RESUMO
Chronic obstructive pulmonary disease (COPD) stands as the prevailing chronic airway ailment, characterized by chronic bronchitis and emphysema. Current medications fall short in treatment of these diseases, underscoring the urgent need for effective therapy. Prior research indicated immunoproteasome inhibition alleviated various inflammatory diseases by modulating immune cell functions. However, its therapeutic potential in COPD remains largely unexplored. Here, an elevated expression of immunoproteasome subunits LMP2 and LMP7 in the macrophages isolated from mouse with LPS/Elastase-induced emphysema and polarized macrophages in vitro is observed. Subsequently, intranasal administration of the immunoproteasome-specific inhibitor ONX-0914 significantly mitigated COPD-associated airway inflammation and improved lung function in mice by suppressing macrophage polarization. Additionally, ONX-0914 capsulated in PLGA nanoparticles exhibited more pronounced therapeutic effect on COPD than naked ONX-0914 by targeting immunoproteasome in polarized macrophages. Mechanistically, ONX-0914 activated autophagy and endoplasmic reticulum (ER) stress are not attribute to the ONX-0914 mediated suppression of macrophage polarization. Intriguingly, ONX-0914 inhibited M1 polarization through the nuclear factor erythroid 2-related factor-1 (NRF1) and NRF2-P62 axis, while the suppression of M2 polarization is regulated by inhibiting the transcription of interferon regulatory factor 4 (IRF4). In summary, the findings suggest that targeting immunoproteasome in macrophages holds promise as a therapeutic strategy for COPD.
RESUMO
Methamphetamine (METH) is a drug of abuse, which induces behavioral sensitization following repeated doses. Since METH alters blood pressure, in the present study we assessed whether systolic and diastolic blood pressure (SBP and DBP, respectively) are sensitized as well. In this context, we investigated whether alterations develop within A1/C1 neurons in the vasomotor center. C57Bl/6J male mice were administered METH (5 mg/kg, daily for 5 consecutive days). Blood pressure was measured by tail-cuff plethysmography. We found a sensitized response both to SBP and DBP, along with a significant decrease of catecholamine neurons within A1/C1 (both in the rostral and caudal ventrolateral medulla), while no changes were detected in glutamic acid decarboxylase. The decrease of catecholamine neurons was neither associated with the appearance of degeneration-related marker Fluoro-Jade B nor with altered expression of α-synuclein. Rather, it was associated with reduced free radicals and phospho-cJun and increased heat shock protein-70 and p62/sequestosome within A1/C1 cells. Blood pressure sensitization was not associated with altered arterial reactivity. These data indicate that reiterated METH administration may increase blood pressure persistently and may predispose to an increased cardiovascular response to METH. These data may be relevant to explain cardiovascular events following METH administration and stressful conditions.
Assuntos
Pressão Sanguínea , Catecolaminas , Metanfetamina , Camundongos Endogâmicos C57BL , Neurônios , Animais , Metanfetamina/efeitos adversos , Metanfetamina/farmacologia , Metanfetamina/toxicidade , Pressão Sanguínea/efeitos dos fármacos , Masculino , Catecolaminas/metabolismo , Camundongos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Bulbo/metabolismo , Bulbo/efeitos dos fármacosRESUMO
Hepatocellular carcinoma (HCC) emerges from chronic inflammation, to which activation of hepatic stellate cells (HSCs) contributes by shaping a pro-tumorigenic microenvironment. Key to this process is p62, whose inactivation leads to enhanced hepatocarcinogenesis. Here, we show that p62 activates the interferon (IFN) cascade by promoting STING ubiquitination by tripartite motif protein 32 (TRIM32) in HSCs. p62, binding neighbor of BRCA1 gene 1 (NBR1) and STING, triggers the IFN cascade by displacing NBR1, which normally prevents the interaction of TRIM32 with STING and its subsequent activation. Furthermore, NBR1 also antagonizes STING by promoting its trafficking to the endosome-lysosomal compartment for degradation independent of autophagy. Of functional relevance, NBR1 deletion completely reverts the tumor-promoting function of p62-deficient HSCs by rescuing the inhibited STING-IFN pathway, thus enhancing anti-tumor responses mediated by CD8+ T cells. Therefore, NBR1 emerges as a synthetic vulnerability of p62 deficiency in HSCs by promoting the STING/IFN pathway, which boosts anti-tumor CD8+ T cell responses to restrain HCC progression.
RESUMO
NNK, formally known as 4-(methyl nitrosamine)-1-(3-pyridyl)-1-butanoe, is a potent chemical carcinogen prevalent in cigarette smoke and is a key contributor to the development of human lung adenocarcinomas. On the other hand, autophagy plays a complex role in cancer development, acting as a "double-edged sword" whose impact varies depending on the cancer type and stage. Despite this, the relationship between autophagy and NNK-induced lung carcinogenesis remains largely unexplored. Our current study uncovers a marked reduction in p62 protein expression in both lung adenocarcinomas and lung tissues of mice exposed to cigarette smoke. Interestingly, this reduction appears to be contingent upon the activity of extrahepatic cytochrome P450 (CYP450), revealing that NNK metabolic activation by CYP450 enzyme escalates its potential to induce p62 downregulation. Further mechanistic investigations reveal that NNK suppresses autophagy by accelerating the degradation of p62 mRNA, thereby promoting the malignant transformation of human bronchial epithelial cells. This degradation process is facilitated by the hypermethylation of the Human antigen R (HuR) promoter, resulting in the transcriptional repression of HuR - a key regulator responsible for stabilizing p62 mRNA through direct binding. This hypermethylation is triggered by the activation of ribosomal protein S6, which is influenced by NNK exposure and subsequently amplifies the translation of DNA methyltransferase 3 alpha (DNMT3a). These findings provide crucial insights into the nature of p62 in both the development and potential treatment of tobacco-related lung cancer.
RESUMO
BACKGROUND: Autophagy is a conserved catabolic process that promotes cellular homeostasis and health. Although exercise is a well-established inducer of this pathway, little is known about the effects of different types of training protocols on the autophagy levels of tissues that are tightly linked to age-related metabolic syndromes (like brown adipose tissue) but are not easily accessible in humans. METHODS: Here, we take advantage of animal models to assess the effects of short- and long-term resistance and endurance training in both white and brown adipose tissue, reporting distinct alterations on autophagy proteins microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B, or LC3B) and sequestosome-1 (SQSTM1/p62). Additionally, we also analyzed the repercussions of these interventions in fat tissues of mice lacking autophagy-related protein 4 homolog B (ATG4B), further assessing the impact of exercise in these dynamic, regulatory organs when autophagy is limited. RESULTS: In wild-type mice, both short-term endurance and resistance training protocols increased the levels of autophagy markers in white adipose tissue before this similarity diverges during long training, while autophagy regulation appears to be far more complex in brown adipose tissue. Meanwhile, in ATG4B-deficient mice, only resistance training could slightly increase the presence of lipidated LC3B, while p62 levels increased in white adipose tissue after short-term training but decreased in brown adipose tissue after long-term training. CONCLUSIONS: Altogether, our study suggests an intricated regulation of exercise-induced autophagy in adipose tissues that is dependent on the training protocol and the autophagy competence of the organism.
Assuntos
Tecido Adiposo Marrom , Tecido Adiposo Branco , Autofagia , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos , Condicionamento Físico Animal , Animais , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Masculino , Camundongos , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Camundongos Knockout , Proteína Sequestossoma-1/metabolismo , Proteína Sequestossoma-1/genética , Treinamento Resistido/métodos , Cisteína EndopeptidasesRESUMO
Autophagy is closely associated with the onset and progression of steroid-induced osteonecrosis of the femoral head (SIONFH). SQSTM1/p62 is an important indicator of autophagic activity. The aim of this study was to investigate the role of SQSTM1/p62 in the development of SIONFH. From May 2021 through November 2021, 36 patients diagnosed with SIONFH and 36 healthy controls were recruited for this study. Evaluations included imaging and pathologic assessment of clinical bone tissue, location and level of SQSTM1/p62 expression, plasma SQSTM1/p62 levels, and receiver operating characteristic (ROC) curves. We observed that the expression level of SQSTM1/p62 in bone samples decreased with the Association Research Circulation Osseous (ARCO) phase. Plasma SQSTM1/p62 levels were significantly higher in the SIONFH group compared to healthy controls. Plasma SQSTM1/p62 levels were higher in pre-crash patients than in post-crash patients, and lower plasma SQSTM1/p62 levels were associated with elevated ARCO stage. Plasma SQSTM1/p62 may represent a potential biomarker for different stages during SIONFH. Lower plasma SQSTM1/p62 levels indicate an advanced stage of SIONFH. This study provides new clues for early diagnosis of SIONFH.
Assuntos
Biomarcadores , Necrose da Cabeça do Fêmur , Proteína Sequestossoma-1 , Humanos , Proteína Sequestossoma-1/metabolismo , Masculino , Biomarcadores/sangue , Feminino , Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/sangue , Necrose da Cabeça do Fêmur/diagnóstico , Adulto , Pessoa de Meia-Idade , Esteroides/sangue , Esteroides/efeitos adversos , Estudos de Casos e Controles , Cabeça do Fêmur/patologia , Cabeça do Fêmur/metabolismo , Curva ROC , Proteínas de Ligação a RNARESUMO
Liquid-liquid phase separation has emerged as a crucial mechanism driving the formation of membraneless biomolecular condensates, which play important roles in numerous cellular processes. These condensates, found both in the nucleus and cytoplasm, are formed through multivalent, low-affinity interactions between various molecules. P62-containing condensates serve, among other functions, as proteolytic hubs for the ubiquitin-proteasome system. In this study, we investigated the dynamic interplay between nuclear p62 condensates and promyelocytic nuclear bodies (PML-NBs). We show that p62 condensates stabilize PML-NBs under both basal conditions and following exposure to arsenic trioxide which stimulates their degradation. We further show that this effect on the stability of PML-NBs is due to sequestration of their ubiquitin E3 ligase RNF4 in the p62 condensates with subsequent rapid degradation of the ligase. The sequestration of the ligase is made possible by association between the proline-rich domain of the PML protein and the PB1 domain of p62, which results in the formation of a PML-NB shell around the p62 condensates. Importantly, these hybrid structures do not undergo fusion and mixing of their contents which leaves unsolved the mechanism of sequestration of RNF4 in the condensates. These findings suggest an additional possible mechanism of PML-NB as a tumor suppressor which is mediated via interactions between different biomolecular condensates.
Assuntos
Leucemia Promielocítica Aguda , Proteínas Nucleares , Proteína da Leucemia Promielocítica , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteína da Leucemia Promielocítica/metabolismo , Proteína da Leucemia Promielocítica/genética , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patologia , Trióxido de Arsênio , Corpos de Inclusão Intranuclear/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Arsenicais/metabolismo , Óxidos/metabolismo , Óxidos/química , Proteína Sequestossoma-1/metabolismo , Núcleo Celular/metabolismo , ProteóliseRESUMO
Autophagy mediates the degradation of harmful material within lysosomes. In aggrephagy, the pathway mediating the degradation of aggregated, ubiquitinated proteins, this cargo material is collected in larger condensates prior to its sequestration by autophagosomes. In this process, the autophagic cargo receptors SQSTM1/p62 and NBR1 drive cargo condensation, while TAX1BP1, which binds to NBR1, recruits the autophagy machinery to facilitate autophagosome biogenesis at the condensates. The mechanistic basis for the TAX1BP1-mediated switch from cargo collection to its sequestration is unclear. Here we show that TAX1BP1 is not a constitutive component of the condensates. Its recruitment correlates with the induction of autophagosome biogenesis. TAX1BP1 is sufficient to recruit the TBK1 kinase via the SINTBAD adapter. We define the NBR1-TAX1BP1-binding site, which is adjacent to the GABARAP/LC3 interaction site, and demonstrate that the recruitment of TAX1BP1 to cargo mimetics can be enhanced by an increased ubiquitin load. Our study suggests that autophagosome biogenesis is initiated once sufficient cargo is collected in the condensates.
RESUMO
BACKGROUND: Although previous studies have shown that the Ring Finger Protein 31 (RNF31) gene confers susceptibility to inflammatory disease and colorectal cancer, the exact function of this protein in ulcerative colitis (UC) has not been determined. METHODS: A mouse dextran sulfate sodium (DSS)-induced experimental colitis model was used to study RNF31 and NRF2 in colitis. RNF31 silencing or overexpression in vitro was applied to address the role of RNF31 in colonic mucosal barrier damage. Immunohistochemistry and silico analysis was performed to investigate the expression of RNF31 via taking advantage of UC tissue samples and Gene Expression Omnibus (GEO) data, respectively. The cycloheximide (CHX)-chase experiment and Co-Immunoprecipitation (Co-IP) assays were conducted to explore the association of RNF31 protein with NRF2 and P62. RESULTS: RNF31 is highly expressed in UC patients, in inflamed murine colon induced DSS and Lipopolysaccharide (LPS)-treated epithelial cells, while the express of NRF2 was Tabdecreased. RNF31-knockdown mice in the DSS-induced colitis model had a less severe phenotype, which was associated with a more integrated barrier of colon epithelial cells. While depletion of NRF2 in colitis model exacerbated intestinal inflammation. Mechanistically, RNF31 promoted the degradation of NRF2 by regulating its ubiquitination. Upon stimulation by RNF31, NRF2 is K63 ubiquitinated, which is associated with the C871 residue of RNF31. Moreover, downregulated NRF2 mediates inflammation by promoting the secretion of IL1ß and IL18, leading to damage of the intestinal barrier. Upon LPS stimulation, the interaction of the PUB domain of RNF31 with the UBA domain of P62 increased, resulting in decreased degradation of the RNF31 protein via autophagy. CONCLUSION: Overall, depletion of RNF31 effectively relieves DSS-induced colitis in mice by inhibiting NRF2 degradation, suggesting that RNF31 may be a potential therapy for human ulcerative colitis.
RESUMO
RATIONALE: The multifaceted functions of p62 (SQSTM1) are increasingly recognized, but its role in hypothalamic metabolism-associated neurons for energy balance has yet to be elucidated. METHODS: Single-nucleus RNA sequencing (snRNA-Seq) was performed on hypothalamic tissues from db/db and db/m mice to explore p62 expression. Overexpression and knockout of p62 in hypothalamic POMC neurons were performed via AAV-mediated gene delivery and Cre-loxP systems. Metabolic outcomes were assessed under normal chow (NCD) and high-fat diet (HFD) conditions. The co-immunoprecipitation and luciferase reporter assays were used to investigate the interaction between p62 and STAT3. RESULTS: The snRNA-Seq analysis found that p62 was ubiquitously expressed in hypothalamic neurons, with significantly higher levels in POMC neurons of db/db mice compared to db/m controls. Under NCD or HFD conditions, the absence of p62 in POMC neurons led to increased body weight, decreased energy expenditure and leptin sensitivity, while its overexpression in POMC neurons produced the opposite phenotype. Mechanistically, p62 interacts with STAT3, facilitating its phosphorylation to initiate POMC transcription and amplify leptin sensitivity. CONCLUSION: This study demonstrated the capacity of p62 to monogenically regulate the obesity phenotype and emphasized its dual role in managing energy homeostasis through direct modulation of STAT3/POMC signaling and amplification of leptin sensitivity.
Assuntos
Dieta Hiperlipídica , Metabolismo Energético , Hipotálamo , Leptina , Neurônios , Obesidade , Pró-Opiomelanocortina , Fator de Transcrição STAT3 , Proteína Sequestossoma-1 , Transdução de Sinais , Animais , Leptina/metabolismo , Hipotálamo/metabolismo , Camundongos , Metabolismo Energético/fisiologia , Proteína Sequestossoma-1/metabolismo , Fator de Transcrição STAT3/metabolismo , Neurônios/metabolismo , Obesidade/metabolismo , Pró-Opiomelanocortina/metabolismo , Masculino , Camundongos Knockout , Camundongos Endogâmicos C57BLRESUMO
Mitophagy, the selective autophagic clearance of damaged mitochondria, is considered vital for maintaining mitochondrial quality and cellular homeostasis; however, its molecular mechanisms, particularly under basal conditions, and its role in cellular physiology remain poorly characterized. We recently demonstrated that basal mitophagy is a key feature of primary human cells and is downregulated by immortalization, suggesting its dependence on the primary cell state. Mechanistically, we demonstrated that the PINK1-PRKN-SQSTM1 pathway regulates basal mitophagy, with SQSTM1 sensing superoxide-enriched mitochondria through its redox-sensitive cysteine residues, which mediate SQSTM1 oligomerization and mitophagy activation. We developed STOCK1N-57534, a small molecule that targets and promotes this SQSTM1 activation mechanism. Treatment with STOCK1N-57534 reactivates mitophagy downregulated in senescent and naturally aged donor-derived primary cells, improving cellular senescence(-like) phenotypes. Our findings highlight that basal mitophagy is protective against cellular senescence and aging, positioning its pharmacological reactivation as a promising anti-aging strategy.Abbreviation: IR: ionizing radiation; ROS: reactive oxygen species; SARs: selective autophagy receptors.
RESUMO
Autophagy is a critical cellular process for degrading damaged organelles and proteins under stressful conditions and has casually been shown to contribute to tumor survival and drug resistance. Sequestosome-1 (SQSTM1/p62) is an autophagy receptor that interacts with its binding partners via the LC3-interacting region (LIR). The p62 protein has been a highly researched target for its critical role in selective autophagy. In this study, we aimed to identify FDA-approved drugs that bind to the LIR motif of p62 and inhibit its LIR function, which could be useful targets for modulating autophagy. To this, the homology model of the p62 protein was predicted using biological data, and docking analysis was performed using Molegro Virtual Docker and PyRx softwares. We further assessed the toxicity profile of the drugs using the ProTox-II server and performed dynamics simulations on the effective candidate drugs identified. The results revealed that the kanamycin, velpatasvir, verteporfin, and temoporfin significantly decreased the binding of LIR to the p62 protein. Finally, we experimentally confirmed that Kanamycin can inhibit autophagy-associated acidic vesicular formation in breast cancer MCF-7 and MDA-MB 231 cells. These repositioned drugs may represent novel autophagy modulators in clinical management, warranting further investigation.
RESUMO
Diabetic foot (DF), a prevalent and grave diabetes sequela, is considered as a notable clinical concern, with SIRT1 downregulation observed in DF patients' blood specimens. Nonetheless, the regulatory mechanisms of SIRT1 in diabetic foot ulcer (DFU) remain unclear. Thus, in the current study, we investigated the role and mechanisms of SIRT1 in alleviating DFU. Western blotting was used to detect the expression of autophagy and ferroptosis-related proteins, CCK8 assay was used to measure cell proliferation. Plate colony method was used to measure bacterial growth, and the inhibitory effect on intracellular and extracellular Staphylococcus aureus was observed after drug intervention. ELISA was used to detect inflammatory cytokines and oxidative stress markers levels. ROS, total iron, and Fe2+ levels were detected using corresponding assays. Additionally, HE staining detected the thickness of the epidermis and dermis of the rat wound tissue while the collagen deposition in the wound tissue was detected using Masson staining. In addition, Prussian blue staining was used to detect iron deposition, and C11 BODIPY 581/591 lipid peroxidation probe was used to detect lipid ROS. Our results suggested that the activation of SIRT1/Nrf2/p62 signaling affects cell proliferation, colony formation, ferroptosis, and the production of lipid ROS in DFU-infected cell model through autophagy. In vivo experiments indicated that activating SIRT1/Nrf2/p62 signaling affects oxidative stress, inflammation, and autophagy in wound tissue and promotes wound healing in DFU rats through mediating autophagy-dependent ferroptosis. Taken together, the activation of SIRT1/Nrf2/p62 pathway can promote DFU healing, which might be mediated by autophagy-dependent ferroptosis.
RESUMO
Cardiac arrest (CA) is a significant challenge for emergency physicians worldwide and leads to increased morbidity and mortality rates. The poor prognosis of CA primarily stems from the complexity and irreversibility of cerebral ischemia-reperfusion injury (CIRI). Ferroptosis, a form of programmed cell death characterized by iron overload and lipid peroxidation, plays a crucial role in the progression and treatment of CIRI. In this review, we highlight the mechanisms of ferroptosis within the context of CIRI, focusing on its role as a key contributor to neuronal damage and dysfunction post-CA. We explore the crucial involvement of the nuclear factor erythroid 2-related factor (Nrf2)-mediated signaling pathway in modulating ferroptosis-associated processes during CIRI. Through comprehensive analysis of the regulatory role of Nrf2 in the cellular responses to oxidative stress, we highlight its potential as a therapeutic target for mitigating ferroptotic cell death and improving the neurological prognosis of patients experiencing CA. Furthermore, we discuss interventions targeting the Kelch-like ECH-associated protein 1/Nrf2/antioxidant response element pathway, including the use of traditional Chinese medicine and Western medicine, which demonstrate potential for attenuating ferroptosis and preserving neuronal function in CIRI. Owing to the limitations in the safety, specificity, and effectiveness of Nrf2-targeted drugs, as well as the technical difficulties and ethical constraints in obtaining the results related to the brain pathological examination of patients, most of the studies focusing on Nrf2-related regulation of ferroptosis in CIRI are still in the basic research stage. Overall, this review aims to provide a comprehensive understanding of the mechanisms underlying ferroptosis in CIRI, offering insights into novel therapeutics aimed at enhancing the clinical outcomes of patients with CA.
RESUMO
Acetaminophen (APAP) overdose can induce hepatocyte necrosis and acute liver failure in experimental rodents and humans. APAP is mainly metabolized via hepatic cytochrome P450 enzymes to generate the highly reactive metabolite N-acetyl-p-benzoquinone imine (NAPQI), which forms acetaminophen protein adducts (APAP-adducts) and damages mitochondria, triggering necrosis. APAP-adducts and damaged mitochondria can be selectively removed by autophagy. Increasing evidence implies that the activation of autophagy may be beneficial for APAP-induced liver injury (AILI). In this minireview, we briefly summarize recent progress on autophagy, in particular, the pharmacological targeting of SQSTM1/p62 and TFEB in AILI.
RESUMO
Cisplatin resistance in ovarian cancer cells is mainly apoptosis resistant. Although other types of programmed cell death are highly involved in chemoresistance, which type can overcome cisplatin resistance remains unclear. The present study observed that cisplatin-sensitive SKOV3 cells and cisplatin-resistant SKOV3/DDP cells had different levels of sensitivity to sulfasalazine (SAS). The present study aimed to investigate the effect of SAS on necroptosis under the same inhibition rate in these two types of cells. Necroptosis inhibitor Necrostatin-1 (Nec-1) attenuated SAS-induced SKOV3/DDP cytotoxicity. SAS decreased SKOV3/DDP cells survival rate, accompanied by decreased cell adhesion and spreading. SAS treatment activated necrosome formation in SKOV3/DDP cells, suggesting the possibility of necroptosis. p62/sequestosome-1 (SQSTM1) protein expression levels were also increased over the same time period. The transfection of small interfering (si)-p62 could decrease the ratios of phosphorylated (p)-receptor-interacting serine/threonine kinase 1 (RIP1)/RIP1, p-receptor-interacting serine/threonine kinase 3 (RIP3)/RIP3 and p-mixed lineage kinase domain-like protein (MLKL)/MLKL proteins in SKOV3/DDP cells. Under the si-p62 condition, there was no increase in the rate of cell survival in Nec-1 and SAS combination group compared with SAS. The zinc finger domain deletion of p62/SQSTM1 effectively decreased the expression levels of necroptosis-related p-proteins. Collectively, certain drugs were able to induce necroptosis in SKOV3/DDP, while p62/RIP1/RIP3/MLKL was associated with the induction of necroptosis and with increasing the sensitivity of cisplatin-resistant ovarian cancer cells, which provided evidence for potential as a therapeutic target for overcoming resistance.
RESUMO
BACKGROUND AND PURPOSE: Psoriasis results from the interplay of innate and adaptive immunity in the skin. Oroxylin A (OA) has shown anti-inflammatory effects in various disorders. This study explores oroxylin A potential in treating psoriasis, particularly its impact on type I macrophage (Mφ1) polarization. EXPERIMENTAL APPROACH: Oroxylin A-mediated therapeutic effects were evaluated using imiquimod-induced or IL-23-injected psoriatic mice models, followed by proteomics assays to predict potential signalling and targeting proteins. Immunofluorescence and immunoblot assays verified that oroxylin A suppresses NF-kB signalling in M1 macrophages. Co-immunoprecipitation and microscale thermophoresis (MST) assays further demonstrated that p62 (sequestosome 1) is the target protein for oroxylin A in macrophages. Oroxylin A-p62-mediated suppression of psoriasis was validated in an imiquimod-induced p62 conditional knockout (cKO) mice model. KEY RESULTS: Oroxylin A demonstrated therapeutic efficacy in murine models induced by imiquimod or IL-23 by attenuating cutaneous inflammation and mitigating Mφ1 polarization via NF-κB signalling. Proteomics analysis suggested SQSTM1/p62 as a key target, confirmed to interact directly with oroxylin A. Oroxylin A disrupted the p62-PKCζ interaction by binding to PB1 domain of p62. Its anti-inflammatory effects were significantly reduced in macrophages from p62 cKO mice compared to the wild-type (WT) mice in psoriasis model, supporting oroxylin A role in suppressing Mφ1 polarization through its interaction with p62. CONCLUSION AND IMPLICATIONS: Our findings demonstrated oroxylin A suppressed psoriasiform skin inflammation in mouse models by blocking the PKCζ-p62 interaction, subsequently inhibiting the activation of NF-κB p65 phosphorylation in macrophages.
RESUMO
The increased global prevalence of metabolic dysfunction-associated steatohepatitis (MASLD) has been closely associated with chronic disorders of the circadian clock. Herein, we investigate the role of Clock, a core circadian gene, in the pathogenesis of MASLD. Wild-type (WT) and liver-specific Clock knockdown (Clock-KD) mice were fed a Western diet for 20 weeks to induce MASLD. A cellular MASLD model was established by treating AML12 cells with free fatty acids and the effects of Clock knockdown were examined following transfection with Clock siRNA. Increased lipid deposition and more severe steatohepatitis and fibrosis were observed in the livers of Western diet-fed but not normal chow diet-fed Clock-KD mice after 20 weeks compared to WT mice. Moreover, the Clock gene was found to be significantly downregulated in WT MASLD mice. The Clock gene was shown to regulate the expression of lipophagy-related proteins (LC3B, P62, RAB7, and PLIN2) in vivo and in vitro. Knockdown of Clock was found to inhibit lipophagy resulting in increased accumulation of lipid droplets in the mouse liver and AML12 cells. Interestingly, the CLOCK protein was shown to interact with P62. However, knockdown of the Clock gene did not promote transcription of the P62 gene but suppressed degradation of the P62 protein during lipophagy in AML12 cells. The hepatic Clock gene regulates lipophagy and affects lipid droplet deposition in liver cells, and thus plays a critical role in the development of MASLD induced by a Western diet.
RESUMO
Exposure to artificial blue light, one of the most energetic forms of visible light, can increase oxidative stress in retinal cells, potentially enhancing the risk of macular degeneration. Retinal pigment epithelial (RPE) cells play a crucial role in this process; the loss of RPE cells is the primary pathway through which retinal degeneration occurs. In RPE cells, Kelch-like ECH-associated protein 1 (KEAP1) is located in both the nucleus and cytosol, where it binds to nuclear factor erythroid 2-related factor 2 (NRF2) and p62 (sequestosome-1), respectively. Blue light exposure activates the NRF2-heme oxygenase 1 (HMOX1) axis through both canonical and noncanonical p62 pathways thereby reducing oxidative damage, and initiates autophagy, which helps remove damaged proteins. These protective responses may support the survival of RPE cells. However, extended exposure to blue light drastically decreases the viability of RPE cells. This exposure diminishes the ability of KEAP1 to bind to p62 and reduces the level of KEAP1. Inhibition of autophagy does not prevent KEAP1 degradation, the NRF2-HMOX1 axis, or blue-light-induced cytotoxicity. However, proteasome inhibitor along with a transient increase in the amount of KEAP1 in RPE cells, partially restores the p62-KEAP1 complex and reduces blue-light-induced cytotoxicity. In vivo studies confirmed the downregulation of KEAP1 in damaged RPE cells. Mice subjected to periodic blue light exposure exhibited significant atrophy in the outer retina, particularly in the peripheral areas. Additionally, there was a significant decrease in c-wave electroretinography and pupillary light reflex, indicating functional impairments in both visual and nonvisual physiological processes. These data underscore the essential role of KEAP1 in managing oxidative defense and autophagy pathways triggered by blue light exposure in RPE cells.
RESUMO
Peroxisome proliferator-activated receptor-alpha (PPAR-α) and its exogenous activators (fibrates) promote autophagy. However, whether the deleterious effects of PPAR-α deficiency on doxorubicin (DOX)-induced podocytopathy are associated with reduced autophagy remains to be clarified. We investigated the mechanisms of PPAR-α in DOX-induced podocytopathy and tubular injury in PPAR-α knockout (PAKO) mice and in a murine podocyte cell line. DOX-treated PAKO mice showed higher serum levels of triglycerides and non-esterified fatty acids and more severe podocytopathy than DOX-treated wild-type mice, as evidenced by higher urinary levels of proteins and podocalyxin at 3 days to 2 weeks and higher blood urea nitrogen and serum creatinine levels at 4 weeks. Additionally, there was an increased accumulation of p62, a negative autophagy marker, in the glomerular and tubular regions in DOX-treated PAKO mice at Day 9. Moreover, DOX-treated PAKO mice showed more severe glomerulosclerosis and tubular damage and lower podocalyxin expression in the kidneys than DOX-treated control mice at 4 weeks. Furthermore, DOX treatment increased p-p53, an apoptosis marker, and cleaved the caspase-3 levels and induced apoptosis, which was ameliorated by fenofibrate, a PPAR-α activator. Fenofibrate further enhanced AMPK activation and autophagy under fed and fasting conditions. Conclusively, PPAR-α deficiency enhances DOX-induced podocytopathy, glomerulosclerosis, and tubular injury, possibly by reducing autophagic activity in mouse kidneys.