Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Mar Biotechnol (NY) ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913221

RESUMO

Naturally, the ovaries of many farmed fish can only develop to stage IV (mainly including stage IV oocytes, known as full-grown postvitellogenic oocytes). Therefore, spawn-inducing hormone injections are used to promote ovary development and oocyte maturation, facilitating reproduction in the aquaculture industry. The study of spawn-inducing hormones and their underlying neuroendocrine mechanisms has been a recent focus in fish reproductive biology. However, the intra-ovarian regulatory mechanisms of ovary development and oocyte maturation after hormone injection require further investigation. In this study, we explored the histological and transcriptomic map of the ovary of Hemibarbus labeo after hormone injection to reveal changes in the ovary. The gonad index significantly increased after hormone injection for 5.5 h, after which no significant change was observed. Histological analysis showed that the nuclei had moved to one side of the oocytes at 5.5 h after hormone injection. Moreover, the volume of the oocytes increased and their yolk membranes thickened. Oocytes then underwent their first meiotic division at 5.5-11 h after hormone injection. Subsequently, the follicular membrane was ruptured, and ovulation was completed at 11-16.5 h after hormone injection. In addition, we identified 3189 differentially expressed genes (DEGs) on comparing the transcriptomes at different time points after hormone injection. These DEGs were significantly enriched in the GO terms of nervous system process, molecular transducer activity, and extracellular region, and the KEGG pathways of TNF signaling and cytokine-cytokine receptor interaction; these may play important roles in ovary development and oocyte maturation. Within these pathways, genes such as apoe, creb3, jun, junb, il11, and il8 may play important roles in steroid hormone synthesis and ovulation. Conclusively, our results show detailed sequential dynamics of oocyte development and provide new insights into the intra-ovarian regulatory mechanisms of ovarian development and oocyte maturation in H. labeo. These findings may be important for research on improving egg quality and reproduction in aquaculture.

2.
Insect Biochem Mol Biol ; 170: 104130, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734116

RESUMO

Agmatine N-acetyltransferase (AgmNAT), which catalyzes the formation of N-acetylagmatine from acetyl-CoA and agmatine, is a member of the GCN5-related N-acetyltransferase family. So far, knowledge of the physiological roles of AgmNAT in insects is limited. Here, we identified one gene encoding protein homologous to that of Drosophila AgmNAT using sequence information from an activity-verified Drosophila AgmNAT in a BLAST search of the Bactrocera dorsalis genome. We expressed and purified B. dorsalis AgmNAT in Escherichia coli and used the purified enzyme to define the substrate specificity for acyl-CoA and amine substrates. Our application of the screening strategy to BdorAgmNAT led to the identification of agmatine as the best amine substrate for this enzyme, with the highest kcat/Km value. We successfully obtained a BdorAgmNAT knockout strain based on a wild-type strain (WT) using the CRISPR/Cas9 technique. The ovary development of the BdorAgmNAT knockout mutants was delayed for 10 days compared with the WT specimens. Moreover, mutants had a much smaller mature ovary size and laid far fewer eggs than WT. Loss of function of BdorAgmNAT caused by RNAi with mature WT females did not affect their fecundity. These findings indicate that BdorAgmNAT is critical for oogenesis. Our data provide the first evidence for AgmNAT in regulating ovary development.


Assuntos
Acetiltransferases , Ovário , Tephritidae , Animais , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Ovário/enzimologia , Feminino , Tephritidae/genética , Tephritidae/enzimologia , Tephritidae/crescimento & desenvolvimento , Tephritidae/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Agmatina/metabolismo
3.
Pest Manag Sci ; 80(7): 3194-3206, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38348909

RESUMO

BACKGROUND: Oogenesis is a complex pathway necessary for proper female reproduction in insects. Ovary-serine protease (Osp) is a homologous gene of serine protease Nudel (SpNudel) and plays an essential role in the oogenesis and ovary development of Drosophila melanogaster. However, the function of Osp is not determined in Plutella xylostella, a highly destructive pest of cruciferous crops. RESULTS: The PxOsp gene comprises a 5883-bp open-reading frame that encodes a protein consisting of 1994 amino acids, which contain four conserved domains. PxOsp exhibited a high relative expression in adult females with a specific expression in the ovary. Through the utilization of CRISPR/Cas9 technology, homozygous mutants of PxOsp were generated. These homozygous mutant females produced fewer eggs (average of 56 eggs/female) than wild-type (WT) females (average of 97 eggs/female) when crossed with WT males, and these eggs failed to hatch. Conversely, mutant males produced normal progeny when crossed with WT females. The ovarioles in homozygous mutant females were significantly shorter (5.02 mm in length) and contained fewer eggs (average of 3 eggs/ovariole) than WT ovarioles (8.09 mm in length with an average of 8 eggs/ovariole). Moreover, eggs laid by homozygous mutant females were fragile, with irregular shapes, and were unable to maintain structural integrity due to eggshell ruptures. However, no significant differences were observed between WT and mutant individuals regarding developmental duration, pupal weight, and mating behavior. CONCLUSION: Our study suggesteds that PxOsp plays a vital role in female reproduction, particularly in ovary and egg development. Disrupting PxOsp results in recessive female sterility while leaving the male reproductive capability unaffected. This report represents the first study of a haplosufficient gene responsible for female fertility in lepidopteran insects. Additionally, these findings emphasize PxOsp as a potential target for genetically-based pest management of P. xylostella. © 2024 Society of Chemical Industry.


Assuntos
Sistemas CRISPR-Cas , Fertilidade , Mariposas , Ovário , Serina Proteases , Animais , Feminino , Mariposas/genética , Mariposas/crescimento & desenvolvimento , Ovário/crescimento & desenvolvimento , Fertilidade/genética , Serina Proteases/genética , Serina Proteases/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Masculino
4.
J Insect Physiol ; 150: 104557, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37625783

RESUMO

Juvenile hormone (JH) regulates developmental and physiological processes in insects. In bumble bees, the hormone acts as a gonadotropin that mediates ovary development, but the exact physiological pathways involved in ovary activation and subsequent egg laying are poorly understood. In this study, we examine how queen hibernation state, caste, and species impact the gonadotropic effect of JH in bumble bee queens through methoprene (JH analogue) application. We extend previous research by assessing queen egg laying and colony initiation, alongside ovary development. Furthermore, we compared sensitivity of workers of both species to the juvenile hormone's gonadotropic effect. In both bumble bee species, the ovaries of hibernated queens were developed five to six days after breaking diapause, regardless of methoprene treatment. By contrast, methoprene did have a stimulatory effect on ovary development in non-hibernated queens. The dose needed to obtain this effect was higher in B. impatiens. Methoprene did not have gonadotropic effects in callow workers of both species. These results indicate that the physiological effect of exogenous methoprene application varies according to species, caste and hibernation status. Interestingly, despite gonadotropic effects in non-hibernated queens, oviposition was not accelerated by JH. This suggests that JH alone is insufficient to induce egg laying and that an additional stimulus, which is naturally present in hibernated queens, is required. Consequently, our findings indicate that other physiological processes, beyond a rise in JH alone, are required for oviposition and colony initiation.

5.
Reprod Toxicol ; 120: 108451, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37532207

RESUMO

The chronic use of selective serotonin reuptake inhibitors or serotonin-norepinephrine reuptake inhibitors (SNRIs) may result in human gynecomastia, mammoplasia, galactorrhea, and elevated breast cancer risk. As antidepressants are frequently used for postpartum depression (PPD) treatment, this study investigated the adverse effects of lactational exposure to venlafaxine (VENL, a selective SNRI) on mammary gland development and carcinogenesis in F1 female offspring. Thus, lactating Wistar rats (F0) received VENL by oral gavage at daily doses of 3.85, 7.7, or 15.4 mg/kg (N = 9, each group) from lactational day (LD 1) until the weaning of the offspring (LD 21). F1 female offspring were euthanized for mammary gland, and ovary histological analyses on the post-natal day (PND) 22 and 30 (1 pup/litter/period, N = 9, each group). At PND 22, other females (2 pups/litter, N = 18, each group) received a single dose of carcinogen N-methyl-N-nitrosourea (MNU, 50 mg/kg) intraperitoneally (i.p.) for tumor susceptibility assay until PND 250. Tumor incidence and latency were recorded and representative tumor samples were collected for histopathology. The results indicate that lactational exposure to VENL did not alter the development of the mammary gland (epithelial ductal tree or the mean number of terminal end buds), or the ovary (weight and primary, secondary, tertiary, and Graafian follicles) in prepubertal F1 female offspring. In addition, VENL exposure did not influence tumor incidence or tumor latency in adult female offspring that received MNU. Thus, the findings of this animal study indicated that lactational VENL exposure, a period similar to human PPD, did not exert an adverse effect on the mammary gland development at the prepubertal phase or on chemically induced mammary tumorigenesis in adult F1 female rats.


Assuntos
Lactação , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Masculino , Humanos , Ratos , Animais , Cloridrato de Venlafaxina/toxicidade , Ratos Wistar , Carcinogênese , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente
6.
Dev Cell ; 58(20): 2097-2111.e3, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37582368

RESUMO

Formation of either an ovary or a testis during human embryonic life is one of the most important sex-specific events leading to the emergence of secondary sexual characteristics and sex assignment of babies at birth. Our study focused on the sex-specific and sex-indifferent characteristics of the prenatal ovarian stromal cells, cortical cords, and germline, with the discovery that the ovarian mesenchymal cells of the stroma are transcriptionally indistinguishable from the mesenchymal cells of the testicular interstitium. We found that first-wave pre-granulosa cells emerge at week 7 from early supporting gonadal cells with stromal identity and are spatially defined by KRT19 levels. We also identified rare transient state f0 spermatogonia cells within the ovarian cords between weeks 10 and 16. Taken together, our work illustrates a unique plasticity of the embryonic ovary during human development.


Assuntos
Gônadas , Ovário , Masculino , Feminino , Recém-Nascido , Humanos , Testículo , Células Germinativas , Análise de Célula Única
7.
Ecotoxicol Environ Saf ; 262: 115151, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37356396

RESUMO

Lipids are main energy source for insects reproduction, which are becoming emerging target for pest management. Azadirachtin (AZA) is a multi-targeted and promising botanical insecticide, but its reproduction toxicity mechanism related to lipids metabolism is poorly understood. Here, we applied lipidomic and transcriptomic to provide a comprehensive resource for describing the effect of AZA on lipids remodeling in ovary of Spodoptera litura. The results showed that AZA exposure obviously altered the contents of 130 lipids subclasses (76 upregulated and 54 downregulated). In detail, AZA exposure changed the length and saturation degrees of fatty acyl chain of most glycerolipid, phospholipid and sphingolipid as well as the expression of genes related to biosynthesis of unsaturated fatty acids and fatty acids elongation. Besides, following the abnormal lipids metabolism, western blot analysis suggested that AZA induce insulin resistance-like phenotypes by inhibiting insulin receptor substrates (IRS) /PI3K/AKT pathway, which might be responsible for the ovary abnormalities of S. litura. Collectively, our study provided insights into the lipids metabolism event in S. litura underlying AZA exposure, these key metabolites and genes identified in this study would also provide important reference for pest control in future.

8.
Front Physiol ; 14: 1175075, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168230

RESUMO

Largemouth bass (LMB) production exceeded 0.7 million tons in 2021 and has become one of the most important freshwater aquaculture species in China. The stable and fixed culture cycle led to regular and drastic price fluctuation during the past decade. Strong price fluctuation provides opportunities and challenges for the LMB industry, and out-of-season spawning (OSS) and culture will provide technical support for the opportunities. To induce OSS at a low cost, we established a controllable recirculating system that allows precise thermo-photoperiod manipulation. In the system, four experimental groups were assigned, 18NP (18°C overwintering water temperature, natural photoperiod), 18CP (18°C overwintering water temperature, controlled photoperiod), 16CP (16°C overwintering water temperature, controlled photoperiod), and NTNP (natural water temperature and natural photoperiod), to determine the effects of chilling temperature and photoperiod on spawning performance. OSS was observed in all the experimental groups without significant differences, except NTNP. The manipulated broodstock can re-spawn 3 months later in the next spring in advance. Further analysis of the volume percentage of different stages of oocytes provides a base for excellent regression between the volume percentage of the primary growth stage, cortical alveoli stage, vitellogenesis/maturation stage, and gonadal development/maturation. The results suggest that the volume percentage of oocytes is a better indicator of gonadal development and maturation than the gonadosomatic index. We also found that LMB prefers palm fiber as a spawning nest over gravel. The findings of this work provide important technique guidance for practical OSS of the LMB aquaculture industry and standardization of ovary development and maturation in fish with asynchronous developmental oocytes.

9.
Artigo em Inglês | MEDLINE | ID: mdl-37031498

RESUMO

The migratory insect Mythimna separata is a major pest of grain crops in Asia. Unfortunately, the molecular mechanisms that control and regulate reproduction in this species remain unclear. In this study, transcriptome sequencing was utilized to identify genes associated with ovary development and oogenesis. Clean sequences totaling 117.71 Gb were assembled into 178,534 unigenes with a mean length of 647.37 bp and N50 length of 837 bp. Transcriptome analysis showed that 7921 unigenes were significantly expressed in ovaries with 4403 and 3518 unigenes up- and down-regulated, respectively. Enrichment analysis with the Kyoto Encyclopedia of Genes and Genomes database suggested that 729 differentially expressed genes were significantly enriched in the top 20 pathways (q-values <0.05). Twenty genes were associated with ovary development and oogenesis and included lipases, Nanos, small heat shock proteins (sHsps) and histones; these were further verified by qRT-PCR and may play essential roles in M. separata reproduction. Collectively, our findings reveal underlying mechanisms of M.separata reproduction and may lead to RNAi-based management strategies targeting reproductive physiology.


Assuntos
Mariposas , Ovário , Feminino , Animais , Ovário/metabolismo , Transcriptoma , Perfilação da Expressão Gênica , Mariposas/genética , Reprodução/genética
10.
Artigo em Inglês | MEDLINE | ID: mdl-36525779

RESUMO

Black rockfish (Sebastes schlegelii) is a viviparous teleost fish whose spermatozoa were transferred into the female ovary cavity and stored for up to five months and then fertilized with the matured eggs. There is no clarity about the molecular characteristics of ovarian follicles during female sperm storage in Sebastes schlegelii. In this study, histological observation, transcriptomic analysis and hormone level detection were performed in ovaries at stages of pre-mating (PRM), post-mating (POM) and pre-fertilization (PRF). Histological observation displayed that oocytes developed from the primary growth (PG) stage to the mature stage during the three stages. Furthermore, somatic cells around the oocyte were proliferated and spermatozoa were found near the layer of epithelial cells. Transcriptomic analysis showed that there were 437 and 747 differentially expressed genes (DEGs) in ovarian comparison of PRM-vs-POM and POM-vs-PRF, respectively. GO enrichment and KEGG analysis revealed that lots of DEGs from PRM-vs-POM were linked to immune-related pathways, such as antigen processing and presentation, immune response, and complement and coagulation cascade. Meanwhile, seven DEGs associated with immune response were differentially expressed after spermatozoa treatment in ovarian tissue in vitro. While the DEGs from POM-vs-PRF were mostly enriched in the pathways related to homeostasis maintenance and cellular junction and metabolism. In addition, we found increased estrogen (E2) and 11-ketotestosterone (11-KT) level and decreased testosterone level in ovarian follicles during the sperm storage period by ELISA, suggesting that sex hormones are involved in the dynamic change of ovarian follicles. In total, this study could provide new hints for understanding the immune adaption and developmental signatures of ovarian follicles post copulation in black rockfish and other viviparous fish.


Assuntos
Ovário , Perciformes , Masculino , Feminino , Animais , Ovário/metabolismo , Transcriptoma , Sêmen , Perciformes/genética , Peixes/genética , Espermatozoides , Imunidade
11.
Front Physiol ; 13: 1056540, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36457307

RESUMO

The fall armyworm (FAW), Spodoptera frugiperda, is a highly polyphagous lepidopteran pest, with its growth and adaptation affected by different host plants. However, little is known about the effects of host plants on ovarian development in this species. Thus, we evaluated the effects of feeding on corn (Zea mays L.) and goosegrass (Eleusine indica), on the ovarian development of S. frugiperda. Using various stages of S. frugiperda, we also evaluated the larval and pupal weights, number of eggs, and differentiation of ovarioles over time. Results showed that females fed on goosegrass had shorter ovarioles and laid less eggs than those fed on corn. Transcriptome analysis identified 3,213 genes involved in ovarian development in the fall armyworm. Of these, 881 genes were differentially expressed when fed on corn and goosegrass. The analysis also indicated that the hormone biosynthetic pathways may be involved in the reproductive system. In relation to the reproductive function, nine juvenile hormone (JH) biosynthetic genes, four 20-hydroxyecdysone (20E) biosynthetic genes, and four ovary-relevant functional genes were identified. The time course of the expression profiles of these hormone- and ovary development-related genes was measured by quantitative real-time PCR (qRT-PCR). In total, six of them showed a decreasing trend in the ovary of the FAW fed on goosegrass, while two genes showed an increasing trend. Our results showed that significant changes in the reproductive activity/ovary development in the FAW occurred in response to different diets. These results serve as bases for evaluating how optimal host plants and feeding preference affect ovarian development in the FAW.

12.
Insect Biochem Mol Biol ; 150: 103850, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36265808

RESUMO

The arylalkylamine N-acetyltransferase (AANAT) enzymes catalyze the acetyl-CoA-dependent acetylation of an amine or arylalkylamine, which is involved in important biological processes of insects. Here, we carried out the molecular and biochemical identification of an arylalkylamine N-acetyltransferase (AANAT) from the oriental fruit fly, Bactrocera dorsalis. Using a bacterial expression system, we expressed and purified the encoded recombinant BdorAANAT1-V3 protein. The purified recombinant protein acts on a wide range of substrates, including dopamine, tyramine, octopamine, serotonin, methoxytryptamine, and tryptamine, and shows similar substrate affinity (i.e., Km values: 0.16-0.26 mM) except for serotonin (Km = 0.74 mM) and dopamine (Km = 0.84 mM). Transcriptional profile analysis of BdorAANAT1 revealed that this gene is most prevalent in adults and abundant in the adult brain, gut, and ovary. Using the CRISPR/Cas9 technique, we successfully obtained a BdorAANAT1 knockout strain based on a wild-type strain (WT). Compared with the WT, the cuticle color of larvae and pupae is normal; however, in adult mutants, the yellow region of their thorax is darkly pigmented, and two black spots were evident at the abdomen's end. Moreover, the female BdorAANAT1 knockout mutant had a smaller ovary than the WT, and laid far fewer eggs. Loss of function of BdorAANAT1 caused by RNAi with mature adult females in which the reproductive system is fully developed had no effect on their fecundity. Altogether, these results indicate that BdorAANAT1 regulates ovary development. Our findings provide evidence for the insect AANAT1 modulating adult cuticle pigmentation and female fecundity.


Assuntos
Arilalquilamina N-Acetiltransferase , Tephritidae , Feminino , Animais , Arilalquilamina N-Acetiltransferase/química , Dopamina/metabolismo , Serotonina/metabolismo , Ovário/metabolismo , Tephritidae/genética , Tephritidae/metabolismo , Pigmentação/genética , Proteínas Recombinantes/genética , Drosophila/metabolismo
13.
Mar Biotechnol (NY) ; 24(6): 1055-1065, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36173492

RESUMO

In previous study, we reported the identification, tissue distribution, and the roles of Spdsx played in the testis, androgenic gland, and ovary in Scylla paramamosain. Here, we primally identify its potential target genes in the ovary with RNAi and RNA-Seq technology. By comparing the transcriptome data of two groups (ovaries that injected with dsRNA for EGFP and Dsx), we found that 6520 Unigenes were differentially expressed, including a plenty of conserved crucial genes involved in ovarian development, such as vitellogenin (vtg), vtg receptor (vtgR), apolipoprotein D, adenylate cyclase 3, adenylate cyclase 5, cyclin A, cyclin B, and cell division cycle 2 (cdc2). In addition, these DEGs were also enriched in pathways related to ovary development, including PI3K-Akt signaling pathway, MAPK signaling pathway, insulin signaling pathway, Wnt signaling pathway, relaxin signaling pathway, estrogen signaling pathway, progesterone-mediated oocyte maturation, ovarian steroidogenesis, and oocyte meiosis. Moreover, several genes were selected for qRT-PCR to validate the accuracy of the bioinformatic result. According to current transcriptome result, we speculate that the Spdsx is a crucial regulator of ovary development in S. paramamosain. To the best of our knowledge, the current study was the first report about dsx function through comparative transcriptome analysis in crustacean species, which not only identified relevant genes and pathways involved in ovarian development of S. paramamosain, but also shed light on the regulatory mechanisms of dsx at the molecular level in crustacean.


Assuntos
Braquiúros , Transcriptoma , Animais , Feminino , Masculino , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Braquiúros/genética , Diferenciação Sexual , Ovário , Perfilação da Expressão Gênica
14.
J Endocr Soc ; 6(9): bvac108, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35935072

RESUMO

A girl presenting with delayed puberty and elevated gonadotropins may have a range of conditions such as Turner syndrome (TS), primary ovarian insufficiency (POI), and 46,XY disorders of sexual development (DSD). An organized and measured approach to investigation can help reach a timely diagnosis. Management of young people often requires specialist multidisciplinary input to address the endocrine and nonendocrine features of these complex conditions, as well as the psychological challenges posed by their diagnosis. Next-generation sequencing within the research setting has revealed several genetic causes of POI and 46,XY DSD, which may further facilitate an individualized approach to care of these young people in the future. Pubertal induction is required in many and the timing of this may need to be balanced with other issues specific to the condition (eg, allowing time for information-sharing in 46,XY DSD, optimizing growth in TS). Shared decision-making and sign-posting to relevant support groups from the outset can help empower young people and their families to manage these conditions. We describe 3 clinical vignettes of girls presenting with delayed puberty and hypergonadotropic amenorrhea and discuss their clinical management in the context of current literature and guidelines.

15.
Front Endocrinol (Lausanne) ; 13: 848808, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937808

RESUMO

Neurokinin B (NKB), a member of the tachykinin (TAC) family, plays important roles in mammalian neuropeptide secretion in related to reproduction. However, its potential role in spawning migration teleost is less clear. In the present study, Japanese eel (Anguilla japonica) was employed to study the performance of NKB in regulating reproduction. Results showed that two tac3 and one tacr3 genes were identified in Japanese eel. Sequence analysis showed that two tac3 transcripts, tac3a and tac3b, encode four NKBs: NKBa-13, NKBa-10, NKBb-13, and NKBb-10. However, compared with other species, a mutation caused early termination of TACR3 protein was confirmed, leading to the loss of the 35 amino acid (aa) C-terminal of the receptor. Expression analysis in different tissues showed that both tac3a and tac3b mRNAs were highly expressed in the brain. In situ hybridization localized both tac3a and tac3b mRNAs to several brain regions, mainly in the telencephalon and hypothalamus. Because of the mutation in TACR3 of Japanese eel, we further analyzed whether it could activate the downstream signaling pathway. Luciferase assay results showed the negative regulation of cAMP Response Element (CRE) and Sterol Response Element (SRE) signal pathways by Japanese eel NKBs. Intraperitoneal injection of four different NKB mature peptides at 100 ng/g had negative effect on either gnrh or gth gene expression. However, the high concentration of NKBa-10 and NKBb-13 (1,000 ng/g) upregulated mgnrh and fshb or lhb expression level significantly, which may be mediated by other receptors. In general, the NKBs/NK3Rs system has important functions in regulating eel puberty onset.


Assuntos
Anguilla , Sequência de Aminoácidos , Anguilla/genética , Anguilla/metabolismo , Animais , Clonagem Molecular , Mamíferos/genética , Neurocinina B/genética , Neurocinina B/metabolismo , RNA Mensageiro , Maturidade Sexual
16.
Insects ; 13(8)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36005352

RESUMO

Worldwide, honey bees are increasingly faced with periods of pollen scarcity, which can lead to nutritional deficiencies, especially of proteins and amino acids. These are essential for the proper functioning of the single organism and the colony. To understand how bees react to protein deficiency, under controlled conditions, we studied the effect of pollen deficiency on the main physiological parameters in two subspecies endemic of Algeria, Apis mellifera intermissa and Apismellifera sahariensis. Emerging workers of both subspecies were reared with two diets: one was pollen-fed, whereas the other pollen-deprived. Several physiological criteria were measured depending on the type of diet and subspecies: the survival of the bees, the amount of total protein in the hemolymph, hypopharyngeal glands development and the ovary development of workers. These last three parameters were assessed at three different ages (7, 14 and 21 days). At birth, sahariensis workers weighed more than intermissa. With the same protein diet, the average life expectancy of sahariensis was extended by 5.55 days compared to intermissa. Even if deprived of pollen, sahariensis lived longer than intermissa fed with pollen (p < 0.001). In the three age levels, the hypopharyngeal glands were more developed and less affected by pollen deficiency (p < 0.001) in sahariensis than in intermissa (p < 0.001). The total hemolymph protein was higher in intermissa than in sahariensis regardless of the diet, and was also higher in protein-fed than in deprived bees (p < 0.001). The ovaries developed more rapidly with a high proportion in intermissa than in sahariensis (p < 0.05) regardless of the diet, and was also higher in the bees fed with pollen than those deprived (p < 0.05). Pollen deficiency generates physiological alterations and modifications, the amplitude of which varied according to the subspecies of the bee studied.

17.
Genes (Basel) ; 13(8)2022 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-35893055

RESUMO

Temperature-dependent sex determination (TSD) decides the sex fate of an individual based on incubation temperature. However, other environmental factors, such as pollutants, could derail TSD sexual development. Cadmium is one such contaminant of soils and water bodies known to affect DNA methylation, an epigenetic DNA modification with a key role in sexual development of TSD vertebrate embryos. Yet, whether cadmium alters DNA methylation of genes underlying gonadal formation in turtles remains unknown. Here, we investigated the effects of cadmium on the expression of two gene regulators of TSD in the painted turtle, Chrysemys picta, incubated at male-producing and female-producing temperatures using qPCR. Results revealed that cadmium alters transcription of Dmrt1 and aromatase, overriding the normal thermal effects during embryogenesis, which could potentially disrupt the sexual development of TSD turtles. Results from a preliminary DNA methylation-sensitive PCR assay implicate changes in DNA methylation of Dmrt1 as a potential cause that requires further testing (aromatase methylation assays were precluded).


Assuntos
Tartarugas , Animais , Aromatase/genética , Cádmio/metabolismo , Cádmio/toxicidade , Metilação de DNA , Feminino , Gônadas/metabolismo , Masculino , Tartarugas/genética
18.
Dev Cell ; 57(12): 1482-1495.e5, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35679863

RESUMO

Development of primordial germ cells (PGCs) is required for reproduction. During PGC development in mammals, major epigenetic remodeling occurs, which is hypothesized to establish an epigenetic landscape for sex-specific germ cell differentiation and gametogenesis. In order to address the role of embryonic ectoderm development (EED) and histone 3 lysine 27 trimethylation (H3K27me3) in this process, we created an EED conditional knockout mouse and show that EED is essential for regulating the timing of sex-specific PGC differentiation in both ovaries and testes, as well as X chromosome dosage decompensation in testes. Integrating chromatin and whole genome bisulfite sequencing of epiblast and PGCs, we identified a poised repressive signature of H3K27me3/DNA methylation that we propose is established in the epiblast where EED and DNMT1 interact. Thus, EED joins DNMT1 in regulating the timing of sex-specific PGC differentiation during the critical window when the gonadal niche cells specialize into an ovary or testis.


Assuntos
Células Germinativas , Histonas , Complexo Repressor Polycomb 2 , Animais , Diferenciação Celular/genética , Metilação de DNA , Ectoderma/embriologia , Feminino , Células Germinativas/metabolismo , Gônadas/metabolismo , Histonas/genética , Histonas/metabolismo , Masculino , Camundongos , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo
19.
Front Cell Dev Biol ; 10: 902082, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721511

RESUMO

Sex-specific gonadal differentiation is initiated by the expression of SRY in male foetuses. This promotes a signalling pathway directing testicular development, while in female foetuses the absence of SRY and expression of pro-ovarian factors promote ovarian development. Importantly, in addition to the initiation of a sex-specific signalling cascade the opposite pathway is simultaneously inhibited. The somatic cell populations within the gonads dictates this differentiation as well as the development of secondary sex characteristics via secretion of endocrine factors and steroid hormones. Opposing pathways SOX9/FGF9 (testis) and WNT4/RSPO1 (ovary) controls the development and differentiation of the bipotential mouse gonad and even though sex-specific gonadal differentiation is largely considered to be conserved between mice and humans, recent studies have identified several differences. Hence, the signalling pathways promoting early mouse gonad differentiation cannot be directly transferred to human development thus highlighting the importance of also examining this signalling in human fetal gonads. This review focus on the current understanding of regulatory mechanisms governing human gonadal sex differentiation by combining knowledge of these processes from studies in mice, information from patients with differences of sex development and insight from manipulation of selected signalling pathways in ex vivo culture models of human fetal gonads.

20.
Bull Entomol Res ; 112(6): 827-836, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35593229

RESUMO

The Asian subterranean termite Coptotermes gestroi is a worldwide structural pest, although its reproductive biology has been poorly investigated due to a cryptic habit and occurrence of polycalic nests. In this study, we investigated ovarian development and oogenesis in different-aged females of C. gestroi: fourth-instar nymphs, non-functional neotenics, alates, and functional queens. We show that the ovaries develop gradually according to their age and functionality, as younger individuals possess immature oocytes, whereas alates and functional queens always undergo vitellogenesis. Oocytes were classified into previtellogenic (stages I, II, and III) or vitellogenic (stages IV, V, and VI). Ovary development varied among non-functional neotenics, and a rapid differentiation and/or the presence of primary reproductives are believed to influence such a maturation. Immature oocyte stages were shared between fourth-instar nymphs and neotenics. These characteristics, together with other neotenic features (wing buds, body pigmentation, and eye color), should be evaluated in detail aiming to clarify which nymphal instars differentiate into secondary reproductives. Oogenesis was not uniform among alate females, and cross-sectional area of terminal oocytes was significantly smaller in alates when compared to functional queens, suggesting different degrees of maturation in swarming individuals. Functional queens always had mature terminal oocytes (stage VI). Ovariole number and oocyte maturation in C. gestroi relies on several factors and may therefore differ among individuals of the same caste. Future studies should take into account these reproductive features to evaluate how they impact colony development.


Assuntos
Baratas , Isópteros , Feminino , Animais , Reprodução , Ninfa , Biologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA