Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Fish Biol ; 105(1): 141-152, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38653715

RESUMO

Ocean acidification could modify the bioavailability and chemical properties of trace elements in seawater, which could affect their incorporation into the calcareous structures of marine organisms. Fish otoliths, biomineralized ear stones made by aragonite, are suspended within the endolymph fluid of teleosts, indicating that the elemental incorporation of otoliths might also be susceptible to ocean acidification. In this study, we evaluated the combined effects of CO2-induced ocean acidification (pH 8.10, 7.70, and 7.30, corresponding to ocean acidification scenarios under the representative concentration pathway 8.5 model as projected by the Intergovernmental Panel on Climate Change) and water elemental concentrations of strontium (Sr) and barium (Ba; low, medium, and high) on elemental incorporation into otoliths of the flounder Paralichthys olivaceus at early life stages. Our results revealed that the elemental incorporation of Sr and Ba into otoliths was principally dependent on the corresponding water elemental concentrations rather than on ocean acidification. Moreover, the partition coefficients (DMe) of Sr and Ba may stabilize after dynamic equilibrium is reached as the water elemental concentration increases, but are not affected by ocean acidification. Therefore, the incorporation of Sr and Ba into otoliths of the flounder at early life stages may not serve as an effective indicator of ocean acidification. In other words, the findings suggest that ocean acidification does not impact the incorporation of Sr and Ba incorporation into otoliths when tracing the temperature or salinity experiences of the flounder. Our findings will provide new knowledge for understanding the potential ecological effects of ocean acidification on the recruitment dynamics of fish species.


Assuntos
Bário , Linguado , Membrana dos Otólitos , Água do Mar , Estrôncio , Animais , Estrôncio/análise , Membrana dos Otólitos/química , Membrana dos Otólitos/crescimento & desenvolvimento , Bário/análise , Água do Mar/química , Linguado/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Dióxido de Carbono , Linguados/crescimento & desenvolvimento , Linguados/metabolismo , Mudança Climática , Acidificação dos Oceanos
2.
J Fish Biol ; 104(4): 1054-1066, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38168734

RESUMO

Diadromous fish have exhibited a dramatic decline since the end of the 20th century. The allis shad (Alosa alosa) population in the Gironde-Garonne-Dordogne (GGD) system, once considered as a reference in Europe, remains low despite a fishing ban in 2008. One hypothesis to explain this decline is that the downstream migration and growth dynamics of young stages have changed due to environmental modifications in the rivers and estuary. We retrospectively analysed juvenile growth and migration patterns using otoliths from adults caught in the GGD system 30 years apart during their spawning migration, in 1987 and 2016. We coupled otolith daily growth increments and laser ablation inductively-coupled plasma mass spectrometry measurements of Sr:Ca, Ba:Ca, and Mn:Ca ratios along the longest growth axis from hatching to an age of 100 days (i.e., during the juvenile stage). A back-calculation allowed us to estimate the size of juveniles at the entrance into the brackish estuary. Based on the geochemistry data, we distinguished four different zones that juveniles encountered during their downstream migration: freshwater, fluvial estuary, brackish estuary, and lower estuary. We identified three migration patterns during the first 100 days of their life: (a) Individuals that reached the lower estuary zone, (b) individuals that reached the brackish estuary zone, and (c) individuals that reached the fluvial estuary zone. On average, juveniles from the 1987 subsample stayed slightly longer in freshwater than juveniles from the 2016 subsample. In addition, juveniles from the 2016 subsample entered the brackish estuary at a smaller size. This result suggests that juveniles from the 2016 subsample might have encountered more difficult conditions during their downstream migration, which we attribute to a longer exposure to the turbid maximum zone. This assumption is supported by the microchemical analyses of the otoliths, which suggests based on wider Mn:Ca peaks that juveniles in 2010s experienced a longer period of physiological stress during their downstream migration than juveniles in 1980s. Finally, juveniles from the 2016 subsample took longer than 100 days to exit the lower estuary than we would have expected from previous studies. Adding a new marker (i.e., Ba:Ca) helped us refine the interpretation of the downstream migration for each individual.


Assuntos
Água Doce , Rios , Animais , Estudos Retrospectivos , França/epidemiologia , Europa (Continente) , Peixes
3.
Mar Environ Res ; 193: 106296, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38113589

RESUMO

A recent study based on gonad histology revealed that the existence of the spawning grounds for Gray's grenadier anchovy (Coilia grayii) and Osbeck's grenadier anchovy (C. mystus) in the Min River Estuary, the largest in Fujian Province, southern China. Further confirming their natal sources and migratory patterns is essential to understand their life histories. We used otolith microchemistry to assess the origins and habitat uses of 23 C. grayii and 22 C. mystus, collected the Min River Estuary and the adjacent waters. The results showed that C. grayii spawned in both freshwater (n| = 14) and brackish water (n = 9), and C. mystus spawned mainly in brackish water (n| = 20) with minor in freshwater (n| = 1) and marine water (n| = 1). The migratory patterns of C. grayii (four types) and C. mystus (five types) were diverse, mainly exhibiting anadromous and semi-anadromous behaviors. The first migratory behavior of C. grayii and C. mystus occurred within the age of the first year. The findings have significant implications for fishery stock management of the Min River Estuary and its adjacent waters.


Assuntos
Membrana dos Otólitos , Rios , Animais , Estuários , Microquímica , Peixes , China
4.
Ecol Evol ; 13(9): e10463, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37670821

RESUMO

The analysis of otolith Sr isotope ratios (87Sr/86Sr) is a powerful method to study fish migration in freshwater areas. However, few studies have applied this method to study fish movement in brackish-water environments. Furthermore, despite the fact that habitat differentiation has been shown to drive genetic differentiation and reproductive isolation among stickleback fish, no studies have used the otolith 87Sr/86Sr ratios to analyze habitat differentiation between stickleback ecotypes and species. In this study, we analyzed the otolith 87Sr/86Sr ratios of three sympatric stickleback species of the genus Pungitius in the Shiomi River on Hokkaido Island, Japan: P. tymensis, the brackish-water type of the P. pungitius-P. sinensis complex, and the freshwater type of the P. pungitius-P. sinensis complex. First, we created a mixing equation to depict the relationship between habitat salinity and the 87Sr/86Sr ratios of river water. We found that the otolith 87Sr/86Sr ratios differed significantly among the three species, indicating that the three species utilize habitats with different salinities: P. tymensis and the brackish-water type inhabit freshwater and brackish-water environments, respectively, with the freshwater type using intermediate habitats. In addition, we found that some freshwater individuals moved to habitats with higher salinities as they grew. Our study demonstrates that the analysis of otolith 87Sr/86Sr ratios is a useful method for studying the habitat use of fish in brackish-water environments and habitat differentiation among closely related sympatric and parapatric species.

5.
J Fish Biol ; 103(5): 884-896, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37349978

RESUMO

Alternative migratory tactics in salmonids reflect the large observed interindividual variation in spatial behaviour which may range from strict freshwater residency to uninterrupted anadromy. In Salvelinus, sea migrations are performed during the ice-free period as freshwater overwintering is thought to be obligatory due to physiological constraints. As a result, individuals can either migrate the next spring or remain in freshwater, as anadromy is generally considered facultative. In Arctic charr (Salvelinus alpinus), skipped migrations are known to occur, but limited data are available regarding their frequencies within and among populations. Here, the authors used an otolith microchemistry approach relying on strontium (88 Sr) to infer movements between freshwater and marine habitats, and annual oscillations in zinc (64 Zn) to help with age identification. They determined the age-at-first-migration and the occurrence of subsequent annual migrations in two Nunavik Arctic charr populations sampled in Deception Bay (Salluit) and river systems linked to Hopes Advance Bay (Aupaluk), northern Québec, Canada. The mode for age-at-first-migration was 4+ for both populations, although it exhibited large variation (range: 0+ to 8+). Skipped migrations constituted a rare event, as 97.7% and 95.6% of the examined Arctic charr at Salluit (n = 43, mean age = 10.3 ± 2.0 years) and Aupaluk (n = 45, mean age = 6.0 ± 1.9 years), respectively, were found to have performed uninterrupted annual migrations after initiation of the behaviour. The consistency of the annual migrations suggests that the tactic is sufficiently fitness rewarding to be maintained under current environmental conditions. From a fisheries management perspective, these repeated migrations combined with low site fidelity in this species may lead to large interannual variations in abundance at the local scale, which may represent a challenge for monitoring Arctic charr demographics on a river-by-river basis.


Assuntos
Água Doce , Membrana dos Otólitos , Humanos , Animais , Canadá , Quebeque , Truta/fisiologia
6.
Biology (Basel) ; 11(12)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36552242

RESUMO

To secure traceability along supply chains of foodstuffs, the spatiotemporal variability of trace elements' fingerprints (TEF) in fish otoliths provides a powerful tool to determine and discriminate the origin. Spatiotemporal variability of TEF was examined in a commercially important seafood, Japanese eel (Anguilla japonica), by means of laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS). Six elemental ratios (Na:Ca, Mg:Ca, P:Ca, K:Ca, Sr:Ca, and Ba:Ca) were determined in the otoliths of specimens originating from four aquaculture farms to examine the spatial variability and from one wild habitat over three years to examine the temporal variation. Significant temporal variation was found in Mg:Ca and Sr:Ca ratios; however, discriminant function analysis showed a lower temporal variation (50%) for the three years. Spatial variations were significant in Sr:Ca and Ba:Ca ratios, and discriminant function analysis showed high (80%) spatial variation among the four farms. Otolith TEF in the Japanese eel showed specific spatial variation among aquaculture farms but intangible temporal variation, suggesting the otolith TEF reflect each aquaculture environment. The present study shows that otolith TEF can be a reliable tool to discriminate the geographic origin of the Japanese eel.

7.
Polar Biol ; 44(7): 1353-1364, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720375

RESUMO

Populations of northern Dolly Varden (Salvelinus malma malma) exhibit partial seaward migration, yet little is known about this phenomenon in Dolly Varden populations. Our study analyzed data from three different Dolly Varden populations in the western Canadian Arctic in order to determine if: (1) differences in size-at-first seaward migration exist between fish that migrate at early and late ages among populations inhabiting different river systems, and (2) annual growth influences anadromous or resident life history choice. Otolith strontium analysis and back-calculation were used to determine age- and size-at-first seaward migration, respectively. Differences in age- and size-at-first seaward migration were determined across river system and migration age. Back-calculated fish lengths were compared using a mixed effect model to determine how early growth influences migratory tactics (early or late aged smolt, or resident). Our results indicate that fish exhibiting faster early growth migrated in earlier years and at smaller sizes than slower growing fish, however size- and age-at first seaward migration varied by river system. Faster growing Dolly Varden tended to become either residents or early smolts, while slower growth was associated with smolting later in life. This is contrary to life history theory where the fastest growing fish in a population should mature as a resident. Our results indicate factors other than growth may be influencing life history 'decisions' in Dolly Varden. Future work on growth efficiencies and metabolic rates is needed to assess how they affect migratory behaviours.

8.
J Anim Ecol ; 90(11): 2560-2572, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34160071

RESUMO

Directional or stabilising selection should drive the expression of a dominant movement phenotype within a population. Widespread persistence of multiple movement phenotypes within wild populations, however, suggests that individuals that move (movers) and those that do not (residents) can have commensurate performance. The costs and benefits of mover and resident phenotypes remain poorly understood. Here, we explored how the presence and timing of movements are correlated with annual somatic growth rates, a useful proxy for performance because it is easily measured and rapidly reflects environmental changes. We used otolith growth measurements and stable isotope analyses to recreate growth and among-reach movement histories of a partially migrating, long-lived freshwater fish, golden perch Macquaria ambigua. We compared the association between movement and growth at two temporal scales: (a) short-term (annual) differences in growth, in the years preceding, during or following movement; and (b) long-term (lifetime) differences in growth. Overall, 59% of individuals performed at least one among-reach movement, with these individuals subsequently more likely to move repeatedly throughout their lives. Movers grew faster than residents, with this difference most pronounced in the juvenile and early adult stages, when most movements occurred. Annual growth did not, however, change immediately prior to or following a specific movement event. Among-individual variation in growth was initially higher for residents than for movers but decreased with age, at a faster rate for residents than for movers, such that levels conformed after 5 years of age. Our results indicate that lifetime movement is linked to faster growth in the early years of a fish's life. These faster growing movers are likely to be larger at a given age, leading to numerous potential benefits. However, the persistence of resident phenotypes suggests that there is likely a cost-benefit trade-off to moving. The presence of multiple movement phenotypes may contribute to the resilience of populations by buffering against naturally and anthropogenically exacerbated environmental variability.


Assuntos
Percas , Perciformes , Animais , Água Doce , Movimento , Membrana dos Otólitos
9.
J Fish Biol ; 98(1): 33-43, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32964414

RESUMO

Movement is a fundamental aspect of fish ecology, and it therefore represents an important trait to monitor for the management and conservation of fish populations. This is especially true for small benthic fish, as they often inhabit part of the catchment where their movement may be restricted by alterations to river connectivity due to human activity. Still, the movement of these small benthic fish remains poorly understood, partly because of their small size and their cryptic nature. This applies to Percilia irwini, an endangered small darter native to the south-central region of Chile. Its habitat has been affected by the presence of large hydroelectric dams and is currently threatened by the construction of several others. In this study, the authors investigated movement patterns of P. irwini from populations inhabiting different parts of the Biobío catchment, with different levels of connectivity due to natural and/or human-induced features. The authors combined chronological clustering with random forest classification to reconstruct lifelong movements from multi-elemental otolith microchemistry transects. The majority of the movements detected occurred in an undisturbed part of the catchment. These were directional upstream movements occurring between capture sites from the lower and the middle reaches of the river, representing a distance of nearly 30 km, a distance much larger than previously thought. Nonetheless, in the part of the catchment where connectivity was affected by human activity, no such movements were identified. This study shows that connectivity alteration could impede naturally occurring movement and further threaten the resilience of populations of P. irwini. Furthermore, the results presented are used to discuss advantages and disadvantages of microchemistry analysis for studying movement of small benthic fish.


Assuntos
Migração Animal/fisiologia , Espécies em Perigo de Extinção , Perciformes/fisiologia , Rios , Animais , Chile , Ecossistema , Membrana dos Otólitos/química
10.
J Fish Biol ; 97(5): 1582-1585, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32880933

RESUMO

For the first time, an overlooked aspect of partial migration was quantified using otolith microchemistry and brown trout, Salmo trutta, as a model species. Relative contributions of freshwater resident and anadromous female brown trout to mixed-stock sea trout populations in the Baltic Sea were estimated. Out of 236 confirmed wild sea trout sampled around the coast of Estonia 88% were of anadromous maternal origin and 12% were of resident maternal origin. This novel finding underscores the importance of the resident contingent in maintaining the persistence and resilience of the migratory contingent.


Assuntos
Migração Animal/fisiologia , Microquímica , Membrana dos Otólitos/química , Truta/fisiologia , Animais , Estônia , Feminino , Água Doce
11.
J Fish Biol ; 97(4): 1187-1200, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32799355

RESUMO

The white mullet Mugil curema supports several fisheries in the neotropical region; nevertheless, the population structure is still elusive. The aim of this study was to assess the presence of adult management units and nursery areas from five sampling sites throughout the Gulf of Mexico and northern Brazil using otolith microchemistry. The Li/Ca, Na/Ca, Mn/Ca, Sr/Ca, Ba/Ca and Pb/Ca ratios were measured in otolith core (juvenile stage) and edge (adult stage) (N = 131) using laser ablation-inductively coupled plasma-mass spectrometry. Several ratios were significantly different between sampling sites for core and edge (P < 0.05). For otolith edge, permutational multivariate analysis of variance showed significant differences (P < 0.05) between all sampling sites from Mexico (except between Mecoacán and Tamiahua, P > 0.05) and between Mexico (pooled samples) and Brazil. Quadratic discriminant analyses showed jackknifed classification higher in the edge (66.6% and 99.5% for Mexico and Brazil plus Mexico, respectively) than in the core (46.3% and 76.5% Mexico and Brazil plus Mexico, respectively). The two cluster analyses based on the core microchemistry (Mexico and Brazil plus Mexico) produced three main clusters, which did not coincide with catchment areas. These results support the segregation of the M. curema adult life stages among several sampling sites from Mexico and Brazil; moreover, core analysis suggested that the nursery areas did not correspond to the capture sites or adults stocks.


Assuntos
Membrana dos Otólitos/química , Smegmamorpha/classificação , Animais , Brasil , Pesqueiros , Golfo do México , México , Microquímica
12.
Mol Ecol ; 29(8): 1421-1435, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32176403

RESUMO

Dispersal sets the fundamental scales of ecological and evolutionary dynamics and has important implications for population persistence. Patterns of marine dispersal remain poorly understood, partly because dispersal may vary through time and often homogenizes allele frequencies. However, combining multiple types of natural tags can provide more precise dispersal estimates, and biological collections can help to reconstruct dispersal patterns through time. We used single nucleotide polymorphism genotypes and otolith core microchemistry from archived collections of larval summer flounder (Paralichthys dentatus, n = 411) captured between 1989 and 2012 at five locations along the US East coast to reconstruct dispersal patterns through time. Neither genotypes nor otolith microchemistry alone were sufficient to identify the source of larval fish. However, microchemistry identified clusters of larvae (n = 3-33 larvae per cluster) that originated in the same location, and genetic assignment of clusters could be made with substantially more confidence. We found that most larvae probably originated near a biogeographical break (Cape Hatteras) and that larvae were transported in both directions across this break. Larval sources did not shift north through time, despite the northward shift of adult populations in recent decades. Our novel approach demonstrates that summer flounder dispersal is widespread throughout their range, on both intra- and intergenerational timescales, and may be a particularly important process for synchronizing population dynamics and maintaining genetic diversity during an era of rapid environmental change. Broadly, our results reveal the value of archived collections and of combining multiple natural tags to understand the magnitude and directionality of dispersal in species with extensive gene flow.


Assuntos
Linguado , Animais , Peixes , Linguado/genética , Fluxo Gênico , Larva/genética , Dinâmica Populacional
13.
J Fish Biol ; 96(2): 516-526, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31872428

RESUMO

This study evaluated the size and age distributions and otolith microchemistry of the Japanese eel Anguilla japonica in freshwater and brackish water areas in the Aki and Tsuchikawa rivers for 1 year, and in brackish water areas in the Asahi River for 3 years to understand the movements of Japanese eels between continental habitats of different salinity after recruitment (n = 759). For all three rivers, the total length (LT ) and age distributions were consistent; yellow eels captured in the upper brackish water (Aki River: 353.5 ± 77.4 mm and 3.0 ± 0.8 years; Tsuchikawa River: 287.7 ± 87.3 mm and 3.7 ± 1.3 years; Asahi River: 418.2 ± 112.1 mm and 4.2 ± 1.7 years) were smaller and younger than not only those in the fresh water of the two rivers but also those in the lowest brackish water sampling areas (Aki River: 436.0 ± 71.6 mm and 3.8 ± 1.1 years; Tsuchikawa River: 370.9 ± 121.7 mm and 4.9 ± 2.3 years; Asahi River: 558.5 ± 85.9 mm and 5.7 ± 1.7 years). In the Asahi River, these tendencies were found throughout the 3 years. Otolith analysis indicated that the majority of the eels captured in the lowest brackish water areas had moved down from upstream. These results suggest that Japanese eels inhabiting saline water generally move from the upper estuary as they grow. The upper estuary can be an important area for the management of this species because these eels spend their early continental growth life there.


Assuntos
Envelhecimento/fisiologia , Anguilla/fisiologia , Ecossistema , Membrana dos Otólitos/química , Águas Salinas , Distribuição Animal , Animais , Japão , Rios , Salinidade
14.
Ecol Evol ; 9(18): 10630-10643, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31624571

RESUMO

Intraspecific trait variation may result from "carryover effects" of variability of environments experienced at an earlier life stage. This phenomenon is particularly relevant in partially migrating populations composed of individuals with divergent early life histories. While many studies have addressed the causes of partial migration, few have investigated the consequences for between-individual variability later in life.We studied carryover effects of larval environment in a facultatively diadromous New Zealand fish, Gobiomorphus cotidianus, along an estuarine salinity gradient. We investigated the implications of varying environmental conditions during this critical stage of ontogeny for adult phenotype.We inferred past environmental history of wild-caught adult fish using otolith microchemistry (Sr/Ca) as a proxy for salinity. We tested for main and interactive effects of larval and adult environment on a suite of traits, including growth rates, behavior (exploration and activity), parasite load, and diet (stable isotopes and gut contents).We found a Sr/Ca consistent with a continuum from freshwater to brackish environments, and with different trajectories from juvenile to adult habitat. Fish with Sr/Ca indicating upstream migration were more vulnerable to trematode infection, suggesting a mismatch to freshwater habitat. Diet analysis suggested an interactive effect of larval and adult environments on trophic position and diet preference, while behavioral traits were unrelated to environment at any life stage. Growth rates did not seem to be affected by past environment.Overall, we show that early life environment can have multiple effects on adult performance and ecology, with the potential for lifetime fitness trade-offs associated with life history. Our study highlights that even relatively minor variation in rearing conditions may be enough to generate individual variation in natural populations.

15.
Sci Total Environ ; 655: 363-373, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30471605

RESUMO

The Lower Athabasca Region (LAR) is home to the largest bitumen deposit in Alberta, and has seen industrial development related to the extraction and processing of bituminous sands since the late 1960s. Along with industrial and economic growth related to oil sands development, environmental concerns have increased in recent decades, including those about potential effects on fish. We measured major and trace element concentrations in Trout-perch otoliths from the Athabasca and Clearwater Rivers in the LAR, to illustrate spatial variations and identify possible industrial impacts. Both laser ablation ICP-MS and solution-based ICP-MS methods were employed. Of the trace elements enriched in bitumen (V, Ni, Mo and Re), only Ni and Re were above the limits of detection using at least one of the methods. The only significant differences in element concentrations between upstream and downstream locations were found for Li, Cu, and Pb which were more abundant upstream of industry. For comparison and additional perspective, otoliths from the same fish species, but taken from the Batchawana River in northern Ontario, were also examined. The fish from Alberta yielded greater concentrations of Ba, Bi, Li, Mg, Na, Re, Sc, Th and Y, but the Ontario fish had more Cr, Rb and Tl, likely because of differences in geology.


Assuntos
Monitoramento Ambiental/métodos , Metais Pesados/análise , Membrana dos Otólitos/química , Perciformes/crescimento & desenvolvimento , Oligoelementos/análise , Poluentes Químicos da Água/análise , Alberta , Animais , Hidrocarbonetos/química , Limite de Detecção , Campos de Petróleo e Gás , Ontário , Análise Espacial
16.
Environ Pollut ; 240: 457-465, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29754095

RESUMO

Unconventional natural gas drilling and the use of hydraulic fracturing technology have expanded rapidly in North America. This expansion has raised concerns of surface water contamination by way of spills and leaks, which may be sporadic, small, and therefore difficult to detect. Here we explore the use of otolith microchemistry as a tool for monitoring surface water contamination from generated waters (GW) of unconventional natural gas drilling. We exposed Brook Trout in the laboratory to three volumetric concentrations of surrogate generated water (SGW) representing GW on day five of drilling. Transects across otolith cross-sections were analyzed for a suite of elements by LA-ICP-MS. Brook Trout exposed to a 0.01-1.0% concentration of SGW for 2, 15, and 30 days showed a significant (p < 0.05) relationship of increasing Sr and Ba concentrations in all but one treatment. Analyses indicate lesser concentrations than used in this experiment could be detectable in surface waters and provide support for the use of this technique in natural habitats. To our knowledge, this is the first demonstration of how trace elements in fish otoliths may be used to monitor for surface water contamination from GW.


Assuntos
Monitoramento Ambiental/métodos , Mineração , Gás Natural , Membrana dos Otólitos/química , Poluentes Químicos da Água/análise , Poluição da Água/estatística & dados numéricos , Animais , Ecossistema , Microquímica , América do Norte , Oligoelementos/análise , Truta , Poluição da Água/análise
17.
J Fish Biol ; 91(2): 695-703, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28703307

RESUMO

This study reports descent of Atlantic salmon Salmo salar fry from their natal streams to brackish waters of the Baltic Sea and their use of this environment as an alternative rearing habitat before ascending back to freshwater streams. To the authors' knowledge, residency in a brackish environment has not previously been demonstrated in S. salar fry. Recruitment success and evolutionary significance of this alternative life-history strategy are presently not known.


Assuntos
Migração Animal , Salmo salar/fisiologia , Animais , Comportamento Animal , Ecossistema , Água Doce , Salmo salar/crescimento & desenvolvimento , Água do Mar
18.
Mar Pollut Bull ; 118(1-2): 382-387, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28237077

RESUMO

Black bream (Acanthopagrus butcheri) were collected from an artificial inlet, Claisebrook Cove, Western Australia. Claisebrook Cove is adjacent to an historic contaminated site that was remediated during the 1990s. It was later identified as a priority area due to elevated levels of sediment contaminants including Zn, Cu, and Pb. Black bream were collected from this cove in 2005 and 2012 and their otoliths were analysed by laser ablation inductively coupled plasma mass spectrometry of the most recent growth zone. Levels of Zn and Mn, which are metabolically regulated, did not correlate with sediment contamination. However, reduction in sediment Cu levels over time coincided with reduced Cu otolith levels from 2005 to 2012. Results indicate that the elemental composition of the marginal edge of Black bream otoliths can identify bioavailable contaminants in an urban estuary and, with monitoring, can be utilized to establish long-term trends.


Assuntos
Metais Pesados/análise , Membrana dos Otólitos/química , Poluentes Químicos da Água/análise , Animais , Baías , Estuários , Sedimentos Geológicos , Microquímica , Perciformes , Austrália Ocidental
19.
Ecol Appl ; 27(2): 363-377, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27875020

RESUMO

Production patterns of highly mobile species, such as anadromous fish, often exhibit high spatial and temporal heterogeneity across landscapes. Such variability is often asynchronous in time among habitats, which stabilizes production at aggregate scales of complexity. Reconstructing production patterns explicitly in space and time across multiple scales, however, remains difficult but is important for prioritizing habitat conservation. This is especially true for fishes inhabiting river basins due to long-range dispersal, high mortality at early life stages, complex population structure and elusive life history variation. We develop a new approach for mapping production patterns of Pacific salmon across a large river basin by integrating otolith microchemistry and dendritic isoscape models. The geographically continuous Bayesian assignment framework presented here yielded high accuracies (>90%) and relatively high precisions (precisions <4%; i.e., assignment areas of <530 river km of the 13 100 km total river length) when used to determine the natal source of known-origin juvenile Chinook salmon captured throughout the study region. Integrating these methods enabled us to base estimates of provenance and habitat use of individuals on a per location basis using strontium isotopic data throughout the continuous spatial domain of a river network. Such a framework provides substantial advantages over the more common nominal approach to employing otolith microchemistry to reconstruct movement patterns of fish. In doing so, we reconstructed the spatial production patterns of adult Chinook salmon returning to a large watershed in Bristol Bay, Alaska and illustrate the power of such an approach to conservation efforts.


Assuntos
Conservação dos Recursos Naturais/métodos , Pesqueiros , Membrana dos Otólitos/química , Reprodução , Salmão/fisiologia , Alaska , Migração Animal , Animais , Microquímica , Rios
20.
R Soc Open Sci ; 3(6): 160206, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27429777

RESUMO

Amazonian fishes employ diverse migratory strategies, but the details of these behaviours remain poorly studied despite numerous environmental threats and heavy commercial exploitation of many species. Otolith microchemistry offers a practical, cost-effective means of studying fish life history in such a system. This study employed a multi-method, multi-elemental approach to elucidate the migrations of five Amazonian fishes: two 'sedentary' species (Arapaima sp. and Plagioscion squamosissimus), one 'floodplain migrant' (Prochilodus nigricans) and two long-distance migratory catfishes (Brachyplatystoma rousseauxii and B. filamentosum). The Sr : Ca and Zn : Ca patterns in Arapaima were consistent with its previously observed sedentary life history, whereas Sr : Ca and Mn : Ca indicated that Plagioscion may migrate among multiple, chemically distinct environments during different life-history stages. Mn : Ca was found to be potentially useful as a marker for identifying Prochilodus's transition from its nursery habitats into black water. Sr : Ca and Ba : Ca suggested that B. rousseauxii resided in the Amazon estuary for the first 1.5-2 years of life, shown by the simultaneous increase/decrease of otolith Sr : Ca/Ba : Ca, respectively. Our results further suggested that B. filamentosum did not enter the estuary during its life history. These results introduce what should be a productive line of research desperately needed to better understand the migrations of these unique and imperilled fishes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA