Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.003
Filtrar
1.
J Colloid Interface Sci ; 677(Pt A): 610-619, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39116559

RESUMO

Photocatalytic nitrogen reduction is a promising green technology for ammonia synthesis under mild conditions. However, the poor charge transfer efficiency and weak N2 adsorption/activation capability severely hamper the ammonia production efficiency. In this work, heteropoly blue (r-PW12) nanoparticles are loaded on the surface of ultrathin bismuth oxychloride nanosheets with oxygen vacancies (BiOCl-OVs) by electrostatic self-assembly method, and a series of xr-PW12/BiOCl-OVs heterojunction composites have been prepared. Acting as a robust support, ultrathin two-dimensional (2D) structure of BiOCl-OVs inhibits the aggregation of r-PW12 nanoparticles, enhancing the interfacial contact between r-PW12 and BiOCl. More importantly, the existence of oxygen vacancies (OVs) provides abundant active sites for efficient N2 adsorption and activation. In combination of the enhanced light absorption and promoted photogenerated carriers separation of xr-PW12/BiOCl-OVs heterojunction, under simulated solar light, the optimal 7r-PW12/BiOCl-OVs exhibits an excellent photocatalytic N2 fixation rate of 33.53 µmol g-1h-1 in pure water, without the need of sacrificial agents and co-catalysts. The reaction dynamics is also monitored by in situ FT-IR spectroscopy, and an associative distal pathway is identified. Our study demonstrates that construction of heteropoly blues-based heterojunction is a promising strategy for developing high-performance N2 reduction photocatalysts. It is anticipated that combining of different defects with heteropoly blues of different structures might provide more possibilities for designing highly efficient photocatalysis systems.

2.
J Colloid Interface Sci ; 677(Pt A): 820-830, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39121666

RESUMO

Controlling interfacial charge transfer behavior of heterojunction is an arduous issue to efficiently drive separation of photogenerated carriers for improving the photocatalytic activity. Herein, the interface charge transfer behavior is effectively controlled by fabricating an unparalleled VO-NiWO4/PCN heterojunction that is prepared by encapsulating NiWO4 nanoparticles rich in surface oxygen vacancies (VO-NiWO4) in the mesoporous polymeric carbon nitride (PCN) nanosheets. Experimental and theoretical investigations show that, differing with the traditional p-n junction, the direction of built-in electric field between p-type NiWO4 and n-type PCN is reversed interestingly. The strongly codirectional built-in electric field is also produced between the surface defect region and inside of VO-NiWO4 besides in the space charge region, the dual drive effect of which forcefully propels interface charge transfer through triggering Z-Scheme mechanism, thus significantly improving the separation efficiency of photogenerated carriers. Moreover, the unique mesoporous encapsulation structure of VO-NiWO4/PCN heterostructure can not only afford the confinement effect to improve the reaction kinetics and specificity in the CO2 reduction to CO, but also significantly reduce mass transfer resistance of molecular diffusion towards the reaction sites. Therefore, the VO-NiWO4/PCN heterostructure demonstrates the preeminent activity, stability and reusability for photocatalytic CO2 reduction to CO reaction. The average evolution rate of CO over the optimal 10 %-VO-NiWO4/PCN composite reaches around 2.5 and 1.8 times higher than that of individual PCN and VO-NiWO4, respectively. This work contributes a fresh design approach of interface structure in the heterojunction to control charge transfer behaviors and thus improve the photocatalytic performance.

3.
J Colloid Interface Sci ; 677(Pt A): 1016-1028, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39128285

RESUMO

The efficiency of photocatalytic hydrogen evolution can be significantly enhanced while maintaining cost-effectiveness through the synergistic effect of defect surface engineering and multi-component heterojunctions. The structure and properties of NiCo2O4 nanorods were modified by inducing oxygen vacancies at different temperatures in this study, resulting in improved optical properties and electron adsorption capacity. The presence of oxygen vacancies leads to a reduction in the band gap of NiCo2O4, thereby enhancing electron transport efficiency through band gap engineering. Simultaneously, surface properties undergo changes, and vacancy defects serve as electron trapping centers, facilitating an increased participation of electrons in the hydrogen evolution reaction process. The dodecahedron KMP with a cavity structure is additionally introduced to form an S-scheme heterojunction with NiCo2O4. This establishes a novel mechanism for electron transport, which effectively enhances the separation of electron-hole pairs and improves the redox capacity of the photocatalytic system. The adsorption of intermediates in the hydrogen production process is enhanced through synergistic regulation of d-band centers via surface defect engineering and S-scheme heterojunction. Additionally, this approach improves the separation efficiency of electron-hole pairs and accelerates electron transfer dynamics, significantly enhancing hydrogen production efficiency.

4.
J Colloid Interface Sci ; 677(Pt A): 1069-1079, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39137609

RESUMO

Designing inexpensive, high-efficiency and durable bifunctional catalysts for urea oxidation reaction (UOR) and hydrogen evolution reaction (HER) is an encouraging tactic to produce hydrogen with reduced energy expenditure. Herein, oxygen vacancy-rich cobalt hydroxide/aluminum oxyhydroxide heterostructure on nickel foam (denoted as Co(OH)2/AlOOH/NF-100) has been fabricated using one step hydrothermal process. Theoretical calculation and experimental results indicate the electrons transfer from Co(OH)2 to highly active AlOOH results in the interfacial charge redistribution and optimization of electronic structure. Abundant oxygen vacancies in the heterostructure could improve the conductivity and simultaneously serve as the active sites for catalytic reaction. Consequently, the optimal Co(OH)2/AlOOH/NF-100 demonstrates excellent electrocatalytic performance for HER (62.9 mV@10 mA cm-2) and UOR (1.36 V@10 mA cm-2) due to the synergy between heterointerface and oxygen vacancies. Additionally, the in situ electrochemical impedance spectrum (EIS) for UOR suggests that the heterostructured catalyst exhibits rapid reaction kinetics, mass transfer and current response. Importantly, the urea-assisted electrolysis composed of the Co(OH)2/AlOOH/NF-100 manifests a low cell voltage (1.48 V @ 10 mA cm-2) in 1 M KOH containing 0.5 M urea. This work presents a promising avenue to the development of HER/UOR bifunctional electrocatalysts.

5.
J Environ Sci (China) ; 149: 164-176, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181631

RESUMO

Cerium and cobalt loaded Co-Ce/TiO2 catalyst prepared by impregnation method was investigated for photothermal catalytic toluene oxidation. Based on catalyst characterizations (XPS, EPR and H2-TPR), redox cycle between Co and TiO2 (Co2+ + Ti4+ ↔ Co3+ + Ti3+) results in the formation of Co3+, Ti3+ and oxygen vacancies, which play important roles in toluene catalytic oxidation reaction. The introduction of Ce brings in the dual redox cycles (Co2+ + Ti4+ ↔ Co3+ + Ti3+, Co2+ + Ce4+ ↔ Co3+ + Ce3+), further promoting the elevation of reaction sites amount. Under full spectrum irradiation with light intensity of 580 mW/cm2, Co-Ce/TiO2 catalyst achieved 96% of toluene conversion and 73% of CO2 yield, obviously higher than Co/P25 and Co/TiO2. Co-Ce/TiO2 efficiently maintains 10-hour stability test under water vapor conditions and exhibits better photothermal catalytic performance than counterparts under different wavelengths illumination. Photothermal catalytic reaction displays improved activities compared with thermal catalysis, which is attributed to the promotional effect of light including photocatalysis and light activation of reactive oxygen species.


Assuntos
Cério , Cobalto , Oxirredução , Titânio , Tolueno , Titânio/química , Cobalto/química , Catálise , Tolueno/química , Cério/química , Modelos Químicos , Processos Fotoquímicos
6.
Talanta ; 282: 126969, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39357408

RESUMO

Zinc oxide (ZnO) nanoparticles with surface oxygen vacancy (OV) was found to catalyze the colorimetric reaction of 3,3',5,5'-tetramethylbenzidine (TMB)-H2O2, and the absorbance of this TMB-H2O2-ZnO system was strongly dependent the OV concentration on surface of ZnO. By taking advantage of this phenomenon, one colorimetric method was proposed for quantifying surface OV in ZnO. The surface OV amount obtained through this colorimetric method matched well with that obtained through X-ray photoelectron spectroscopy (XPS). This colorimetric method doesn't need any advanced instruments, and can be completed in any an ordinary laboratory. This colorimetric method for detecting surface OV amount was simple, rapid (about 15 min) and low-cost.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 326: 125264, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39388942

RESUMO

Non-stoichiometric tungsten oxide (WO3-x) has controllable defects, high charge density, and good synergy with other materials to exhibit good surface-enhanced Raman scattering (SERS) properties. Its heterojunction structure provides an opportunity to develop high-quality and low-cost SERS substrates. This study obtained WO3-x/Ag composite thin films were obtained by Nd: YAG fiber pulsed laser modification at ambient conditions. The effects of interactions between heterojunctions and laser modification on the samples' morphology, composition, and optical properties were investigated. The absorption peaks exhibited a red shift by varying the laser scan speeds, and the SERS properties of the sample were evaluated by methylene blue (MB) dye. The results show that the laser-modified WO3-x/Ag films have good stability as SERS substrates. The characteristic peaks of MB can still be detected after 90 days in the air. The WO3-x/Ag films also have good homogeneity and a low detection limit, with a limit of detection (LOD) as low as 10-7 M, and an enhancement factor as high as 1.34 × 104. The simulated results by the finite difference in time domain (FDTD) showed substantial agreement with those of the experimental ones.

8.
Angew Chem Int Ed Engl ; : e202417703, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39380426

RESUMO

Direct photocatalytic conversion of benzene to phenol with O2 is a green alternative to the traditional synthesis. The key is to find an effective photocatalyst to do the trick. Defect engineering of semiconductors with oxygen vacancies (OVs) is an emerging strategy for catalyst fabrication. OVs can trap electrons to promote charge separation and serving as adsorption sites for O2 activation. However, randomly distribution of OVs on the semiconductor surface often results in mismatching the charge carrier dynamics under irradiation, thus failing to fulfill the unique advantages of OVs for photoredox functions. Herein, we demonstrate that abundant OVs can be facilely generated and precisely located adjacent to the reductive sites on reducible oxide semiconductors such as tungsten oxide (WO3) via a simple photochemistry strategy. Such photoinduced OVs are well suited for photocatalytic benzene oxidation with O2 as they readily capture photogenerated electrons from the reductive sites of WO3 to activate adsorbed O2. 18O-labeling experiments further confirm that the OVs also facilitate the integration of oxygen atoms from O2 into phenol, revealing in detail the pathway for photocatalytic benzene hydroxylation. This study demonstrates that the photochemistry approach is an appealing strategy for the synthesis of high-performance OVs-rich photocatalysts for solar-induced chemical conversion.

9.
Artigo em Inglês | MEDLINE | ID: mdl-39370640

RESUMO

High-temperature shock (HTS) is an emerging material synthesis technology with advantages, such as rapid processing, low energy consumption, and high controllability. This technology can prepare ultrafine nanoparticles with uniform particle size distribution and introduce additional oxygen vacancies, offering significant potential for the preparation of key materials for solid oxide electrochemical cells (SOCs). In this study, the La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) air electrode was successfully prepared using HTS technology. Compared to the conventional muffle furnace calcination, the HTS-prepared LSCF exhibits a larger specific surface area and a higher oxygen vacancy concentration, and it demonstrates significant improvements in performance. The oxygen ion conducting SOC (O-SOC) with the HTS-LSCF air electrode achieved a peak power density (PPD) of 960 mW cm-2 and a current density of 0.38 A cm-2 (at 1.3 V) at 700 °C. Meanwhile, the proton conducting SOC (P-SOC) with HTS-LSCF air electrode reached a PPD value of 1.34 W cm-2 and a current density of 3.43 A cm-2 (at 1.3 V) at 700 °C. Additionally, the P-SOC with HTS-LSCF air electrode showed no significant degradation during over 200 h of long-term testing, reflecting the excellent stability of HTS-LSCF. This work provides a fast, efficient, and economical approach for synthesizing high-performance, high-stability SOC air electrode materials.

10.
Nanomaterials (Basel) ; 14(19)2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39404321

RESUMO

Perovskite oxide LaFeO3(LFO) emerges as a potential candidate for formaldehyde (HCHO) detection due to its exceptional electrical conductivity and abundant active metal sites. However, the sensitivity of the LFO sensor needs to be further enhanced. Herein, a series of LaxIn1-xFeO3 (x = 1.0, 0.9, 0.8, and 0.7) nanofibers (LxIn1-xFO NFs) with different ratios of La/In were obtained via the electrospinning method followed by a calcination process. Among all these LxIn1-xFO NFs sensors, the sensor based on the L0.8In0.2FO NFs possessed the maximum response value of 18.8 to 100 ppm HCHO at the operating temperature of 180 °C, which was 4.47 times higher than that based on pristine LFO NFs (4.2). Furthermore, the L0.8In0.2FO NFs sensor also exhibited a rapid response/recovery time (2 s/22 s), exceptional repeatability, and long-term stability. This excellent gas sensing performance of the L0.8In0.2FO NFs can be attributed to the large number of oxygen vacancies induced by the replacement of the A-site La3+ by In3+, the large specific surface area, and the porous structure. This research presents an approach to enhance the HCHO gas sensing capabilities by adjusting the introduced oxygen vacancies through the doping of A-sites in perovskite oxides.

11.
Environ Res ; 263(Pt 2): 120137, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39393452

RESUMO

The activity of supported noble metal (e.g., palladium (Pd)) catalysts is often governed by the combined effects of multiple factors (e.g., electronic and geometric properties of the support, surface chemistry of metal nanoparticles (NPs), and metal-support interactions). Pd/titanium dioxide (TiO2) catalyst has been developed as a highly efficient photocatalytic degradation (PCD) system against gaseous toluene based on high-temperature pretreatment (300 and 450 °C) in a mixed stream of hydrogen (H2) and (N2). The interaction of Pd NPs with TiO2 synergistically improves the PCD efficiency of toluene through the efficient adsorption and activation of toluene as well as molecular oxygen (O2) and water (H2O) for the facile generation of reactive oxygen species (ROS (e.g., superoxide anion (•O2-) and hydroxyl (•OH) radicals)). The PCD efficiency of the prepared sample against 5 ppm toluene (at 20% relative humidity (RH)) is 79.6% with the values of maximum reaction rate, quantum yield, space-time yield, and clean air delivery rate as 9.9 µmol g-1 h-1, 1.68E-03 molecules photon-1, 1.68E-02 molecules photon-1 g-1, and 4.8 L h-1, respectively. Based on this research, the PCD mechanism of gaseous toluene has been explored along with the dynamic behavior of O2 and H2O for ROS generation and their relative contribution to the PCD of toluene. As such, this research offers a perspective for designing advanced photocatalysts through surface defect engineering.

12.
Environ Sci Technol ; 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39400239

RESUMO

In contrast to previous defect engineering methods, the preparation of amorphous materials can obtain abundant defect sites through a simple way, which is expected to effectively degrade Volatile Organic Compounds (VOCs) under milder conditions. However, in-depth and systematic studies in this area are still lacking. Novel types of amorphous CeMnx catalysts with abundant defects were prepared through simple hydrothermal synthesis and used for Cl-VOCs catalysis for the first time. Experimental characterizations and DFT calculations proved that Ce doping induced MnO2 lattice distortion, which led to the transformation of CeMnx into an amorphous structure and the formation of abundant defect sites. It was observed that CeMn0.16 was able to eliminate chlorobenzene (CB) at 200 °C, and the CO2 yields and the selectivity of inorganic chlorine was significantly higher than that of MnO2. The 18O isotope kinetic experiments revealed that the interfacial reaction process followed the MVK mechanism. The large number of oxygen vacancies accelerated the migration of lattice oxygen from the interior to the exterior, enhancing the ability to trap gas-phase oxygen. Mn4+ acted as the main active center to participate in CB catalysis, and the resulting reactive oxygen species (ROS) and Mn3+-[O2-]-Ce4+ further accelerated the entire oxidation cycle.

13.
Artigo em Inglês | MEDLINE | ID: mdl-39412406

RESUMO

Nitrogen fixation reaction via photocatalysis offers a green and promising strategy for renewable NH3 synthesis, and catalysts with high-efficiency photocatalytic properties are essential to the process. Herein, we demonstrate a W-doped Sb2OS2 bimetal oxysulfide catalyst (labeled as SbWOS) with abundant oxygen vacancies, heterovalent metal states, and hydrophilic surfaces for nitrogen photoreduction to ammonia. The SbWOS-3 with suitable W-doping exhibited excellent nitrogen fixation activity of 408.08 µmol·g-1·h-1 and an apparent quantum efficiency (AQE) of 1.88% at 420 nm and a solar-to-ammonia (STA) conversion efficiency of 0.082% in pure water under AM1.5G light irradiation. The W-doping not only transforms hydrophobic Sb2OS2 into a hydrophilic catalyst, making it easier for H2O molecules adsorbed on the SbWOS surface and catalyzed into protons, but also endows the SbWOS catalyst with rich oxygen vacancies, acting as the active sites for trapping and activating the N2 molecule, and for trapping and activating H2O to produce the protons for the N2 photocatalytic reduction reaction. The hydrazine drives the SbWOS catalyst with the heterovalent metal states, which acts as the photogenerate electrons quickly hopping between W5+ and W6+ to transfer for the N2 reduction reaction. This study provides a feasible scheme for applying oxygen vacancy defects, heterovalent metal states, and surface hydrophobic-to-hydrophilic wetting engineering in bimetal oxysulfide for N2 photoreduction to ammonia.

14.
Small ; : e2406718, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375992

RESUMO

Electrocatalytic nitrogen oxidation reaction (N2OR) offers a sustainable alternative to the conventional methods such as the Haber-Bosch and Ostwald oxidation processes for converting nitrogen (N2) into high-value-added nitrate (NO3 -) under mild conditions. However, the concurrent oxygen evolution reaction (OER) and inefficient N2 absorption/activation led to slow N2OR kinetics, resulting in low Faradaic efficiencies and NO3 - yield rates. This study explored oxygen-vacancy induced tin oxide (SnO2-Ov) as an efficient N2OR electrocatalyst, achieving an impressive Faradaic efficiency (FE) of 54.2% and a notable NO3 - yield rate (22.05 µg h-1 mgcat -1) at 1.7 V versus reversible hydrogen electrode (RHE) in 0.1 m Na2SO4. Experimental results indicate that SnO2-Ov possesses substantially more oxygen vacancies than SnO2, correlating with enhanced N2OR performance. Computational findings suggest that the superior performance of SnO2-Ov at a relatively low overpotential is due to reduced thermodynamic barrier for the oxidation of *N2 to *N2OH during the rate-determining step, making this step energetically favorable than the oxygen adsorption step for OER. This work demonstrates the feasibility of ambient nitrate synthesis on the soft acidic Sn active site and introduces a new approach for rational catalyst design.

15.
Water Res ; 267: 122524, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39348725

RESUMO

Antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) pose a significant threat to both ecosystems and human health. Owing to the excellent catalytic activity, eco-safety, and convenience for defect engineering, BiOBr with oxygen vacancies (OVs) of different density thus were fabricated and employed to activate H2O2 for ARB disinfection/ARGs degradation in present study. We found that BiOBr with OVs of appropriate density induced via ethanol reduction (BOB-E) could effectively activate H2O2, achieving excellent ARB disinfection and ARGs degradation efficiency. Moreover, this disinfection system exhibited remarkable tolerance to complex water environments and actual water conditions. In-situ characterization and theoretical calculations revealed that OVs in BOB-E could effectively capture and activate aqueous H2O2 into HO· and O2·-. The generated reactive oxygen species combined with electron transfer could damage the cell membrane system and degrade genetic materials of ARB, leading to effective disinfection. The impressive reusability, high performance achieved in two immobilized reaction systems (packed column and baffled ditch reactor), excellent degradation of emerging organic pollutants supported the feasibility of BOB-E/H2O2 system towards practical water decontamination. Overall, this study not only provides insights into fabrication of bismuth-based catalysts for efficient ARB disinfection/ARGs degradation via OVs regulation, but also paves the way for their practical applications.

16.
Adv Sci (Weinh) ; : e2408096, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39340830

RESUMO

La-decorated Bi2O2CO3 (BCO-La) microspheres are synthesized using a facile wet chemical strategy for sensing low-concentration nonanal (C9H18O) at room temperature. These BCO-La gas sensors are applied to evaluate agricultural product quality, specifically for cooked rice. The sensitivity of the BCO-6La sensor significantly surpassed that of the pure BCO sensor, achieving a response value of 174.6 when detecting 30 ppm nonanal gas. Notably, the BCO-6La sensor demonstrated a faster response time (36 s) when exposed to 18 ppm of nonanal. Additionally, the selectivity toward nonanal gas detection is higher (approximately 4-24 times) compared to interfering gases (1-octanol, geranyl acetone, linalool, hexanal, 2-pentyfuran, and 1-octen-3-ol) during cooked rice quality detection. The gas sensing mechanism and the factors contributing to the enhanced sensing performance of the BCO-La microspheres are demonstrated through in situ FT-IR spectra and DFT analysis while the realistic detection scenario is carried out. In a broader context, the reported sensors here represent a novel platform for the detection and monitoring of gases released by agricultural products during storage.

17.
Sci Rep ; 14(1): 22374, 2024 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333647

RESUMO

In this study, pure V6O13 and nickel ion-doped V6O13 powders were synthesized by a simple hydrothermal-calcination method, and their broad-spectrum antimicrobial properties and mechanisms were investigated. The crystal structure, morphology, and chemical state of the powders were thoroughly analyzed by XRD, SEM, TEM, XPS, and UV-Vis. Their antimicrobial properties and mechanisms were evaluated by the ring of inhibition, bio-SEM, live-dead cell staining, ROS detection, and protein leakage experiments. The results showed that nickel ion doping modulated the oxygen defects of V6O13, generating more reactive oxygen species and leading to more severe oxidative stress, resulting in a broad-spectrum and highly efficient antimicrobial effect. This study also revealed the antimicrobial mechanism based on oxygen defect -induced ROS production, which caused cellular oxidative stress damage, leading to leakage of intracellular substances and cell death. This study not only demonstrates the potential of V6O13 as an efficient antimicrobial agent but also provides a strong experimental basis and theoretical support for the engineering design and optimization of novel antimicrobial materials by modulating material defects through ion doping.


Assuntos
Anti-Infecciosos , Níquel , Estresse Oxidativo , Pós , Espécies Reativas de Oxigênio , Níquel/química , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Testes de Sensibilidade Microbiana , Íons , Escherichia coli/efeitos dos fármacos
18.
Small ; : e2406425, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39344531

RESUMO

Because of their intrinsic polarization and related properties, ferroelectrics attract significant attention to address energy transformation and environmental protection. Here, by using trivalent-ion-lanthanum doping of BiFeO3 nanoparticles (NPs), it is shown that defects and piezoelectric potential are synergized to achieve a high piezocatalytic effect for decomposing the model Rhodamine B (RhB) pollutant, reaching a record-high piezocatalytic rate of 21 360 L mol-1 min-1 (i.e., 100% RhB degradation within 20 min) that exceeds most state-of-the art ferroelectrics. The piezocatalytic Bi0.99La0.01FeO3 NPs are also demonstrated to be versatile toward various pharmaceutical pollutants with over 90% removal efficiency, making them extremely efficient piezocatalysts for water purification. It is also shown that 1% La-doping introduces oxygen vacancies and Fe2+ defects. It is thus suggested that oxygen vacancies act as both active sites and charge providers, permitting more surface adsorption sites for the piezocatalysis process, and additional charges and better energy transfer between the NPs and surrounding molecules. Furthermore, the oxygen vacancies are proposed to couple to Fe2+ to form defect dipoles, which in turn introduces an internal field, resulting in more efficient charge de-trapping and separation when added to the piezopotential. This synergistic mechanism is believed to provide a new perspective for designing future piezocatalysts with high performance.

19.
Chemosphere ; 364: 143255, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39233298

RESUMO

The Ti3C2 quantum dots (QDs)/oxygen-vacancy-rich BiOBr hollow microspheres composite photocatalyst was prepared using solvothermal synthesis and electrostatic self-assembly techniques. Together, Ti3C2QDs and oxygen vacancies (OVs) enhanced photocatalytic activity by broadening light absorption and improving charge transfer and separation processes, resulting in a significant performance boost. Meanwhile, the photocatalytic efficiency of Ti3C2 QDs/BiOBr-OVs is assessed to investigate its capability for oxygen evolution and degradation of tetracycline (TC) and Rhodamine B (RhB) under visible-light conditions. The rate of oxygen production is observed to be 5.1 times higher than that of pure BiOBr-OVs, while the photocatalytic degradation rates for TC and RhB is up to 97.27% and 99.8%, respectively. The synergistic effect between Ti3C2QDs and OVs greatly enhances charge separation, leading to remarkable photocatalytic activity. Furthermore, the hollow microsphere contributes to the enhanced photocatalytic performance by facilitating multiple light scatterings and providing ample surface-active sites. The resultant Ti3C2QDs/BiOBr-OVs composite photocatalyst demonstrates significant potential for environmental applications.


Assuntos
Bismuto , Microesferas , Oxigênio , Pontos Quânticos , Rodaminas , Tetraciclina , Titânio , Pontos Quânticos/química , Titânio/química , Rodaminas/química , Catálise , Oxigênio/química , Bismuto/química , Tetraciclina/química , Luz , Processos Fotoquímicos , Fotólise
20.
Nano Lett ; 24(38): 11968-11975, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39259027

RESUMO

The conversion of woody biomass to H2 through photocatalysis provides a sustainable strategy to generate renewable hydrogen fuel but was limited by the slow decomposition rate of woody biomass. Here, we fabricate ultrasmall TiO2 nanoparticles with tunable concentration of oxygen vacancy defects (VO-TiO2) as highly efficient photocatalysts for photocatalytic conversion of woody biomass to H2. Owing to the positive role of oxygen vacancy in reducing energy barrier for the generation of •OH which was the critical species to oxidize woody biomass, the obtained VO-TiO2 achieves rapid photocatalytic conversion of α-cellulose and poplar wood chip to H2 in the presence of Pt nanoclusters as the cocatalyst. As expected, the highest H2 generation rate in α-cellulose and poplar wood chip system respectively achieve 1146 and 59 µmol h-1 g-1, and an apparent quantum yield of 4.89% at 380 nm was obtained in α-cellulose aqueous solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA