Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cell Rep Med ; 5(7): 101649, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39019005

RESUMO

Tumor-infiltrating regulatory T cells (TI-Tregs) elicit immunosuppressive effects in the tumor microenvironment (TME) leading to accelerated tumor growth and resistance to immunotherapies against solid tumors. Here, we demonstrate that poly-(ADP-ribose)-polymerase-11 (PARP11) is an essential regulator of immunosuppressive activities of TI-Tregs. Expression of PARP11 correlates with TI-Treg cell numbers and poor responses to immune checkpoint blockade (ICB) in human patients with cancer. Tumor-derived factors including adenosine and prostaglandin E2 induce PARP11 in TI-Tregs. Knockout of PARP11 in the cells of the TME or treatment of tumor-bearing mice with selective PARP11 inhibitor ITK7 inactivates TI-Tregs and reinvigorates anti-tumor immune responses. Accordingly, ITK7 decelerates tumor growth and significantly increases the efficacy of anti-tumor immunotherapies including ICB and adoptive transfer of chimeric antigen receptor (CAR) T cells. These results characterize PARP11 as a key driver of TI-Treg activities and a major regulator of immunosuppressive TME and argue for targeting PARP11 to augment anti-cancer immunotherapies.


Assuntos
Imunoterapia , Poli(ADP-Ribose) Polimerases , Linfócitos T Reguladores , Microambiente Tumoral , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Animais , Humanos , Camundongos , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Imunoterapia/métodos , Poli(ADP-Ribose) Polimerases/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/terapia
2.
J Leukoc Biol ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334307

RESUMO

Poly (ADP ribose) polymerase family member 11(PARP11) has important immune regulatory functions in viral infection and tumor immune response. Particularly, PARP11 showed protumor activities in multiple preclinical murine models. However, no systematic pan-cancer analysis has been conducted to explore PARP11 function. In this study we used multiple databases to assess PARP11 expression, which associations with clinical outcomes, immune checkpoint factors, prognostic significance, genomic characteristics, and immunological aspects. The analysis revealed varying expression levels of PARP11 across different cancer types and a significant correlation between its expression and immune cell infiltration. Insights from the CellMiner database suggest a strong link between PARP11 expression and sensitivity to anticancer drugs, highlighting its potential as a therapeutic target. Moreover, PARP11 expression correlates with patient survival during anti-PD1 and anti-CTLA4 treatments, suggested that PARP11 would be a predictor of immune checkpoint inhibitor (ICI) treatment. In summary, PARP11 would be a potential immunoregulatory target and a diagnosis and prognosis marker for certain types of cancers. The detailed mechanisms of PARP11 in tumor immune responses need to be further investigated.

3.
Cell Biosci ; 11(1): 116, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34187568

RESUMO

BACKGROUND: Zika virus (ZIKV) infection and ZIKV epidemic have been continuously spreading silently throughout the world and its associated microcephaly and other serious congenital neurological complications poses a significant global threat to public health. Type I interferon response to ZIKV infection in host cells suppresses viral replication by inducing the expression of interferon-stimulated genes (ISGs). METHODS: The study aims to demonstrate the anti-ZIKV mechanism of PARP11. PARP11 knock out and overexpressing A549 cell lines were constructed to evaluate the anti-ZIKV function of PARP11. PARP11-/-, PARP12-/- and PARP11-/-PARP12-/- HEK293T cell lines were constructed to explain the synergistic effect of PARP11 and PARP12 on NS1 and NS3 protein degradation. Western blotting, immunofluorescence and immunoprecipitation assay were performed to illustrate the interaction between PARP11 and PARP12. RESULTS: Both mRNA and protein levels of PARP11 were induced in WT but not IFNAR1-/- cells in response to IFNα or IFNß stimulation and ZIKV infection. ZIKV replication was suppressed in cells expressed PARP11 but was enhanced in PARP11-/- cells. PARP11 suppressed ZIKV independently on itself PARP enzyme activity. PARP11 interacted with PARP12 and promoted PARP12-mediated ZIKV NS1 and NS3 protein degradation. CONCLUSION: We identified ADP-ribosyltransferase PARP11 as an anti-ZIKV ISG and found that it cooperated with PARP12 to enhance ZIKV NS1 and NS3 protein degradation. Our findings have broadened the understanding of the anti-viral function of ADP-ribosyltransferase family members, and provided potential therapeutic targets against viral ZIKV infection.

4.
Cell Chem Biol ; 25(12): 1547-1553.e12, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30344052

RESUMO

Poly-ADP-ribose polymerases (PARPs1-16) play pivotal roles in diverse cellular processes. PARPs that catalyze poly-ADP-ribosylation (PARylation) are the best characterized PARP family members because of the availability of potent and selective inhibitors for these PARPs. There has been comparatively little success in developing selective small-molecule inhibitors of PARPs that catalyze mono-ADP-ribosylation (MARylation), limiting our understanding of the cellular role of MARylation. Here we describe the structure-guided design of inhibitors of PARPs that catalyze MARylation. The most selective analog, ITK7, potently inhibits the MARylation activity of PARP11, a nuclear envelope-localized PARP. ITK7 is greater than 200-fold selective over other PARP family members. Using live-cell imaging, we show that ITK7 causes PARP11 to dissociate from the nuclear envelope. These results suggest that the cellular localization of PARP11 is regulated by its catalytic activity.


Assuntos
Biocatálise/efeitos dos fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Quinazolinonas/farmacologia , Células HeLa , Humanos , Estrutura Molecular , Inibidores de Poli(ADP-Ribose) Polimerases/síntese química , Inibidores de Poli(ADP-Ribose) Polimerases/química , Transporte Proteico/efeitos dos fármacos , Quinazolinonas/síntese química , Quinazolinonas/química
5.
Biol Reprod ; 92(3): 80, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25673562

RESUMO

Sperm are highly differentiated cells characterized by their species-specific nuclear shapes and extremely condensed chromatin. Abnormal head shapes represent a form of teratozoospermia that can impair fertilization capacity. This study shows that poly(ADP-ribose) polymerase-11 (ARTD11/PARP11), a member of the ADP-ribosyltransferase (ARTD) family, is expressed preferentially in spermatids undergoing nuclear condensation and differentiation. Deletion of the Parp11 gene results in teratozoospermia and male infertility in mice due to the formation of abnormally shaped fertilization-incompetent sperm, despite normal testis weights and sperm counts. At the subcellular level, PARP11-deficient elongating spermatids reveal structural defects in the nuclear envelope and chromatin detachment associated with abnormal nuclear shaping, suggesting functional relevance of PARP11 for nuclear envelope stability and nuclear reorganization during spermiogenesis. In vitro, PARP11 exhibits mono(ADP-ribosyl)ation activity with the ability to ADP-ribosylate itself. In transfected somatic cells, PARP11 colocalizes with nuclear pore components, such as NUP153. Amino acids Y77, Q86, and R95 in the N-terminal WWE domain, as well as presence of the catalytic domain, are essential for colocalization of PARP11 with the nuclear envelope, but catalytic activity of the protein is not required for colocalization with NUP153. This study demonstrates that PARP11 is a novel enzyme important for proper sperm head shaping and identifies it as a potential factor involved in idiopathic mammalian teratozoospermia.


Assuntos
Forma do Núcleo Celular/fisiologia , Poli(ADP-Ribose) Polimerases/fisiologia , Cabeça do Espermatozoide/fisiologia , Espermátides/fisiologia , Espermatogênese/fisiologia , Animais , Núcleo Celular/patologia , Núcleo Celular/fisiologia , Forma do Núcleo Celular/genética , Células Cultivadas , Modelos Animais de Doenças , Infertilidade Masculina/genética , Infertilidade Masculina/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Membrana Nuclear/fisiologia , Fenótipo , Poli(ADP-Ribose) Polimerases/deficiência , Poli(ADP-Ribose) Polimerases/genética , Capacitação Espermática/genética , Capacitação Espermática/fisiologia , Cabeça do Espermatozoide/patologia , Espermátides/citologia , Espermatogênese/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA