Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.247
Filtrar
1.
Purinergic Signal ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39352574

RESUMO

Purine nucleotides and nucleosides play critical roles in various pathological conditions, including tumor cell growth. Adenosine triphosphate (ATP) activates pro-tumor receptors, while adenosine (ADO) is a potent immunosuppressant and modulator of cell growth. This study aims to analyze the purinergic actions of ATP and its metabolites, associated enzymes, and P1 or P2 class receptors in primary central nervous system tumors. Additionally, we sought to correlate the levels of nucleosides and the density of P1, P2X, and P2Y receptors in cells with tumor progression. The results indicate that purinergic signaling depends on the receptor concentration and signaling molecules specific to each cell type, tissue, and tumor histology. The purinergic system may function as either a tumor-promoting agent or an antitumor factor, depending on the microenvironmental conditions and the concentrations of receptors and their respective activators. Notably, ATP emerges as the most significant extracellular signal, capable of being converted into other cellular stimulators pertinent to neoplasms, such as adenosine diphosphate, adenosine monophosphate, adenosine, and inosine. Consequently, a cascade of responses to these stimuli promotes tumor development, cell division, and metastasis. Purine nucleotides in central nervous system tumors are pivotal in cellular responses in glioblastoma multiforme, vestibular schwannoma, medulloblastoma, adenomas, gliomas, meningiomas, and pineal tumors. These findings hold the potential for developing novel therapeutic strategies and aiding in therapeutic management.

2.
Purinergic Signal ; 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39304596

RESUMO

Ongoing cardiac remodeling can lead to negative outcomes, such as cardiac failure and diminished myocardial function, although the remodeling process initially protects the heart as a compensatory mechanism[1] . Importantly, ferroptosis appears to be a critical process in the development of cardiac disease. In a recent publication in Redox Biology, (Zhong et al. [2] showed that reactive oxygen species (ROS) generation and cardiac ferroptosis may be the mechanisms underlying angiotensin II (Ang II)-induced cardiac remodeling, as well as that ferroptosis is required for heart impairment and cardiac dysfunction induced by Ang II. Moreover, this study provides evidence that Ang II increases the expression of P2X7 receptors (P2X7R) in cardiac tissues and that both silencing and pharmacological inhibition of P2X7R significantly inhibited Ang II-induced ferroptosis and hypertrophy. Also, this work confirmed that P2X7R deficiency mitigated the Ang II-induced deterioration of cardiac injury in mice fed an iron-rich diet. Most interestingly, this study revealed that Ang II directly interacts with the P2X7R to activate and induce nucleocytoplasmic shuttling of human antigen R (HuR), which in turn controls the stability of the mRNA of heme oxygenase 1 (HO-1) and GPX4 and subsequent ROS production, which translated to induction of myocardial ferroptosis and remodeling.

3.
Sci Rep ; 14(1): 21954, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304698

RESUMO

Countries all over the world are shifting from conventional and fossil fuel-based energy systems to more sustainable energy systems (renewable energy-based systems). To effectively integrate renewable sources of energy, multi-directional power flow and control are required, and to facilitate this multi-directional power flow, peer-to-peer (P2P) trading is employed. For a safe, secure, and reliable P2P trading system, a secure communication gateway and a cryptographically secure data storage mechanism are required. This paper explores the uses of blockchain (BC) in renewable energy (RE) integration into the grid. We shed light on four primary areas: P2P energy trading, the green hydrogen supply chain, demand response (DR) programmes, and the tracking of RE certificates (RECs). In addition, we investigate how BC can address the existing challenges in these domains and overcome these hurdles to realise a decentralised energy ecosystem. The main purpose of this paper is to provide an understanding of how BC technology can act as a catalyst for a multi-directional energy flow, ultimately revolutionising the way energy is generated, managed, and consumed.

4.
Life Sci ; : 123057, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39277132

RESUMO

AIMS: Microglia activation after spinal cord injury (SCI) is a double-edged sword, modulation of the activated microglia populations toward pro-regenerative phenotypes highlights the potential therapeutic implications. P2Y12, a microglia-specific marker, remains underexplored in its capacity to polarize microglial activation populations in SCI repair. We aimed to explore the effects of modulating P2Y12 on microglia function after spinal cord injury, and further on axonal regeneration and motor recovery after spinal cord injury. MATERIALS AND METHODS: The study employed both in vitro and in vivo models, using BV2 cells and a mouse model of SCI, respectively. Ticagrelor, a P2Y12 antagonist, was administered via a collagen scaffold to ensure stable and sustained release. Transcriptome sequencing analysis, immunofluorescence staining, and Basso Mouse Scale (BMS) scores were used to assess microglial activation, axonal regeneration, and functional recovery. KEY FINDINGS: Herein, we observed P2Y12+ microglia localized predominantly at the lesion periphery within 3 days post injury (dpi), manifesting a pro-inflammatory phenotype, but not anti-inflammatory phenotype. In vitro investigations revealed that P2Y12 inhibition of the activated microglia curtailed pro-inflammatory differentiation while augmenting anti-inflammatory differentiation. SIGNIFICANCE: Leveraging this insight, we engineered a collagen scaffold-based delivery system for sustained release of the P2Y12 antagonist, ticagrelor, at the injury site in a mouse complete SCI model. Notably, P2Y12 suppression markedly enhanced axonal regeneration within the injured site and ameliorated lower limb motor functions in SCI mice. Collectively, our findings illuminate P2Y12-targeted microglial modulation as a promising therapeutic approach for SCI.

5.
Front Pharmacol ; 15: 1347622, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39295932

RESUMO

Background: Stroke, a leading cause of death and disability, lacks effective treatments. Post-stroke secondary damage worsens the brain microenvironment, further exacerbating brain injury. Microglia's role in responding to stroke-induced damage in peri-infarct regions is crucial. In this study, we explored Weisheng-tang's potential to enhance ischemic outcomes by targeting microglia. Methods: We induced middle cerebral artery occlusion and reperfusion in mice, followed by behavioral assessments and infarct volume analyses after 48 h, and examined the changes in microglial morphology through skeleton analysis. Results: Weisheng-tang (300 mg/kg) significantly reduced infarction volume and alleviated neurological and motor deficits. The number of activated microglia was markedly increased within the peri-infarct territory, which was significantly reversed by Weisheng-tang. Microglial morphology analysis revealed that microglial processes were retracted owing to ischemic damage but were restored in Weisheng-tang-treated mice. This restoration was accompanied by the expression of the purinergic P2Y12 receptor (P2Y12R), a key regulator of microglial process extension. Weisheng-tang increased neuronal Kv2.1 clusters while suppressing juxtaneuronal microglial activation. The P2Y12R inhibitor-ticagrelor-eliminated the tissue and functional recovery that had been observed with Weisheng-tang after ischemic damage. Discussion: Weisheng-tang improved experimental stroke outcomes by modulating microglial morphology through P2Y12R, shedding light on its neuroprotective potential in ischemic stroke.

6.
Hum Immunol ; 85(6): 111105, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39317128

RESUMO

BACKGROUND: The most abundant innate immune cells, neutrophils, contribute significantly to cancer development by stimulating immunosuppression. However, it remains unclear about its function and molecular mechanisms in the immunosuppressive microenvironment of non-small cell lung cancer (NSCLC). METHODS: Blood samples were collected from NSCLC patients and healthy volunteers to detect the expression of P2RX1 and PD-L1 in neutrophils using qRT-PCR, western blot (WB), and flow cytometry. Neutrophils were sorted into P2RX1-positive (P2RX1+)/P2RX1-negative (P2RX1-) groups and co-cultured with CD8+ T cells. Changes in the proliferative and cytotoxic capabilities of CD8+ T cells were then detected using flow cytometry and enzyme-linked immunosorbent assay. The content of granzyme B was determined by enzyme-linked immunosorbent assay. The effects of P2RX1-deficient neutrophils on fatty acids, triglycerides, lipid droplet content and FASN expression were detected using kits, Nile red staining and WB, respectively. RESULTS: This study revealed a deficiency in P2RX1 expression in peripheral blood neutrophils of NSCLC patients, which was negatively correlated with the expression of PD-L1. P2RX1-neutrophils inhibited T cell proliferation and granzyme B expression and promoted T cell exhaustion. Furthermore, in P2RX1-deficient neutrophils, there was a notable increase in the levels of fatty acids, triglycerides, and lipid droplet accumulation, as well as an upregulation of FASN protein expression. Mechanistically, P2RX1-neutrophils upregulated PD-L1 expression by inducing fatty acid metabolism to improve immunosuppression in NSCLC. CONCLUSION: The mechanism by which P2RX1-deficient neutrophils contributed to immunosuppressive effects in NSCLC was clarified by our findings, indicating that P2RX1 could be one potential target for counteracting the immunosuppressive effects of neutrophils.

7.
Purinergic Signal ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39320433

RESUMO

Purinergic signaling regulates many metabolic functions and is implicated in liver physiology and pathophysiology. Liver functionality is modulated by ionotropic P2X and metabotropic P2Y receptors, specifically P2Y1, P2Y2, and P2Y6 subtypes, which physiologically exert their influence through calcium signaling, a key second messenger controlling glucose and fat metabolism in hepatocytes. Purinergic receptors, acting through calcium signaling, play an important role in a range of liver diseases. Ionotropic P2X receptors, such as the P2X7 subtype, and certain metabotropic P2Y receptors can induce aberrant intracellular calcium transients that impact normal hepatocyte function and initiate the activation of other liver cell types, including Kupffer and stellate cells. These P2Y- and P2X-dependent intracellular calcium increases are particularly relevant in hepatic disease states, where stellate and Kupffer cells respond with innate immune reactions to challenges, such as excess fat accumulation, chronic alcohol abuse, or infections, and can eventually lead to liver fibrosis. This review explores the consequences of excessive extracellular ATP accumulation, triggering calcium influx through P2X4 and P2X7 receptors, inflammasome activation, and programmed cell death. In addition, P2Y2 receptors contribute to hepatic steatosis and insulin resistance, while inhibiting the expression of P2Y6 receptors can alleviate alcoholic liver steatosis. Adenosine receptors may also contribute to fibrosis through extracellular matrix production by fibroblasts. Thus, pharmacological modulation of P1 and P2 receptors and downstream calcium signaling may open novel therapeutic avenues.

8.
Vasc Health Risk Manag ; 20: 415-420, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247557

RESUMO

Background: The P2Y12 receptor inhibitors clopidogrel and prasugrel are widely used. Clopidogrel and prasugrel have different metabolic pathways, but whether their adverse event (AE) profiles differ significantly is unclear. Objective: This study aimed to compare the possible AEs induced by clopidogrel and prasugrel and to assess the rank-order of their AEs submitted to a spontaneous reporting database. Materials and Methods: Data were extracted from the Japanese Adverse Drug Event Report database (JADER). Reports of AEs associated with clopidogrel and prasugrel were analyzed to calculate the reporting odds ratios (RORs) and 95% confidence intervals (CIs). Results: Based on 5869 reports for clopidogrel (69.6%, men) and 513 reports for prasugrel (74.1%, men), 703 and 135 different AEs were identified, respectively. Bleeding complications including hemorrhage were commonly reported for both clopidogrel and prasugrel. As for AEs related to clopidogrel, unexpected AEs such as interstitial lung disease (227 reports; ROR, 1.77; 95% CI, 1.49-2.10), abnormal hepatic function (137 reports; ROR, 1.27; 95% CI, 1.07-1.51), and hepatocellular injury (96 reports; ROR, 120.0; 95% CI, 94.9-151.8) ranked at relatively high positions based on the number of occurrences, unlike prasugrel. Conclusion: This analysis of the national pharmacovigilance database highlights distinct AE profiles for clopidogrel and prasugrel. Unexpected AEs associated with clopidogrel were identified, providing valuable insights for clinical monitoring and patient safety.


Assuntos
Sistemas de Notificação de Reações Adversas a Medicamentos , Clopidogrel , Doenças Pulmonares Intersticiais , Farmacovigilância , Inibidores da Agregação Plaquetária , Cloridrato de Prasugrel , Antagonistas do Receptor Purinérgico P2Y , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Clopidogrel/efeitos adversos , Bases de Dados Factuais , Hemorragia/induzido quimicamente , Hemorragia/epidemiologia , Japão/epidemiologia , Doenças Pulmonares Intersticiais/induzido quimicamente , Doenças Pulmonares Intersticiais/diagnóstico , Doenças Pulmonares Intersticiais/epidemiologia , Inibidores da Agregação Plaquetária/efeitos adversos , Cloridrato de Prasugrel/efeitos adversos , Cloridrato de Prasugrel/uso terapêutico , Antagonistas do Receptor Purinérgico P2Y/efeitos adversos , Medição de Risco , Fatores de Risco
9.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39273358

RESUMO

Neutrophil extracellular traps (NETs) are three-dimensional reticular structures that release chromatin and cellular contents extracellularly upon neutrophil activation. As a novel effector mechanism of neutrophils, NETs possess the capacity to amplify localized inflammation and have been demonstrated to contribute to the exacerbation of various inflammatory diseases, including cardiovascular diseases and tumors. It is suggested that lysophosphatidylcholine (LPC), as the primary active component of oxidized low-density lipoprotein, represents a significant risk factor for various inflammatory diseases, such as cardiovascular diseases and neurodegenerative diseases. However, the specific mechanism of NETs formation induced by LPC remains unclear. Quercetin has garnered considerable attention due to its anti-inflammatory properties, serving as a prevalent flavonoid in daily diet. However, little is currently known about the underlying mechanisms by which quercetin inhibits NETs formation and alleviates associated diseases. In our study, we utilized LPC-treated primary rat neutrophils to establish an in vitro model of NETs formation, which was subsequently subjected to treatment with a combination of quercetin or relevant inhibitors/activators. Compared to the control group, the markers of NETs and the expression of P2X7R/P38MAPK/NOX2 pathway-associated proteins were significantly increased in cells treated with LPC alone. Quercetin intervention decreased the LPC-induced upregulation of the P2X7R/P38MAPK/NOX2 pathway and effectively reduced the expression of NETs markers. The results obtained using a P2X7R antagonist/activator and P38MAPK inhibitor/activator support these findings. In summary, quercetin reversed the upregulation of the LPC-induced P2X7R/P38MAPK/NOX2 pathway, further mitigating NETs formation. Our study investigated the potential mechanism of LPC-induced NETs formation, elucidated the inhibitory effect of quercetin on NETs formation, and offered new insights into the anti-inflammatory properties of quercetin.


Assuntos
Armadilhas Extracelulares , Lisofosfatidilcolinas , NADPH Oxidase 2 , Neutrófilos , Quercetina , Receptores Purinérgicos P2X7 , Proteínas Quinases p38 Ativadas por Mitógeno , Quercetina/farmacologia , Lisofosfatidilcolinas/metabolismo , Lisofosfatidilcolinas/farmacologia , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Ratos , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Receptores Purinérgicos P2X7/metabolismo , NADPH Oxidase 2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino
10.
Biochem Pharmacol ; 229: 116543, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39304104

RESUMO

The development of in vitro pharmacological assays relies on creating genetically modified cell lines that overexpress the target protein of interest. However, the choice of the host cell line can significantly impact the experimental outcomes. This study explores the functional characterization of P2X7 and P2X4 receptor modulators through cellular assays and advanced electrophysiological techniques. The influence of different host cell lines (HEK-293, HEK-293FT, and 1321N1) on the activity of reference agonists and antagonists targeting human and murine P2X4 and P2X7 receptors was systematically investigated, highlighting the significant impact of the host cell on experimental results. The 1321N1 cell line was identified as the preferred host cell line when investigating the human P2X4 receptor due to more consistent agonist activities, antagonist potencies, and a more stable assay signal window. Furthermore, a patch-clamp protocol that allows for the repetitive recording of ATP-mediated inward currents from isolated human CD4+ T-cells was established, revealing that both P2X7 and P2X4 receptors are crucial for immune cell regulation, positioning them as promising therapeutic targets for managing inflammatory disorders.

11.
Artigo em Inglês | MEDLINE | ID: mdl-39343662

RESUMO

INTRODUCTION: Dual antiplatelet therapy (DAPT) with aspirin and a P2Y12 inhibitor is the standard of care for patients who undergo percutaneous coronary intervention (PCI) for ST elevation myocardial infarction (STEMI). Though this regimen reduces rates of ischemic events in patients with STEMI, the optimal strategy for P2Y12 administration in STEMI patients is still evolving. PURPOSE: The purpose of this review is to summarize current evidence on optimal use of ticagrelor and prasugrel in the acute phase of STEMI. SUMMARY: Due to high platelet activity in the acute setting of STEMI and PCI, adequate and rapid platelet inhibition is important. Strategies of increased ticagrelor/prasugrel loading dose or earlier administration in STEMI have not been successful in closing this platelet inhibition gap. Potential strategies for improving ticagrelor/prasugrel use early in STEMI include bridging with intravenous antiplatelet agents or crushed or chewed administration. CONCLUSION: Oral ticagrelor/prasugrel given before or immediately after STEMI PCI is usually sufficient to prevent thrombotic complications. When faster platelet inhibition is desired, or oral administration is compromised by inability to swallow tablets, crushing/chewing ticagrelor/prasugrel tablets is an alternative to intravenous P2Y12 inhibitor therapy.

12.
Eur J Med Chem ; 279: 116890, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39341096

RESUMO

The P2Y6 receptor (P2Y6R), as a crucial member of the purine family, is a potential therapeutic target for the treatment of intestinal inflammation, tracheal inflammation and diabetes. We first discovered the hit compound (5a, IC50 = 168.5 nM against P2Y6R) through our in-house library screening. Then, further medicinal chemistry efforts were made to optimize compound 5a, and a potent P2Y6R antagonist (5 ab) with better antagonistic activity (IC50 = 19.6 nM) was obtained. The molecular docking, CETSA, SPR and pull-down results indicated that compound 5 ab displayed strong binding to P2Y6R. Also, compound 5 ab possessed high selectivity and satisfying oral bioactivity and pharmacokinetic profiles. In experiments with LPS-induced acute lung injury in mice, after treatment with compound 5 ab, the level of inflammatory factors IL-6, TNF-α and IL-ß were considerably decreased, the infiltration of immune cells was decreased. Further exploration revealed that 5 ab inhibited the expression and release of chemokines in lung tissue, suppressing the activation of the NLRP3 inflammasome. Compound 5 ab had certain anti-inflammatory abilities in vivo and in vitro. These results demonstrate that compound 5 ab is a potential P2Y6R antagonist and is worthy of further study.

13.
Cardiol Clin ; 42(4): 497-507, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39322340

RESUMO

The pathophysiology of migraine remains poorly understood. Like most migraine preventive therapies, patent foramen ovale (PFO) closure was never intended for the treatment of migraine. After closure of PFO for other reasons, migraine symptom reduction/elimination was noted in some patients. Subsequent small trials failed to prove its benefit. There is significant evidence suggesting a platelet-mediated mechanism linking migraines to PFO. The GORE RELIEF Clinical Study is a randomized, blinded, placebo- and sham-controlled trial, currently enrolling. The study design is meant to optimize patient selection using thienopyridine responsiveness as an inclusion criterion.


Assuntos
Forame Oval Patente , Transtornos de Enxaqueca , Ensaios Clínicos Controlados Aleatórios como Assunto , Humanos , Forame Oval Patente/complicações , Forame Oval Patente/cirurgia , Forame Oval Patente/terapia , Transtornos de Enxaqueca/prevenção & controle , Estudos Observacionais como Assunto
14.
Pflugers Arch ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39325089

RESUMO

Pancreatic stellate cells (PSCs) are central in the development of acute pancreatitis and tumor fibrosis in pancreatic ductal adenocarcinoma (PDAC). Fibrosis and a unique pH landscape represent characteristic properties of the PDAC microenvironment. Mechanosensitive ion channels are involved in the activation of PSCs. Among these channels, K2P2.1 has not yet been studied in PSCs. K2P2.1 channels are pH- and mechanosensitive. We confirmed K2P2.1 expression in PSCs by RT-qPCR and immunofluorescence. PSCs from K2P2.1+/+ and K2P2.1-/- mice were studied under conditions mimicking properties of the PDAC microenvironment (acidic extracellular pH (pHe), ambient pressure elevated by + 100 mmHg). Migration and the cell area were taken as surrogates for PSC activation and evaluated with live cell imaging. pHe-dependent changes of the membrane potential of PSCs were investigated with DiBAC4(3), a voltage-sensitive fluorescent dye. We observed a correlation between morphological activation and progressive hyperpolarization of the cells in response to changes in pHe and pressure. The effect was in part dependent on the expression of K2P2.1 channels because the membrane potential of K2P2.1+/+ PSCs was always more hyperpolarized than that of K2P2.1-/- PSCs. Cell migration velocity of K2P2.1+/+ cells decreased upon pressure application when cells were kept in an acidic medium (pHe 6.6). This was not the case in K2P2.1-/- PSCs. Taken together, our study highlights the critical role of K2P2.1 channels in the combined sensing of environmental pressure and pHe by PSCs and in coordinating cellular morphology with membrane potential dynamics. Thus, K2P2.1 channels are important mechano-sensors in murine PSCs.

15.
Purinergic Signal ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39325357

RESUMO

Acute stress causes depressive-like reactions in the tail suspension (TST) and forced swim tests (FST) of mice. Similarly, inescapable foot shock is able to promote the development of anhedonia as indicated by decreased sucrose consumption of treated mice in the sucrose preference test (SPT). The astrocyte-specific deletion of the P2X7R by a conditional knockout strategy or its knockdown by the intracerebroventricular (i.c.v.) delivery of an adeno-associated virus (AAV) expressing P2X7R-specific shRNA in astrocytes significantly prolonged the immobility time in TST and FST. In contrast, the shRNA-induced downregulation of the P2X7R in neurons, oligodendrocytes, or microglia had no detectable effect on the behavior of treated mice in these tests. Moreover, sucrose consumption in the SPT was not altered following inescapable foot shock treatment in any of these cell type-specific approaches. Immunohistochemistry indicated that the administered astrocyte-specific AAV efficiently conveyed expression of shRNA by hippocampal CA1 astrocytes, but not by neurons. In conclusion, P2X7R in astrocytes of this area of the brain appears to be involved in depressive-like reactions to acute stressors.

16.
Front Cardiovasc Med ; 11: 1399899, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39314765

RESUMO

Purpose: Extended dual antiplatelet therapy (DAPT) with ticagrelor and aspirin is recommended in selected cases after myocardial infarction (MI) but not widely deployed in practice. This study assessed an innovative, cardiology pharmacist-led virtual service for determining eligibility for extended DAPT among patients completing 12 months of initial DAPT in primary care following MI. Methods: Within this model, potentially eligible individuals are reviewed virtually by a cardiology pharmacist for suitability for extended DAPT with reduced-dose ticagrelor [60 mg twice daily (BD)] for up to 3 years. Eligibility is guided by the PEGASUS-TIMI 54 trial criteria (aged ≥50 years and having ≥1 high-risk feature for further ischaemic events). This is balanced against potential ineligibility driven primarily by bleeding risk, assessed using PRECISE-DAPT score. The final recommendation is sent to primary care to action. The present work is a retrospective evaluation of patients referred to the service between July 2018 and December 2021. Results: A total of 200 patients were included [n = 131 (65.5%) male; mean age: 69.4 ± 9.5 years]. Of these, 79 (39.5%) were recommended for extended DAPT based on the balance of risks for further ischaemic events vs. bleeding. Sixty-three patients on high-dose DAPT (ticagrelor 90 mg BD)-which is inappropriate beyond 12 months-were reassigned to reduced-dose DAPT or aspirin monotherapy. Conclusions: This virtual clinic played a key role in medicines optimisation, enabling appropriate patients to benefit from extended DAPT while offsetting bleeding risk. The model could be adapted locally for use elsewhere.

17.
Curr Med Chem ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39252620

RESUMO

Lung cancer is the second malignant tumor in the world and is the most prevalent malignant tumor of the respiratory system. In lung cancer, the P2X7 receptor (P2X7R) is an important purinergic receptor. P2X7R is a class of ionotropic adenosine triphosphate (ATP)-gated receptors, which exists in many kinds of immune tissues and cells and is involved in tumorigenesis and progression. P2X7R is closely related to lung cancer and is expressed at higher levels in lung cancer than in normal lung tissue. P2X7R plays a critical regulatory function in lung cancer invasion and migration through multiple mechanisms of action and affects the proliferation and apoptosis of cancer cells in the lung. Antagonists of P2X7R can block its function, which in turn has a significant inhibitory effect on lung cancer cell development and progression. This paper details a comprehensive overview of the structure and function of P2X7R. It focuses on the impact and treatment potential of P2X7R in lung cancer invasion, migration, proliferation, and apoptosis, providing new ideas and a new basis for clinical lung cancer treatment and prognosis.

18.
Am J Med Genet A ; : e63877, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258340

RESUMO

The rapid development and clinical application of sequencing technologies enable the genetic diagnosis of inherited deafness. P2RX2, as the gene responsible for autosomal dominant non-syndromic deafness-41 (DFNA41), has been proven to be essential for life-long normal hearing and for the protection of noise-induced hearing loss (NIHL). Our present study reports a missense variant in the P2RX2 gene (c.178G > T (p.V60L)), for the second time worldwide, in a five-generation kindred living in Henan, China. Despite carrying the same variant, the affected members in this family appear to present with earlier-onset hearing loss and poorer hearing compared to the original DFNA41 families. In addition, this study supplements some content that was not covered in previous reports. We quantitatively evaluated the pain perception ability of some members using the Pain Vision PS-2100 system, and further found an interesting clinical manifestation, that is, hyperalgesia, in heterozygotes for P2RX2 p.V60L. The cochlear implant (CI) was also provided for the proband of profound deafness, resulting in satisfactory clinical outcomes. Finally, we carried out a systematic review of recently published articles on the P2RX2 gene, which is beneficial for better understanding the role of the P2RX2 gene in the auditory system and the pathogenic mechanisms in sensorineural hearing loss (SNHL).

19.
Psychophysiology ; : e14695, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342454

RESUMO

Deception often occurs in response to a preceding cue (e.g., a precarious question) alerting us about the need to subsequently lie. Here, we simulate this process by adapting a previously established paradigm of intentionally false responding, now instructing participants about the need for deception (vs. truthful responses) by means of a simple cue occurring before each response-relevant target. We analyzed event-related brain potentials (ERPs) as well as cortical oscillations recorded from the scalp. In an experimental study (N = 44), we show that a cue signaling the need for deception involves increased attentional selection (P2, P3a, P3b). Moreover, in the period following the cue and leading up to the target, ERP and oscillatory signatures of anticipation and preparation (Contingent Negative Variation, alpha suppression) were found to be increased during trials requiring a deceptive as compared to a truthful response. Additionally, we replicated earlier findings that target processing involves enhanced motivated attention toward words requiring a deceptive response (LPC). Moreover, a signature of integration effort and semantic inhibition (N400) was observed to be larger for words to which responses have to be intentionally false as compared to those to which responses must be truthful. Our findings support the view of the involvement of a series of basic cognitive processes (especially attention and cognitive control) when responses are deliberately wrong instead of right. Moreover, preceding cues signaling the subsequent need for lying already elicit attentional and preparatory mechanisms facilitating the cognitive operations necessary for later successful lying.

20.
J Neuroinflammation ; 21(1): 244, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342243

RESUMO

Alcohol consumption leads to neuroinflammation and blood‒brain barrier (BBB) damage, resulting in neurological impairment. We previously demonstrated that ethanol-induced disruption of barrier function in human brain endothelial cells was associated with mitochondrial injury, increased ATP and extracellular vesicle (EV) release, and purinergic receptor P2 × 7R activation. Therefore, we aimed to evaluate the effect of P2 × 7R blockade on peripheral and neuro-inflammation in ethanol-exposed mice. In a chronic intermittent ethanol (CIE)-exposed mouse model, P2 × 7R was inhibited by two different methods: Brilliant Blue G (BBG) or gene knockout. We assessed blood ethanol concentration (BEC), brain microvessel gene expression by using RT2 PCR array, plasma P2 × 7R and P-gp, serum ATP, EV-ATP, number of EVs, and EV mtDNA copy numbers. An RT2 PCR array of brain microvessels revealed significant upregulation of proinflammatory genes involved in apoptosis, vasodilation, and platelet activation in CIE-exposed wild-type animals, which were decreased 15-50-fold in BBG-treated-CIE-exposed animals. Plasma P-gp levels and serum P2 × 7R shedding were significantly increased in CIE-exposed animals. Pharmacological or genetic suppression of P2 × 7R decreased receptor shedding to levels equivalent to those in control group. The increase in EV number and EV-ATP content in the CIE-exposed mice was significantly reduced by P2 × 7R inhibition. CIE mice showed augmented EV-mtDNA copy numbers which were reduced in EVs after P2 × 7R inhibition or receptor knockout. These observations suggested that P2 × 7R signaling plays a critical role in ethanol-induced brain injury. Increased extracellular ATP, EV-ATP, EV numbers, and EV-mtDNA copy numbers highlight a new mechanism of brain injury during alcohol exposure via P2 × 7R and biomarkers of such damage. In this study, for the first time, we report the in vivo involvement of P2 × 7R signaling in CIE-induced brain injury.


Assuntos
Barreira Hematoencefálica , Etanol , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças Neuroinflamatórias , Receptores Purinérgicos P2X7 , Transdução de Sinais , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Camundongos , Receptores Purinérgicos P2X7/metabolismo , Etanol/toxicidade , Doenças Neuroinflamatórias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Masculino , Depressores do Sistema Nervoso Central/toxicidade , Depressores do Sistema Nervoso Central/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA