

Sound localization involves information analysis in the lateral superior olive (LSO), a conspicuous nucleus in the mammalian auditory brainstem. LSO neurons weigh interaural level differences (ILDs) through precise integration of glutamatergic excitation from the cochlear nucleus (CN) and glycinergic inhibition from the medial nucleus of the trapezoid body (MNTB). Sound sources can be localized even during sustained perception, an accomplishment that requires robust neurotransmission. Virtually nothing is known about the sustained performance and the temporal precision of MNTB-LSO inputs after postnatal day (P)12 (time of hearing onset) and whether acoustic experience guides development. Here we performed whole-cell patch-clamp recordings to investigate neurotransmission of single MNTB-LSO fibres upon sustained electrical stimulation (1-200 Hz/60 s) at P11 and P38 in wild-type (WT) and deaf otoferlin (Otof) knock-out (KO) mice. At P11, WT and KO inputs performed remarkably similarly. In WTs, the performance increased drastically between P11 and P38, e.g. manifested by an 8 to 11-fold higher replenishment rate (RR) of synaptic vesicles and action potential robustness. Together, these changes resulted in reliable and highly precise neurotransmission at frequencies ≤100 Hz. In contrast, KO inputs performed similarly at both ages, implying impaired synaptic maturation. Computational modelling confirmed the empirical observations and established a reduced RR per release site for P38 KOs. In conclusion, acoustic experience appears to contribute massively to the development of reliable neurotransmission, thereby forming the basis for effective ILD detection. Collectively, our results provide novel insights into experience-dependent maturation of inhibitory neurotransmission and auditory circuits at the synaptic level. KEY POINTS: Inhibitory glycinergic inputs from the medial nucleus of the trapezoid body (MNTB) to the lateral superior olive (LSO) are involved in sound localization. This brainstem circuit performs reliably throughout life. How such reliability develops is unknown. Here we investigated the role of acoustic experience on the functional maturation of MNTB-LSO inputs at juvenile (postnatal day P11) and young adult ages (P38) employing deaf mice lacking otoferlin (KO). We analysed neurotransmission at single MNTB-LSO fibres in acute brainstem slices employing prolonged high-frequency stimulation (1-200 Hz/60 s). At P11, KO inputs still performed normally, as manifested by normal synaptic attenuation, fidelity, replenishment rate, temporal precision and action potential robustness. Between P11 and P38, several synaptic parameters increased substantially in wild-type mice, collectively resulting in high-fidelity and temporally precise neurotransmission. In contrast, maturation of synaptic fidelity was largely absent in KOs after P11. Collectively, reliable neurotransmission at inhibitory MNTB-LSO inputs develops under the guidance of acoustic experience.


Assuntos
Surdez , Localização de Som , Potenciais de Ação/fisiologia , Animais , Vias Auditivas/fisiologia , Proteínas de Membrana , Camundongos , Núcleo Olivar/fisiologia , Reprodutibilidade dos Testes , Localização de Som/fisiologia , Transmissão Sináptica/fisiologia
11.
Cereb Cortex ; 32(13): 2816-2830, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34849612

RESUMO

Sensory deprivation from the periphery impacts cortical development. Otoferlin deficiency leads to impaired cochlear synaptic transmission and is associated with progressive hearing loss in adults. However, it remains elusive how sensory deprivation due to otoferlin deficiency impacts the early development of the auditory cortex (ACX) especially before the onset of low threshold hearing. To test that, we performed in vivo imaging of the ACX in awake mice lacking otoferlin (Otof-/-) during the first and second postnatal weeks and found that spontaneous and sound-driven cortical activity were progressively impaired. We then characterized the effects on developing auditory cortical circuits by performing in vitro recordings from subplate neurons (SPN), the first primary targets of thalamocortical inputs. We found that in Otof-/- pups, SPNs received exuberant connections from excitatory and inhibitory neurons. Moreover, as a population, SPNs showed higher similarity with respect to their circuit topology in the absence of otoferlin. Together, our results show that otoferlin deficiency results in impaired hearing and has a powerful influence on cortical connections and spontaneous activity in early development even before complete deafness. Therefore, peripheral activity has the potential to sculpt cortical structures from the earliest ages, even before hearing impairment is diagnosed.


Assuntos
Córtex Auditivo , Proteínas de Membrana , Animais , Córtex Auditivo/fisiologia , Audição , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Neurônios/fisiologia , Transmissão Sináptica
12.
Front Cell Dev Biol ; 9: 732930, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34692690

RESUMO

Objective: To investigate the clinical course and genetic etiology of familial temperature-sensitive auditory neuropathy (TSAN), which is a very rare subtype of auditory neuropathy (AN) that involves an elevation of hearing thresholds due to an increase in the core body temperature, and to evaluate the genotype-phenotype correlations in a family with TSAN. Methods: Six members of a non-consanguineous Chinese family, including four siblings complaining of communication difficulties when febrile, were enrolled in this study. The clinical and audiological profiles of the four siblings were fully evaluated during both febrile and afebrile episodes, and the genetic etiology of hearing loss (HL) was explored using next-generation sequencing (NGS) technology. Their parents, who had no complaints of fluctuating HL due to body temperature variation, were enrolled for the genetics portion only. Results: Audiological tests during the patients' febrile episodes met the classical diagnostic criteria for AN, including mild HL, poor speech discrimination, preserved cochlear microphonics (CMs), and absent auditory brainstem responses (ABRs). Importantly, unlike the pattern observed in previously reported cases of TSAN, the ABRs and electrocochleography (ECochG) signals of our patients improved to normal during afebrile periods. Genetic analysis identified a compound heterozygous variant of the OTOF gene (which encodes the otoferlin protein), including one previously reported pathogenic variant, c.5098G > C (p.Glu1700Gln), and one novel variant, c.4882C > A (p.Pro1628Thr). Neither of the identified variants affected the C2 domains related to the main function of otoferlin. Both variants faithfully cosegregated with TSAN within the pedigree, suggesting that OTOF is the causative gene of the autosomal recessive trait segregation in this family. Conclusion: The presence of CMs with absent (or markedly abnormal) ABRs is a reliable criterion for diagnosing AN. The severity of the phenotype caused by dysfunctional neurotransmitter release in TSAN may reflect variants that alter the C2 domains of otoferlin. The observations from this study enrich the current understanding of the phenotype and genotype of TSAN and may lay a foundation for further research on its pathogenesis.

13.
Front Cell Neurosci ; 15: 677543, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335185

RESUMO

Deficiency of otoferlin causes profound prelingual deafness in humans and animal models. Here, we closely analyzed developmental deficits and degenerative mechanisms in Otof knock-out (Otof -/-) mice over the course of 48 weeks. We found otoferlin to be required for proper synapse development in the immature rodent cochlea: In absence of otoferlin, synaptic pruning was delayed, and postsynaptic boutons appeared enlarged at 2 weeks of age. At postnatal day 14 (P14), we found on average ∼15 synapses per inner hair cell (IHC) in Otof -/- cochleae as well as in wild-type controls. Further on, the number of synapses in Otof -/- IHCs was reduced to ∼7 at 8 weeks of age and to ∼6 at 48 weeks of age. In the same period, the number of spiral ganglion neurons (SGNs) declined in Otof -/- animals. Importantly, we found an age-progressive loss of IHCs to an overall number of 75% of wildtype IHCs. The IHC loss more prominently but not exclusively affected the basal aspects of the cochlea. For outer hair cells (OHCs), we observed slightly accelerated age-dependent degeneration from base to apex. This was associated with a progressive decay in DPOAE amplitudes for high frequency stimuli, which could first be observed at the age of 24 weeks in Otof -/- mice. Our data will help to plan and predict the outcome of a gene therapy applied at various ages of DFNB9 patients.

14.
Int J Urol ; 28(4): 424-431, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33465825

RESUMO

OBJECTIVES: To comprehensively investigate the role of otoferlin as a prognostic and diagnostic biomarker in clear cell renal cell carcinoma. METHODS: Three independent cohorts were used to study otoferlin in clear cell renal cell carcinoma: The Cancer Genome Atlas cohort (messenger ribonucleic acid expression; clear cell renal cell carcinoma n = 514, normal renal tissue n = 81); study validation cohort (messenger ribonucleic acid expression; clear cell renal cell carcinoma n = 79, normal renal tissue n = 44); and immunohistochemistry cohort (protein expression; clear cell renal cell carcinoma n = 142, normal renal tissue n = 30). Otoferlin gene expressions were extracted from The Cancer Genome Atlas database or determined using quantitative real-time polymerase chain reaction, respectively. Protein expression was assessed using immunohistochemistry staining against otoferlin on tissue microarrays. Correlations between otoferlin messenger ribonucleic acid/protein expression and clinicopathological data/patient survival were statistically tested. RESULTS: Otoferlin messenger ribonucleic acid expression was significantly upregulated in clear cell renal cell carcinoma compared with normal renal tissue. High expression levels correlated with advanced stage, higher grade and metastatic tumors, accompanied by independent prognostic significance for overall and cancer-specific survival. In contrast, otoferlin protein expression was downregulated in tumor tissue. Although, high otoferlin expression in clear cell renal cell carcinoma was positively correlated with histological grading and independently predictive of a shortened progression-free survival. CONCLUSION: Our data suggest otoferlin as an indicator of tumor aggressiveness and as a prognostic biomarker for patients with clear cell renal cell carcinoma, leading to the conclusion that otoferlin could promote the malignancy of clear cell renal cell carcinoma.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Humanos , Rim/patologia , Neoplasias Renais/genética , Neoplasias Renais/patologia , Estadiamento de Neoplasias , Prognóstico
15.
Genes (Basel) ; 11(12)2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256196

RESUMO

The OTOF gene encodes otoferlin, a critical protein at the synapse of auditory sensory cells, the inner hair cells (IHCs). In the absence of otoferlin, signal transmission of IHCs fails due to impaired release of synaptic vesicles at the IHC synapse. Biallelic pathogenic and likely pathogenic variants in OTOF predominantly cause autosomal recessive profound prelingual deafness, DFNB9. Due to the isolated defect of synaptic transmission and initially preserved otoacoustic emissions (OAEs), the clinical characteristics have been termed "auditory synaptopathy". We review the broad phenotypic spectrum reported in patients with variants in OTOF that includes milder hearing loss, as well as progressive and temperature-sensitive hearing loss. We highlight several challenges that must be addressed for rapid clinical and genetic diagnosis. Importantly, we call for changes in newborn hearing screening protocols, since OAE tests fail to diagnose deafness in this case. Continued research appears to be needed to complete otoferlin isoform expression characterization to enhance genetic diagnostics. This timely review is meant to sensitize the field to clinical characteristics of DFNB9 and current limitations in preparation for clinical trials for OTOF gene therapies that are projected to start in 2021.


Assuntos
Variação Genética/genética , Perda Auditiva Neurossensorial/genética , Perda Auditiva/genética , Proteínas de Membrana/genética , Animais , Humanos
16.
Int J Mol Sci ; 21(19)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036242

RESUMO

Anisotropic gap junctional coupling is a distinct feature of astrocytes in many brain regions. In the lateral superior olive (LSO), astrocytic networks are anisotropic and oriented orthogonally to the tonotopic axis. In CaV1.3 knock-out (KO) and otoferlin KO mice, where auditory brainstem nuclei are deprived from spontaneous cochlea-driven neuronal activity, neuronal circuitry is disturbed. So far it was unknown if this disturbance is also accompanied by an impaired topography of LSO astrocyte networks. To answer this question, we immunohistochemically analyzed the expression of astrocytic connexin (Cx) 43 and Cx30 in auditory brainstem nuclei. Furthermore, we loaded LSO astrocytes with the gap junction-permeable tracer neurobiotin and assessed the network shape and orientation. We found a strong elevation of Cx30 immunoreactivity in the LSO of CaV1.3 KO mice, while Cx43 levels were only slightly increased. In otoferlin KO mice, LSO showed a slight increase in Cx43 as well, whereas Cx30 levels were unchanged. The total number of tracer-coupled cells was unaltered and most networks were anisotropic in both KO strains. In contrast to the WTs, however, LSO networks were predominantly oriented parallel to the tonotopic axis and not orthogonal to it. Taken together, our data demonstrate that spontaneous cochlea-driven neuronal activity is not required per se for the formation of anisotropic LSO astrocyte networks. However, neuronal activity is required to establish the proper orientation of networks. Proper formation of LSO astrocyte networks thus necessitates neuronal input from the periphery, indicating a critical role of neuron-glia interaction during early postnatal development in the auditory brainstem.


Assuntos
Astrócitos/patologia , Canais de Cálcio Tipo L/genética , Surdez/patologia , Junções Comunicantes/metabolismo , Proteínas de Membrana/genética , Complexo Olivar Superior/patologia , Animais , Astrócitos/metabolismo , Conexina 30/genética , Conexina 43/genética , Surdez/congênito , Surdez/genética , Modelos Animais de Doenças , Junções Comunicantes/patologia , Regulação da Expressão Gênica , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Complexo Olivar Superior/metabolismo
17.
Vestn Otorinolaringol ; 85(2): 21-25, 2020.
Artigo em Russo | MEDLINE | ID: mdl-32476384

RESUMO

Otoferlin (OTOF) gene mutations are the most common cause of hereditary ANSD according to investigations in several countries. THE AIM: Of this study was to estimate the prevalence of OTOF mutations in Russian children with ANSD and evaluate audiological and clinical features of OTOF-related ANSD. PATIENTS AND METHODS: 28 children with bilateral ANSDwere enrolled in the investigation. Two step genetic testing was performed: first step - GJB2 gene testing to exclude GJB2-related hearing loss; second step - NGS-based sequencing to explore another 35 hearing loss genes (including OTOF). RESULTS: OTOF mutations, including 6 new variants, were found in 5 children with ANSD (18%). All 5 children had no risk factors for hearing loss and passed hearing screening. OAE and cochlear microphonics were present till the last testing at the age of 4-5 years. ABR were not detectable. The ASSR were measurable bilaterally at all frequencies in all cases, but they did not correlate with behavioral thresholds that revealed severe hearing loss. Hearing thresholds were stable during follow up period. 3 children underwent cochlear implantation. After cochlear implantation auditory nerve action potentials to electric stimulation were detected within normal range. CONCLUSION: Genetic testing of children with ANSD and first of all OTOF testing enables to reveal hearing loss etiology and provide the optimal rehabilitation approach, including cochlear implantation, as early as possible.


Assuntos
Implante Coclear , Surdez , Perda Auditiva Central , Criança , Humanos , Proteínas de Membrana , Federação Russa
18.
Cells ; 9(3)2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32106631

RESUMO

Ferlins are multiple-C2-domain proteins involved in Ca2+-triggered membrane dynamics within the secretory, endocytic and lysosomal pathways. In bony vertebrates there are six ferlin genes encoding, in humans, dysferlin, otoferlin, myoferlin, Fer1L5 and 6 and the long noncoding RNA Fer1L4. Mutations in DYSF (dysferlin) can cause a range of muscle diseases with various clinical manifestations collectively known as dysferlinopathies, including limb-girdle muscular dystrophy type 2B (LGMD2B) and Miyoshi myopathy. A mutation in MYOF (myoferlin) was linked to a muscular dystrophy accompanied by cardiomyopathy. Mutations in OTOF (otoferlin) can be the cause of nonsyndromic deafness DFNB9. Dysregulated expression of any human ferlin may be associated with development of cancer. This review provides a detailed description of functions of the vertebrate ferlins with a focus on muscle ferlins and discusses the mechanisms leading to disease development.


Assuntos
Distrofia Muscular do Cíngulo dos Membros/metabolismo , Vertebrados/metabolismo , Animais , Humanos
19.
Hear Res ; 394: 107912, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32067799

RESUMO

Adeno-associated virus (AAV)-mediated gene therapy has evolved from the bench to the bedside, and is now considered the therapy of choice for certain inherited diseases. AAVs are attractive vectors for several reasons: they are nonpathogenic, result in long-term transgene expression, have a low immunogenic profile, and the various AAV serotypes and variants display broad but distinct tropisms allowing the targeting of specific cell types. However, one of the greatest limitations of AAVs is the limited genome-packaging capacity of ∼4.7 kb. Given that numerous diseases are caused by mutations in genes with coding sequences exceeding this capacity, packaging into a single AAV capsid is currently unfeasible for larger genes. Taking advantage of the AAV genome's ability to concatemerize, multiple strategies have been explored to overcome the size limit of AAV vectors. One strategy is to split large transgenes into two or three parts, generating dual or triple AAV vectors. Coinfection of a cell with these two or three AAVs will then, through a variety of mechanisms, result in the transcription of an assembled mRNA that could not be encoded by a single AAV vector. This review: 1) documents AAV dual and triple vector strategies currently employed in a variety of tissues, and highlights the advantages and disadvantages of each method; 2) describes the first successful studies using the dual vector approach to restore hearing and prevent deafness in a mouse model of non-syndromic deafness due to absence of the otoferlin protein function, and the implications of these findings for the future of gene therapy in the human inner ear; and 3) highlights additional different deafness genes that could be potential future targets for gene therapy using the dual vector approach.


Assuntos
Dependovirus , Orelha Interna , Animais , Surdez , Dependovirus/genética , Vetores Genéticos , Proteínas de Membrana , Transgenes
20.
Pestic Biochem Physiol ; 163: 94-101, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31973875

RESUMO

Imidacloprid, a widely used neonicotinoid insecticide, has led to a decline in the honey bee population worldwide. An invertebrate insect prey with neonicotinoid toxicity can adversely affect insectivores, such as echolocating bats. The aim of the current study was to examined whether imidacloprid toxicity may interfere echolocation system such as vocal, auditory, orientation, and spatial memory systems in the insectivorous bat. By comparing the ultrasound spectrum, auditory brainstem-evoked potential, and flight trajectory, we found that imidacloprid toxicity may interfere functions in vocal, auditory, orientation, and spatial memory system of insectivorous bats (Hipposideros armiger terasensis). As suggested from immunohistochemistry and western blots evidences, we found that insectivorous bats after suffering imidacloprid toxicity may decrease vocal-related FOXP2 expressions in the superior colliculus, auditory-related prestin expressions in the cochlea, and the auditory-related otoferlin expressions in the cochlea and the inferior colliculus, and cause inflammation and mitochondrial dysfunction-related apoptosis in the hippocampal CA1 and medial entorhinal cortex. These results may provide a reasonable explanation about imidacloprid-induced interference of echolocation system in insectivorous bats.


Assuntos
Quirópteros , Ecolocação , Inseticidas , Animais , Abelhas , Neonicotinoides , Nitrocompostos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA