Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
1.
Beilstein J Org Chem ; 20: 2342-2348, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39319034

RESUMO

A straightforward protocol for the synthesis of a previously unknown [1,2,5]oxadiazolo[3,4-d][1,2,3]triazin-7(6H)-one heterocyclic system was developed. The described approach is based on tandem diazotization/azo coupling reactions of (1,2,5-oxadiazolyl)carboxamide derivatives bearing both aromatic and aliphatic substituents. The NO-donor ability of the synthesized furoxano[3,4-d][1,2,3]triazin-7(6H)-ones was additionally evaluated. The elaborated method provides access to novel nitrogen heterocyclic compounds with potential applications as drug candidates or thermostable components of functional organic materials.

2.
Arch Pharm (Weinheim) ; : e2400238, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39305038

RESUMO

Due to the serious gastrointestinal side effects associated with prolonged use of current anti-inflammatory therapies, various strategies such as the regulation of nitric oxide (NO) and prostaglandin E2 (PGE2) production have been explored in the field of anti-inflammatory drug development. In this study, a series of disubstituted 1,3,4-oxadiazoles (3a-f and 4a-f) and their cyclized 1,2,4-triazole derivatives (5a-e and 6a-e) were synthesized and tested for their NO, PGE2, and interleukin-6 (IL-6) releasing inhibition ability. All of the compounds were observed to reduce lipopolysaccharide (LPS)-induced nitrite production in a concentration-dependent manner. Moreover, compounds 3b (50 µM) and 6d (1 µM) exhibited 63% and 49% inhibition, respectively, while indomethacin showed 52% at 100 µM. Based on a preliminary NO inhibition assay, 10 of the compounds (3a, 3b, 3e, 4b, 4d, 6a-e) were selected to be evaluated for in vitro PGE2, IL-6, and inducible nitric oxide synthase (iNOS) inhibition. Notably, compound 6d proved to be the most active of the series with the lowest dose (1 µM), in comparison to the other further tested compounds (5-100 µM) and the reference drug indomethacin (100 µM). The inhibitory activity of the compounds was supported by docking simulations into the binding site of the iNOS protein receptor (Protein Data Bank [PDB]ID: 3E7G). The data showing that 4d reduced iNOS levels the most can be explained by the H-bond with Tyr347 through oxadiazole and π-halogen interactions through the p-bromo, in addition to aromatic interactions with protoporphyrin IX.

3.
Chemistry ; : e202403128, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39291449

RESUMO

The 1,3,4-oxadiazole is a widely encountered motif in the areas of pharmaceuticals, materials, and agrochemicals. This work has established a mild, mediated electrochemical synthesis of 2,5-disubstituted 1,3,4-oxadiazoles from N-acyl hydrazones. Using DABCO as the optimal redox mediator has enabled a mild oxidative cyclisation, without recourse to stoichiometric oxidants. In contrast to previous methods, this indirect electrochemical oxidation has enabled a broad range of substrates to be accessed, with yields of up to 83%, and on gram scale. The simplicity of the method has been further demonstrated by the development of a one-pot procedure, directly transforming readily available aldehydes and hydrazides into valuable heterocycles.

4.
Eur J Med Chem ; 278: 116796, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39241483

RESUMO

To achieve malaria eradication, new preventative agents that act differently to front-line treatment drugs are needed. To identify potential chemoprevention starting points we screened a sub-set of the CSIRO Australia Compound Collection for compounds with slow-action in vitro activity against Plasmodium falciparum. This work identified N,N-dialkyl-5-alkylsulfonyl-1,3,4-oxadiazol-2-amines as a new antiplasmodial chemotype (e.g., 1 96 h IC50 550 nM; 3 96 h IC50 160 nM) with a different action to delayed-death slow-action drugs. A series of analogues were synthesized from thiotetrazoles and carbomoyl derivatives using Huisgen 1,3,4-oxadiazole synthesis followed by oxidation of the resultant thioethers to target sulfones. Structure activity relationship analysis of analogues identified compounds with potent and selective in vitro activity against drug-sensitive and multi-drug resistant Plasmodium parasites (e.g., 31 and 32 96 h IC50 <40 nM; SI > 2500). Subsequent studies in mice with compound 1, which had the best microsomal stability of the compounds assessed (T1/2 >255 min), demonstrated rapid clearance and poor oral in vivo efficacy in a P. berghei murine malaria model. These data indicate that while N,N-dialkyl-5-alkylsulfonyl-1,3,4-oxadiazol-2-amines are a novel class of slow-acting antiplasmodial agents, the further development of this chemotype for malaria chemoprophylaxis will require pharmacokinetic profile improvements.


Assuntos
Antimaláricos , Oxidiazóis , Plasmodium falciparum , Oxidiazóis/química , Oxidiazóis/farmacologia , Oxidiazóis/síntese química , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/farmacologia , Antimaláricos/química , Antimaláricos/síntese química , Animais , Relação Estrutura-Atividade , Camundongos , Testes de Sensibilidade Parasitária , Estrutura Molecular , Relação Dose-Resposta a Droga , Descoberta de Drogas , Humanos , Malária Falciparum/tratamento farmacológico
5.
Angew Chem Int Ed Engl ; : e202411387, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39183368

RESUMO

Nitrogen-containing compounds are valuable synthetic intermediates and targets in nearly every chemical industry. While methods for nitrogen-carbon and nitrogen-heteroatom bond formation have primarily relied on nucleophilic nitrogen atom reactivity, molecules containing nitrogen-halogen bonds allow for electrophilic or radical reactivity modes at the nitrogen center. Despite the growing synthetic utility of nitrogen-halogen bond-containing compounds, selective catalytic strategies for their synthesis are largely underexplored. We recently discovered that the vanadium-dependent haloperoxidase (VHPO) class of enzymes are a suitable biocatalyst platform for nitrogen-halogen bond formation. Herein, we show that VHPOs perform selective halogenation of a range of substituted benzamidine hydrochlorides to produce the corresponding N'-halobenzimidamides. This biocatalytic platform is applied to the synthesis of 1,2,4-oxadiazoles from the corresponding N-acylbenzamidines in high yield and with excellent chemoselectivity. Finally, the synthetic applicability of this biotechnology is demonstrated in an extension to nitrogen-nitrogen bond formation and the chemoenzymatic synthesis of the Duchenne muscular dystrophy drug, ataluren.

6.
ChemMedChem ; : e202400241, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136604

RESUMO

A series of novel 4-acetyl-1,3,4-oxadiazole derivatives was designed and synthesized for their biological evaluation in vitro against Trypanosoma cruzi and Leishmania mexicana. Additionally, compounds were evaluated by molecular docking on the cruzain of T. cruzi (TcCz) and the cysteine protease B (CPB) of L. mexicana (LmCPB) to know their potential mechanism of binding. Compound OX-12 had better trypanocidal activity against NINOA (IC50= 10.5 µM) and A1 (IC50= 21.7 µM) T. cruzi strains that reference drug benznidazole (IC50= 30.3 µM and 39.8 µM, respectively). Compound OX-2 had the best biological activity against L. mexicana in M379 (IC50= 11.9 µM) and FCQEPS (IC50= 34.0 µM) strains that the reference drug glucantime (IC50 ˃120 µM). All the compounds showed important interactions with residues on the active site of TcCz (Gly66, Trp26, Leu67, and Ala138) and LmCPB (Gly67, Asn62, Leu68, and Ala140). Finally, the molecular dynamics simulations of the compound OX-12 shown moderate stability from 40 to 115 ns with an RMSD value of 6.5 Å. Meanwhile, compound OX-2 showed a minor stability in complex with CPB from 25 to 200 ns of simulation (RMSD <9 Å). These results encourage to develop more potent and efficient trypanocidal and leishmanicidal agents using the 1,3,4-oxadiazole scaffold.

7.
J Fluoresc ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958907

RESUMO

This study investigates the photophysical properties of a nitrobenzene-substituted 1,3,4-oxadiazole derivative (OX-NO) using both theoretical and experimental methods. The impact of the solvent on OX-NO absorption and fluorescence spectra, as well as its fluorescence quantum yield, was initially studied. A noticeable bathochromic shift in the Stokes shift indicated a π→ π* transition within the molecules. Solute-solvent interactions were analysed using Catalan parameters, distinguishing between specific and nonspecific interactions. Excited state dipole moments were derived from Lippert's, Bakshiev's, and Chamma Viallet's equations, showing increased polarity in the excited state compared to the ground state. Ground state dipole moments were determined via solvatochromic shift methods and ab initio techniques. Additionally, detailed analyses of bond length, angles, dihedral angles, Mulliken charge distribution, and HOMO-LUMO energy gap were conducted using the DFT-B3LYP-6-311G basis set in Gaussian-09 W. The energy band gap values obtained from theoretical calculations and experimental methods (cyclic voltammetry and UV-Visible spectroscopy) exhibited excellent agreement. Reactive sites such as electrophilic and nucleophilic regions were identified through total electron density, electrostatic maps, molecular electrostatic potential, and 3D plots using DFT computational analysis. Global descriptors were employed to characterize the compounds' chemical reactivity comprehensively. The observed photophysical attributes underscore the potential of these fluorophores in various applications like organic light-emitting diodes, solar cells, and chemosensors. This study contributes crucial insights into the optoelectronic properties of nitrobenzene-substituted 1,3,4-oxadiazole derivatives, paving the way for their future integration in advanced technological domains.

8.
Future Med Chem ; 16(8): 723-735, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38573062

RESUMO

Aim: BCRP plays a major role in the efflux of cytotoxic molecules, limiting their antiproliferative activity. We aimed to design and synthesize new BCRP inhibitors to render cancerous tumors more sensitive toward anticancer agents. Materials & methods: Based on our previous work, we conceived potential BCRP inhibitors derived from 1,3,4-oxadiazoles bearing two substituted phenyl rings. Results: Evaluating 19 derivatives, we found that 2,5-diaryl-1,3,4-oxadiazoles possessing methoxy groups were the most active. The highest activity was recorded with derivatives bearing three methoxy groups. The most active compound (3j) was selective in inhibiting BCRP and nontoxic as evidenced by cellular tests. Conclusion: 3j is a promising BCRP inhibitor thanks to its synthetic accessibility and biological profile.


[Box: see text].


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Antineoplásicos , Proteínas de Neoplasias , Oxidiazóis , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Humanos , Oxidiazóis/química , Oxidiazóis/farmacologia , Oxidiazóis/síntese química , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais
9.
J Mol Model ; 30(5): 118, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38561544

RESUMO

CONTEXT: In this study, we have developed four new chromophores (TM1-TM4) and performed quantum chemical calculations to explore their nonlinear optical properties. Our focus was on understanding the impact of electron-donating substituents on 1,3,4-oxadiazole derivative chromophores. The natural bond orbital analysis confirmed the interactions between donors and acceptors as well as provided insights into intramolecular charge transfer. We also estimated dipole moment, linear polarizability molecular electrostatic potential, UV-visible spectra, and first hyperpolarizability. Our results revealed that TM1 with a strong and stable electron-donating group exhibited high first hyperpolarizability (ß) 293,679.0178 × 10-34 esu. Additionally, TM1 exhibited a dipolar moment (µ) of 5.66 Debye and polarizability (α) of 110.62 × 10-24 esu when measured in dimethyl sulfoxide (DMSO) solvent. Furthermore, in a benzene solvent, TM1 showed a low energy band gap of 5.33 eV by using the ωB97XD functional with a 6-311 + + G(d, p) basis set. Moreover, our study of intramolecular charge transfers highlighted N, N dimethyl triphenylamine and carbazole as major electron-donating groups among the four 1,3,4-oxadiazole derivative chromophores. This research illustrates the potential applications of these organic molecules in photonics due to their versatile nature. METHODS: The molecules were individually optimized using different functionals, including APFD, B3LYP, CAM B3LYP, and ωB97XD combined with the 6-311 + + G (d, p) basis set in Gaussian 16 software. These methods encompass long-range functionals such as APFD and B3LYP, along with long-range corrected functionals like CAM B3LYP and ωB97XD. The employed functionals of APFD, B3LYP, CAM B3LYP, and ωB97XD with the 6-311 + + G (d,p) basis set were used to extract various properties such as geometrical structures, dipole moment, molecular electrostatic potential, and first hyperpolarizability through precise density functional theory (DFT). Additionally, TD-DFT was utilized for obtaining UV-visible spectra. All studies have been conducted in both gas and solvent phases.

10.
ACS Chem Neurosci ; 15(7): 1501-1514, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38511291

RESUMO

NS9283, 3-(3-pyridyl)-5-(3-cyanophenyl)-1,2,4-oxadiazole, is a selective positive allosteric modulator of (α4)3(ß2)2 nicotinic acetylcholine receptors (nAChRs). It has good subtype selective therapeutic potential afforded by its specific binding to the unique α4-α4 subunit interface present in the (α4)3(ß2)2 nAChR. However, there is currently a lack of structure activity relationship (SAR) studies aimed at developing a class of congeners endowed with the same profile of activity that can help consolidate the druggability of the α4-α4 subunit interface. In this study, new NS9283 analogues were designed, synthesized, and characterized for their ability to selectively potentiate the ACh activity at heterologous (α4)3(ß2)2 nAChRs vs nAChR subtypes (α4)2(ß2)3, α5α4ß2, and α7. With few exceptions, all the NS9283 analogues exerted positive modulation of the (α4)3(ß2)2 nAChR ACh-evoked responses. Above all, those modified at the 3-cyanophenyl moiety by replacement with 3-nitrophenyl (4), 4-cyanophenyl (10), and N-formyl-4-piperidinyl (20) showed the same efficacy as NS9283, although with lower potency. Molecular dynamics simulations of NS9283 and some selected analogues highlighted consistency between potentiation activity and pose of the ligand inside the α4-α4 site with the main interaction being with the complementary (-) side and induction of a significant conformational change of the Trp156 residue in the principal (+) side.


Assuntos
Receptores Nicotínicos , Receptores Nicotínicos/metabolismo , Piridinas/farmacologia , Piridinas/química , Membrana Celular/metabolismo , Oxidiazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA