Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.386
Filtrar
1.
Discov Oncol ; 15(1): 333, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39095628

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal tumor with an ill-defined pathogenesis. DExD box (DDX) family genes are widely distributed and involved in various RNA metabolism and cellular biogenesis; their dysregulation is associated with aberrant cellular processes and malignancies. However, the prognostic significance and expression patterns of the DDX family in PDAC are not fully understood. The present study aimed to explore the clinical value of DDX genes in PDAC. METHODS: Differentially expressed DDX genes were identified. DDX genes related to prognostic signatures were further investigated using LASSO Cox regression analysis. DDX21 protein expression was analyzed using the UALCAN and human protein atlas (HPA) online tools and confirmed in 40 paired PDAC and normal tissues through Tissue Microarrays (TMA). The independent prognostic significance of DDX21 in PDAC was determined through the construction of nomogram models and calibration curves. The functional roles of DDX21 were investigated using gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA). Cell proliferation, invasion, and migration were assessed using Cell Counting Kit-8, colony formation, Transwell, and wound healing assays. RESULTS: Upregulation of genes related to prognostic signatures (DDX10, DDX21, DDX60, and DDX60L) was significantly associated with poor prognosis of patients with PDAC based on survival and recurrence time. Considering the expression profile and prognostic values of the signature-related genes, DDX21 was finally selected for further exploration. DDX21 was overexpressed significantly at both the mRNA and protein levels in PDAC compared to normal pancreatic tissues. DDX21 expression, pathological stage, and residual tumor were significant independent prognostic indicators in PDAC. Moreover, functional enrichment analysis revealed that Genes co-expressed with DDX21 are predominantly involved in RNA metabolism, helicase activity, ribosome biogenesis, cell cycle, and various cancer-related pathways, such as PI3K/Akt signaling pathway and TGF-ß signaling pathway. Furthermore, in vitro experiments confirmed that the knockdown of DDX21 significantly reduced MIA PaCa-2 cell viability, proliferation, migration, and invasion. CONCLUSIONS: Four signature-related genes could relatively precisely predict the prognosis of patients with PDAC. Specifically, DDX21 upregulation may signal an unfavorable prognosis by negatively affecting the biological properties of PDAC cells. DDX21 may be considered as a candidate therapeutic target in PDAC.

2.
Mol Cell Biochem ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39117976

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterized by poor prognosis primarily due to metastasis. Accumulating evidence suggests that PLEK2 acts as an oncogene in various tumors. This study aimed to investigate the effects of PLEK2 on PDAC. Expression analysis of PLEK2 was conducted using qRT-PCR, Western blot, and immunohistochemistry in PDAC. Wound healing and transwell assays were performed to evaluate the impact of PLEK2 on cell migration and invasion. A xenograft tumor model was employed to assess the in vivo proliferation of PLEK2. Additionally, the downstream pathway of PLEK2 was analyzed through RNA-seq and confirmed by Western blot analysis. The results demonstrated the upregulation of PLEK2 expression in tumor specimens. High PLEK2 expression was significantly associated with poor overall survival and advanced TNM stages. Correlation analyses revealed positive correlations between PLEK2 and TGF-ß, EGFR, and MMP1. Wound healing and transwell assays demonstrated that PLEK2 promoted PDAC cell migration and invasion, potentially through the activation of the epithelial-to-mesenchymal transition process. The in vivo experiment further confirmed that PLEK2 knockdown suppressed tumor growth. RNA-seq analysis revealed PLEK2's regulation of MMP1 and activation of p-ERK and p-STAT3, which were verified by Western blot analysis. Overall, the present study suggests that PLEK2 may play a tumor-promoting role in PDAC. These findings provide valuable insights into the molecular mechanisms of pancreatic cancer and highlight the potential of PLEK2 as a therapeutic target.

3.
Mol Med ; 30(1): 119, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39129004

RESUMO

BACKGROUND: AGTPBP1 is a cytosolic carboxypeptidase that cleaves poly-glutamic acids from the C terminus or side chains of α/ß tubulins. Although its dysregulated expression has been linked to the development of non-small cell lung cancer, the specific roles and mechanisms of AGTPBP1 in pancreatic cancer (PC) have yet to be fully understood. In this study, we examined the role of AGTPBP1 on PC in vitro and in vivo. METHODS: Immunohistochemistry was used to examine the expression of AGTPBP1 in PC and non-cancerous tissues. Additionally, we assessed the malignant behaviors of PC cells following siRNA-mediated AGTPBP1 knockdown both in vitro and in vivo. RNA sequencing and bioinformatics analysis were performed to identify the differentially expressed genes regulated by AGTPBP1. RESULTS: We determined that AGTPBP1 was overexpressed in PC tissues and the higher expression of AGTPBP1 was closely related to the location of tumors. AGTPBP1 inhibition can significantly decrease cell progression in vivo and in vitro. Moreover, the knockdown of AGTPBP1 inhibited the expression of ERK1/2, P-ERK1/2, MYLK, and TUBB4B proteins via the ERK signaling pathway. CONCLUSION: Our research indicates that AGTPBP1 may be a putative therapeutic target for PC.


Assuntos
Carboxipeptidases , Regulação Neoplásica da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Microtúbulos , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Carboxipeptidases/metabolismo , Carboxipeptidases/genética , Linhagem Celular Tumoral , Microtúbulos/metabolismo , Animais , Camundongos , Masculino , Feminino , Proliferação de Células , Progressão da Doença , Pessoa de Meia-Idade , Movimento Celular/genética
4.
EBioMedicine ; 107: 105278, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39137571

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) represents the most prevalent type of pancreatic cancer and ranks among the most aggressive tumours, with a 5-year survival rate of less than 11%. Projections indicate that by 2030, it will become the second leading cause of cancer-related deaths. PDAC presents distinctive hallmarks contributing to its dismal prognosis: (i) late diagnosis, (ii) heterogenous and complex mutational landscape, (iii) high metastatic potential, (iv) dense fibrotic stroma, (v) immunosuppressive microenvironment, and (vi) high resistance to therapy. Mounting evidence has shown a role for TAM (Tyro3, AXL, MerTK) family of tyrosine kinase receptors in PDAC initiation and progression. This review aims to describe the impact of TAM receptors on the defining hallmarks of PDAC and discuss potential future directions using these proteins as novel biomarkers for early diagnosis and targets for precision therapy in PDAC, an urgent unmet clinical need.

5.
Ann Surg Oncol ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133448

RESUMO

BACKGROUND: Guidelines now recommend universal germline genetic testing (GGT) for all pancreatic ductal adenocarcinoma (PDAC) patients. Testing provides information on actionable pathogenic variants and guides management of patients and family. Since traditional genetic counseling (GC) models are time-intensive and GC resources are sparse, new approaches are needed to comply with guidelines without overwhelming available resources. METHODS: A novel protocol was developed for physician-led GGT. Completed test kits were delivered to the GC team, who maintained a prospective database and mailed all orders. If results revealed pathogenic variants for PDAC, patients were offered comprehensive GC, whereas negative and variant of uncertain significance (VUS) test results were reported to patients via brief calls. RESULTS: During protocol implementation between January 2020 and December 2022, 310 (81.5%) patients underwent GGT, with a physician compliance rate of 82.6% and patient compliance rate of 98.7%. Of 310 patients tested, 44 (14.2%) patients had detection of pathogenic variants, while 83 (26.8%) patients had VUS. Pathogenic variants included BRCA1/BRCA2/PALB2 (n = 18, 5.8%), ATM (n = 9, 2.9%), CFTR (n = 4, 1.3%), EPCAM/MLH1/MSH2/MSH6/PMS2 (n = 3, 1.0%), and CDKN2A (n = 2, 0.7%). The GC team successfully contacted all patients with pathogenic variants to discuss results and offer comprehensive GC. CONCLUSION: Our novel protocol facilitated GGT with excellent compliance despite limited GC resources. This framework for GGT allocates GC resources to those patients who would benefit most from GC. As we continue to expand the program, we seek to implement methods to ensure compliance with cascade testing of high-risk family members.

6.
Clin Transl Radiat Oncol ; 48: 100813, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39149753

RESUMO

Purpose/Objectives: Retrospective analysis suggests that dose escalation to a biologically effective dose of more than 70 Gy may improve overall survival in patients with pancreatic ductal adenocarcinoma (PDAC), but such treatments in practice are limited by proximity of organs at risk (OARs). We hypothesized that CT-guided online adaptive radiotherapy (OART) can account for interfraction movement of OARs and allow for safe delivery of ablative doses. Materials/Methods: This is a single institution retrospective analysis of patients with PDAC treated with OART on the Ethos platform (Varian Medical Systems, a Siemens Healthineers Company, Palo Alto). All patients were treated to 40 Gy in 5 fractions. PTV overlapping with a 5 mm planning risk volume expansion on the stomach, duodenum and bowel received 25 Gy. Initial treatment plans were created conventionally. For each fraction, PTV and OAR volumes were recontoured with AI assistance after initial cone beam CT (CBCT). The adapted plan was calculated, underwent QA, and then compared to the scheduled plan. A second CBCT was obtained prior to delivery of the selected plan. Total treatment time (first CBCT to end of radiation delivery) and active physician time (first to second CBCT) were recorded. PTV_4000 V95 %, PTV_2500 V9 5%, and D0.03 cc to stomach, duodenum and bowel were reported for scheduled (S) and adapted (A) plans. CTCAEv5.0 toxicities were recorded. Statistical analysis was performed using a two-sided T test and α of 0.05. Results: 21 patients with unresectable or locally-recurrent PDAC were analyzed, with a total of 105 fractions. Average total time was 29 min and 16 s (16:36-49:40) and average active physician time was 19:41 min (9:25-39:34). All fractions were treated with adapted plans. 97 % of adapted plans met PTV_4000 V95.0 % >95.0 % coverage goal and 100 % of adapted plans met OAR dose constraints. Median follow up was 6.6 months. Only 1 patient experienced acute grade 3+ toxicity directly attributable to radiation. Only 1 patient experienced late grade 3+ toxicity directly attributable to radiation. Conclusions: Daily CT-based OART was associated with significantly reduced dose OARs while achieving superior PTV coverage. Given the relatively quick total treatment time, radiation delivery was generally well tolerated and easily incorporated into the clinic workflow. Our initial clinical experience demonstrates OART allows for safe dose escalation in the treatment of PDAC.

7.
Cancer Lett ; 598: 217130, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39089666

RESUMO

PURPOSE: Cholesterol metabolism reprograming has been acknowledged as a novel feature of cancers. Pancreatic ductal adenocarcinoma (PDAC) is a cancer with a high demand of cholesterol for rapid growth. The underlying mechanism of how cholesterol metabolism homestasis are disturbed in PDAC is explored. EXPERIMENTAL DESIGN: The relevance between PDAC and cholesterol was confirmed in TCGA database. The expression and clinical association were discovered in TCGA and GEO datasets. Knockdown and overexpression of AGFG1 was adopted to perform function studies. RNA sequencing, cholesterol detection, transmission electron microscope, co-immunoprecipitation, and immunofluorescence et al. were utilized to reveal the underlying mechanism. RESULTS: AGFG1 was identified as one gene positively correlated with cholesterol metabolism in PDAC as revealed by bioinformatics analysis. AGFG1 expression was then found associated with poor prognosis in PDAC. AGFG1 knockdown led to decreased proliferation of tumor cells both in vitro and in vivo. By RNA sequencing, we found AGFG1 upregulated expression leads to enhanced intracellular cholesterol biosynthesis. AGFG1 knockdown suppressed cholesterol biosynthesis and an accumulation of cholesterol in the ER. Mechanistically, we confirmed that AGFG1 interacted with CAV1 to relocate cholesterol for the proceeding of cholesterol biosynthesis, therefore causing disorders in intracellular cholesterol metabolism. CONCLUSIONS: Our study demonstrates the tumor-promoting role of AGFG1 by disturbing cholesterol metabolism homestasis in PDAC. Our study has present a new perspective on cancer therapeutic approach based on cholerstrol metabolism in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Proliferação de Células , Colesterol , Homeostase , Neoplasias Pancreáticas , Humanos , Colesterol/metabolismo , Colesterol/biossíntese , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Animais , Linhagem Celular Tumoral , Camundongos , Regulação Neoplásica da Expressão Gênica , Progressão da Doença , Prognóstico , Caveolina 1/genética , Caveolina 1/metabolismo , Camundongos Nus , Masculino
8.
Carcinogenesis ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136088

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) manifests diverse molecular subtypes, including the classical/progenitor and basal-like/squamous subtypes, with the latter known for its aggressiveness. We employed integrative transcriptome and metabolome analyses to identify potential genes contributing to the molecular subtype differentiation and its metabolic features. Our comprehensive analysis revealed that adrenoceptor alpha 2A (ADRA2A) was downregulated in the basal-like/squamous subtype, suggesting its potential role as a candidate suppressor of this subtype. Reduced ADRA2A expression was significantly associated with a high frequency of lymph node metastasis, higher pathological grade, advanced disease stage, and decreased survival among PDAC patients. In vitro experiments demonstrated that ADRA2A transgene expression and ADRA2A agonist inhibited PDAC cell invasion. Additionally, ADRA2A-high condition downregulated the basal-like/squamous gene expression signature, while upregulating the classical/progenitor gene expression signature in our PDAC patient cohort and PDAC cell lines. Metabolome analysis conducted on the PDAC cohort and cell lines revealed that elevated ADRA2A levels were associated with suppressed amino acid and carnitine/acylcarnitine metabolism, which are characteristic metabolic profiles of the classical/progenitor subtype. Collectively, our findings suggest that heightened ADRA2A expression induces transcriptome and metabolome characteristics indicative of classical/progenitor subtype with decreased disease aggressiveness in PDAC patients. These observations introduce ADRA2A as a candidate for diagnostic and therapeutic targeting in PDAC.

10.
Artigo em Inglês | MEDLINE | ID: mdl-39091654

RESUMO

Background: Assessing the perioperative outcomes of pancreaticoduodenectomy (PD) based solely on individual complications is not comprehensive, and the association between perioperative outcomes and the long-term prognosis of individuals diagnosed with pancreatic ductal adenocarcinoma (PDAC) remains uncertain. Our study is designed to evaluate the impact of a novel composite indicator, textbook outcomes (TO), on the long-term prognosis of patients undergoing PD for PDAC. Methods: This study conducted a retrospective analysis of 139 patients who underwent PD for pathologically confirmed PDAC at our hospital between January 2018 and December 2021. After applying exclusion criteria, a total of 111 patients were included in the subsequent analysis. These patients were categorized into two groups: the non-TO group (n=42) and the TO group (n=69). The Kaplan-Meier survival curve was employed to describe the relationship between TO and disease-free survival (DFS) and overall survival (OS). Cox regression was employed to assess the impact of achieving TO on long-term survival. Logistic regression was employed to investigate the risk factors affecting the achievement of TO. Results: Out of the 111 PDAC patients, 69 (62.2%) achieved TO following PD. The achievement of TO significantly improved the OS of PDAC patients [P=0.03; hazard ratio (HR) =0.60; 95% confidence interval (CI): 0.37-0.83]. Cox regression analysis indicated that achieving TO was a protective factor for OS (P=0.04; HR =4.08; 95% CI: 1.07-15.61). Logistic regression analysis indicated that high amylase in drainage fluid on the third day after surgery (>1,300 U/L) was detrimental to achieve TO [odds ratio (OR) =0.10; 95% CI: 0.02-0.58; P=0.01], longer surgery durations (≥6.25 hours) was detrimental to achieve TO (OR =0.19; 95% CI: 0.06-0.54; P=0.002), and soft pancreatic texture was detrimental to achieve TO (OR =0.31; 95% CI: 0.10-0.93, P=0.04). Conclusions: Achievement of TO significantly improves the OS of PDAC patients and has the potential to serve as a robust prognostic indicator. Looking ahead, it is highly necessary for TO to become a standard surgical quality control measure in hospitals.

11.
Mod Pathol ; : 100585, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39094734

RESUMO

Inactivating alterations in the SWItch/Sucrose Non-Fermentable (SWI/SNF) Chromatin Remodeling Complex subunits have been described in multiple tumor types. Recent studies focused on SMARC subunits of this complex to understand their relationship with tumor characteristics and therapeutic opportunities. To date, pancreatic cancer with these alterations has not been well-studied, although isolated cases of undifferentiated carcinomas have been reported. Herein, we screened 59 pancreatic undifferentiated carcinomas for alterations in SWI/SNF complex-related [SMARCB1 (BAF47/INI1), SMARCA4 (BRG1), SMARCA2 (BRM)] proteins and/or genes using immunohistochemistry (IHC) and/or next-generation sequencing (NGS). Cases with alterations in SWI/SNF complex-related proteins/genes were compared to cases without alterations, as well as to 96 conventional pancreatic ductal adenocarcinomas (PDAC). In all tumor groups, MMR and PD-L1 protein expression were also evaluated. Thirty of 59 (51%) undifferentiated carcinomas had a loss of SWI/SNF complex-related protein expression or gene alteration. Twenty-seven of 30 (90%) SWI/SNF-deficient undifferentiated carcinomas had rhabdoid morphology [vs. 9/29 (31%) SWI/SNF-retained undifferentiated carcinomas; p < 0.001] and all expressed cytokeratin, at least focally. Immunohistochemically, SMARCB1 protein expression was absent in 16/30 (53%) cases, SMARCA2 in 4/30 (13%), and SMARCA4 in 4/30 (13%); both SMARCB1 and SMARCA2 protein expressions were absent in 1/30 (3%). Five of 8 (62.5%) SWI/SNF-deficient undifferentiated carcinomas that displayed loss of SMARCB1 protein expression by IHC were found to have corresponding SMARCB1 deletions by NGS. Analysis of canonical driver mutations for PDAC in these cases showed KRAS (2/5) and TP53 (2/5) abnormalities. Median CPS for PD-L1 (E1L3N) was significantly higher in the undifferentiated carcinomas with/without SWI/SNF deficiency compared to the conventional PDACs (p < 0.001). SWI/SNF-deficient undifferentiated carcinomas were larger (p < 0.001) and occurred in younger patients (p < 0.001). Patients with SWI/SNF-deficient undifferentiated carcinoma had worse overall survival compared to patients with SWI/SNF-retained undifferentiated carcinoma (p = 0.004) and PDAC (p < 0.001). Our findings demonstrate that SWI/SNF-deficient pancreatic undifferentiated carcinomas are frequently characterized by rhabdoid morphology, exhibit highly aggressive behavior, and have a negative prognostic impact. The ones with SMARCB1 deletions appear to be frequently KRAS wild-type. Innovative developmental therapeutic strategies targeting this genomic basis of the SWI/SNF complex and the therapeutic implications of EZH2 inhibition (NCT03213665), SMARCA2 degrader (NCT05639751), or immunotherapy are currently under investigation.

12.
Front Pharmacol ; 15: 1432851, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114357

RESUMO

The xenobiotic transporter ABCC4/MRP4 is highly expressed in pancreatic ductal adenocarcinoma (PDAC) and correlates with a more aggressive phenotype and metastatic propensity. Here, we show that ABCC4 promotes epithelial-mesenchymal transition (EMT) in PDAC, a hallmark process involving the acquisition of mesenchymal traits by epithelial cells, enhanced cell motility, and chemoresistance. Modulation of ABCC4 levels in PANC-1 and BxPC-3 cell lines resulted in the dysregulation of genes present in the EMT signature. Bioinformatic analysis on several cohorts including tumor samples, primary patient-derived cultured cells, patient-derived xenografts, and cell lines, revealed a positive correlation between ABCC4 expression and EMT markers. We also characterized the ABCC4 cistrome and identified four candidate clusters in the distal promoter and intron one that showed differential binding of pro-epithelial FOXA1 and pro-mesenchymal GATA2 transcription factors in low ABCC4-expressing HPAF-II and high ABCC4-expressing PANC-1 xenografts. HPAF-II xenografts showed exclusive binding of FOXA1, and PANC-1 xenografts exclusive binding of GATA2, at ABCC4 clusters, consistent with their low and high EMT phenotype respectively. Our results underscore ABCC4/MRP4 as a valuable prognostic marker and a potential therapeutic target to treat PDAC subtypes with prominent EMT features, such as the basal-like/squamous subtype, characterized by worse prognosis and no effective therapies.

13.
Cell Signal ; : 111338, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39117252

RESUMO

BACKGROUND: PDAC, also known as pancreatic ductal adenocarcinoma, is often diagnosed at a late stage due to nonspecific symptoms and a distinct lack of reliable biomarkers for timely diagnosis. Ferroptosis, a novel non-apoptotic cell death mode discovered in recent years, is strongly linked to the progression of PDAC and the evasion of the immune system. The objective of this study is to discover a novel ceRNA biomarker associated with ferroptosis and investigate its possible molecular mechanisms and therapeutic potential in PDAC. METHODS: Based on the FerrDb and TCGA databases, the R survival package was used to screen for ferroptosis-related mRNAs associated with PDAC prognosis. The ferroptosis-related ceRNA network was identified by miRTarBase, miRNet, and starBase and visualized using Cytoscape. The LASSO regression analysis was used to build a risk model associated with ceRNA. Additionally, we investigated the correlation between the ceRNA axis and the infiltration of immune cells in PDAC by employing the ssGSEA algorithm. Spearman correlation analysis was used to investigate the association between the ceRNA network and the expression levels of immune checkpoint genes in PDAC. The prediction of potential medications for PAAD patients with high risk scores was conducted using the R package oncoPredict and the Genomics of Drug Sensitivity in Cancer (GDSC) repository. Expression levels of LINC02535 in clinical specimens and PDAC cell lines were determined using qRT-PCR. CCK-8, colony formation, EdU, wound healing, and transwell assays were performed to assess the impact of reducing LINC02535 on the growth, migration, and invasion of PDAC cell lines BxPC3 and PANC1. RESULTS: We first discovered a new LINC02535/miR-30c-5p/EIF2S1 axis associated with ferroptosis and created a prognostic nomogram for predicting overall survival. Meanwhile, the risk scores of the LINC02535/miR-30c-5p/EIF2S1 axis associated with ferroptosis were linked to immune subtypes in PDAC. The high immune infiltration subtype exhibited elevated ceRNA risk scores and EIF2S1 expression. The correlation analysis revealed a positive correlation between ceRNA risk scores and four immune cells, namely Activated CD4 T cell, Memory B cell, Neutrophil, and Type 2 T helper cell, as well as four immune checkpoint genes, namely CD274, HAVCR2, PDCD1LG2, and TIGIT. The analysis of drug sensitivity indicated that individuals with a high-risk score may exhibit greater sensitivity to inhibitors targeting MEK1/2 compared to those with a low-risk score. In our validation experiments, it was observed that the expression of LINC02535 was increased in both PDAC tissues and cell lines. Additionally, the inhibition of LINC02535 resulted in decreased proliferation, migration, and invasion of PDAC cells. Rescue experiments demonstrated that LINC02535 promoted PDAC cell growth and metastasis by upregulating EIF2S1 expression. CONCLUSION: To summarize, a novel ferroptosis-associated LINC02535/miR-30c-5p/EIF2S1 ceRNA network for PDAC patients was established. The analysis of this network's functionality offers potential insights for clinical decision-making and the advancement of precision medicine.

14.
Ann Transl Med ; 12(4): 77, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39118942

RESUMO

Background and Objective: Pancreatic ductal adenocarcinoma (PDAC) is 3rd most lethal cancer in the USA leading to a median survival of six months and less than 5% 5-year overall survival (OS). As the only potentially curative treatment, surgical resection is not suitable for up to 90% of the patients with PDAC due to late diagnosis. Highly fibrotic PDAC with an immunosuppressive tumor microenvironment restricts cytotoxic T lymphocyte (CTL) infiltration and functions causing limited success with systemic therapies like dendritic cell (DC)-based immunotherapy. In this study, we investigated the potential benefits of irreversible electroporation (IRE) ablation therapy in combination with DC vaccine therapy against PDAC. Methods: We performed a literature search to identify studies focused on DC vaccine therapy and IRE ablation to boost therapeutic response against PDAC indexed in PubMed, Web of Science, and Scopus until February 20th, 2023. Key Content and Findings: IRE ablation destructs tumor structure while preserving extracellular matrix and blood vessels facilitating local inflammation. The studies demonstrated IRE ablation reduces tumor fibrosis and promotes CTL tumor infiltration to PDAC tumors in addition to boosting immune response in rodent models. The administration of the DC vaccine following IRE ablation synergistically enhances therapeutic response and extends OS rates compared to the use of DC vaccination or IRE alone. Moreover, the implementation of data-driven approaches further allows dynamic and longitudinal monitoring of therapeutic response and OS following IRE plus DC vaccine immunoablation. Conclusions: The combination of IRE ablation and DC vaccine immunotherapy is a potent strategy to enhance the therapeutic outcomes in patients with PDAC.

15.
Front Immunol ; 15: 1434771, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39044834

RESUMO

The gut microbiome plays a significant role in the pathogenesis of pancreatic ductal adenocarcinoma (PDAC), influencing oncogenesis, immune responses, and treatment outcomes. Studies have identified microbial species like Porphyromonas gingivalis and Fusobacterium nucleatum, that promote PDAC progression through various mechanisms. Additionally, the gut microbiome affects immune cell activation and response to immunotherapy, including immune checkpoint inhibitors and CAR-T therapy. Specific microbes and their metabolites play a significant role in the effectiveness of immune checkpoint inhibitors (ICIs). Alterations in the gut microbiome can either enhance or diminish responses to PD-1/PD-L1 and CTLA-4 blockade therapy. Additionally, bacterial metabolites like trimethylamine N-oxide (TMAO) and lipopolysaccharide (LPS) impact antitumor immunity, offering potential targets to augment immunotherapy responses. Modulating the microbiome through fecal microbiota transplantation, probiotics, prebiotics, dietary changes, and antibiotics shows promise in PDAC treatment, although outcomes are highly variable. Dietary modifications, particularly high-fiber diets and specific fat consumption, influence microbiome composition and impact cancer risk. Combining microbiome-based therapies with existing treatments holds potential for improving PDAC therapy outcomes, but further research is needed to optimize their effectiveness.


Assuntos
Carcinoma Ductal Pancreático , Microbioma Gastrointestinal , Neoplasias Pancreáticas , Humanos , Microbioma Gastrointestinal/imunologia , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/microbiologia , Carcinoma Ductal Pancreático/imunologia , Neoplasias Pancreáticas/microbiologia , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/imunologia , Animais , Probióticos/uso terapêutico , Transplante de Microbiota Fecal , Imunoterapia/métodos , Inibidores de Checkpoint Imunológico/uso terapêutico
16.
Heliyon ; 10(11): e32571, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38961954

RESUMO

Cancer patients undergoing chemotherapy are susceptible to various bacterial infections, necessitating prompt and precise antimicrobial treatment with antibiotics. Ciprofloxacin is a clinically utilized broad-spectrum antimicrobial agent known for its robust antiseptic activity. While ferroptosis, an oxidative form of cell death, has garnered attention as a promising avenue in cancer therapy, the potential impact of ciprofloxacin on the anticancer effects of ferroptosis remains unclear. This study seeks to investigate the potential influence of antibiotics on ferroptosis in human pancreatic ductal adenocarcinoma (PDAC) cells. Here, we report a previously unrecognized role of ciprofloxacin in inhibiting ferroptosis in human PDAC cells. Mechanistically, ciprofloxacin suppresses erastin-induced endoplasmic reticulum (ER) stress through the activating transcription factor 6 (ATF6) and ER to nucleus signaling 1 (ERN1) pathway. Excessive ER stress activation can trigger glutathione peroxidase 4 (GPX4) degradation through autophagic mechanisms. In contrast, ciprofloxacin enhances the protein stability of GPX4, a crucial regulator that suppresses ferroptosis by inhibiting lipid peroxidation. Thus, our study demonstrates the anti-ferroptotic role of ciprofloxacin, highlighting the importance of careful consideration when contemplating the combination of ciprofloxacin with specific ferroptosis inducers in PDAC patients.

17.
Cell Biochem Biophys ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954353

RESUMO

Diabetes and cancer are two prevalent disorders, pose significant public health challenges and contribute substantially to global mortality rates, with solely 10 million reported cancer-related deaths in 2020. This review explores the pathological association between diabetes and diverse cancer progressions, examining molecular mechanisms and potential therapeutic intersections. From altered metabolic landscapes to dysregulated signaling pathways, the intricate links are delineated, offering a comprehensive understanding of diabetes as a modulator of tumorigenesis. Cancer cells develop drug resistance through mechanisms like enhanced drug efflux, genetic mutations, and altered drug metabolism, allowing them to survive despite chemotherapeutic agent. Glucose emerges as a pivotal player in diabetes progression, and serving as a crucial energy source for cancer cells, supporting their biosynthetic needs and adaptation to diverse microenvironments. Glycation, a non-enzymatic process that produces advanced glycation end products (AGEs), has been linked to the etiology of cancer and has been shown in a number of tumor forms, such as leiomyosarcomas, adenocarcinomas, and squamous cell carcinomas. Furthermore, in aggressive and metastatic breast cancer, the receptor for AGEs (RAGE) is increased, which may increase the malignancy of the tumor. Reprogramming glucose metabolism manifests as hallmark cancer features, including accelerated cell proliferation, angiogenesis, metastasis, and evasion of apoptosis. This manuscript encapsulates the dual narrative of diabetes as a driver of cancer progression and the potential of repurposed antidiabetic drugs as formidable countermeasures. The amalgamation of mechanistic understanding and clinical trial outcomes establishes a robust foundation for further translational research and therapeutic advancements in the dynamic intersection of diabetes and cancer.

18.
Biochim Biophys Acta Rev Cancer ; 1879(5): 189153, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986720

RESUMO

This review comprehensively investigates the intricate interplay between small non-coding RNAs (sncRNAs) and pancreatic ductal adenocarcinoma (PDAC), a devastating malignancy with limited therapeutic options. Our analysis reveals the pivotal roles of sncRNAs in various facets of PDAC biology, spanning diagnosis, pathogenesis, drug resistance, and therapeutic strategies. sncRNAs have emerged as promising biomarkers for PDAC, demonstrating distinct expression profiles in diseased tissues. sncRNA differential expression patterns, often detectable in bodily fluids, hold potential for early and minimally invasive diagnostic approaches. Furthermore, sncRNAs exhibit intricate involvement in PDAC pathogenesis, regulating critical cellular processes such as proliferation, apoptosis, and metastasis. Additionally, mechanistic insights into sncRNA-mediated pathogenic pathways illuminate novel therapeutic targets and interventions. A significant focus of this review is dedicated to unraveling sncRNA mechanisms underlying drug resistance in PDAC. Understanding these mechanisms at the molecular level is imperative for devising strategies to overcome drug resistance. Exploring the therapeutic landscape, we discuss the potential of sncRNAs as therapeutic agents themselves as their ability to modulate gene expression with high specificity renders them attractive candidates for targeted therapy. In summary, this review integrates current knowledge on sncRNAs in PDAC, offering a holistic perspective on their diagnostic, pathogenic, and therapeutic relevance. By elucidating the roles of sncRNAs in PDAC biology, this review provides valuable insights for the development of novel diagnostic tools and targeted therapeutic approaches, crucial for improving the prognosis of PDAC patients.

19.
Transl Cancer Res ; 13(6): 2751-2766, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38988930

RESUMO

Background: Pancreatic ductal adenocarcinoma (PDAC), which accounts for the vast majority of pancreatic cancer (PC), is a highly aggressive malignancy with a dismal prognosis. Age is shown to be an independent factor affecting survival outcomes in patients with PDAC. Our study aimed to identify prognostic factors and construct a nomogram to predict survival in PDAC patients aged ≥60 years. Methods: Data of PDAC patients aged ≥60 years were collected from the Surveillance, Epidemiology, and End Results (SEER) database. Multivariate Cox regression analysis was used to determined prognostic factors of overall survival (OS) and cancer-specific survival (CSS), and two nomograms were constructed and validated by calibration plots, concordance index (C-index) and decision curve analysis (DCA). Additionally, 432 patients from the First Affiliated Hospital of Wenzhou Medical University were included as an external cohort. Kaplan-Meier curves were applied to further verify the clinical validity of the nomograms. Results: Ten independent prognostic factors were identified to establish the nomograms. The C-indexes of the training and validation groups based on the OS nomogram were 0.759 and 0.760, higher than those of the tumor-node-metastasis (TNM) staging system (0.638 and 0.636, respectively). Calibration curves showed high consistency between predictions and observations. Better area under the receiver operator characteristic (ROC) curve (AUC) values and DCA were also obtained compared to the TNM system. The risk stratification based on the nomogram could distinguish patients with different survival risks. Conclusions: We constructed and externally validated a population-based survival-predicting nomogram for PDAC patients aged ≥60 years. The new model could help clinicians personalize survival prediction and risk assessment.

20.
J Gastrointest Oncol ; 15(3): 1265-1281, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38989421

RESUMO

Background: Due to a lack of early diagnosis methods and effective drugs, pancreatic ductal adenocarcinoma (PDAC) has an extremely poor prognosis. DNA methylation, transcriptome expression and gene copy number variation (CNV) have critical relationships with development and progression of various diseases. The purpose of the study was to screen reliable early diagnostic biomarkers and potential drugs based on integrative multiomics analysis. Methods: We used methylation, transcriptome and CNV profiles to build a diagnostic model for PDAC. The protein expression of three model-related genes were externally validated using PDAC samples. Then, potential therapeutic drugs for PDAC were identified by interaction information related to existing drugs and genes. Results: Four significant differentially methylated regions (DMRs) were selected from 589 common DMRs to build a high-performance diagnostic model for PDAC. Then, four hub genes, PHF12, FXYD3, PRKCB and ZNF582, were obtained. The external validation results showed that PHF12, FXYD3 and PRKCB protein expression levels were all upregulated in tumor tissues compared with adjacent normal tissues (P<0.05). Promising candidate drugs with activity against PDAC were screened and repurposed through gene expression analysis of online datasets. The five drugs, including topotecan, PD-0325901, panobinostat, paclitaxel and 17-AAG, with the highest activity among 27 PDAC cell lines were filtered. Conclusions: Overall, the diagnostic model built based on four significant DMRs could accurately distinguish tumor and normal tissues. The five drug candidates might be repurposed as promising therapeutics for particular PDAC patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA