Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 291
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39093348

RESUMO

Long non-coding RNAs (Lnc RNAs) are proven to participate in liver cancer (LC) regulation. The regulation of miR-21 by lnc NBAT1 has been studied in other cancers. However, the effect of this regulation on LC and its specific mechanism remains unclear. Lnc NBAT1 and miR-21 expressions in clinical tissues were measured by RT-qPCR. PDCD4, AP-1, p-c-Fos, p-c-Jun, and cyclin D1 expressions were analyzed by Western blot. Overexpression of lnc NBAT1 was studied to explore its influence on malignant behaviors of Bel7402 cells and the development of LC in the xenograft mouse model (XMM). The regulation mechanism of lnc NBAT1 in LC was explored by lnc NBAT1 overexpression, miR-21 mimic treatment, or PDCD4 silencing in Bel7402 cells. Lnc NBAT1 expression was downregulated while miR-21 expression was upregulated in LC tissues and cell lines. In comparison with LX-2 cells, the expressions of PDCD4 and AP-1 were downregulated in Bel7402 cells, while those of p-c-Fos, p-c-Jun, and cyclin D1 were upregulated. Further, lnc NBAT1 was found to localize primarily in the cytoplasm of Bel7402 cells. Overexpression of lnc NBAT1 enhanced cell apoptosis, blocked the cell cycle, suppressed malignant behaviors of Bel7402 cells, and inhibited tumor progression in the XMM. Mechanistically, lnc NBAT1 functioned as a competing endogenous RNA (ceRNA) by binding to the downstream target miR-21 to stabilize the expressions of PDCD4 and AP-1, thereby inhibiting malignant behaviors of Bel7402 cells. Lnc NBAT1 suppressed malignant behaviors of LC cells through the miR-21/PDCD4/AP-1 axis. Lnc NBAT1 might be a promising biomarker for LC treatment.

2.
J Mol Neurosci ; 74(3): 71, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39031207

RESUMO

Acupuncture is a traditional Chinese therapy with treating potential against cognitive dysfunction. MicroRNA-21-3p (miR-21-3p) is well characterized for its benefits on neural tissues. The current study hypothesizes that the acupuncture aiming "Du" channel could attenuate IS-induced neural disorders by modulating the function of REST/miR-21-3p axis. Complications associated with IS are induced by a middle cerebral artery occlusion (MCAO) model in vivo. The disorders are then handled with the acupuncture with nimodipine as the positive control. It is found that the acupuncture improved cognitive function, reduced brain apoptosis, and increased the viable neuron number of model rats. Additionally, the production of cytokines is also suppressed by the acupuncture. At the molecular level, the level of miR-21-3p was up-regulated, while the level of REST was down-regulated by the acupuncture. The changes in miR-REST/21-3p contributed to the inhibition of PDCD4. Collectively, the findings in the current study highlight that miR-21-3p is associated with the anti-IS function of the acupuncture, which is mediated by the inhibition of REST.


Assuntos
Terapia por Acupuntura , Proteínas Reguladoras de Apoptose , Infarto da Artéria Cerebral Média , MicroRNAs , Transdução de Sinais , Animais , Masculino , Ratos , Terapia por Acupuntura/métodos , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Encéfalo/metabolismo , Infarto da Artéria Cerebral Média/terapia , Infarto da Artéria Cerebral Média/metabolismo , AVC Isquêmico/metabolismo , AVC Isquêmico/terapia , AVC Isquêmico/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos Sprague-Dawley , Proteínas Repressoras , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética
3.
Mol Neurobiol ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052186

RESUMO

Results of previous studies suggested that programmed cell death 4 (PDCD4) was overexpressed in cerebral ischemia (CI), and mothers against decapentaplegic homolog 1 (SMAD1) is a transcription factor of PDCD4, and it is also elevated in CI; however, the regulatory mechanism of SMAD1/PDCD4 axis in CI remains unclear. The current work has been designed to explore the role and associated mechanisms of SMAD1/PDCD4 in CI. PDCD4 and SMAD1 expressions have been examined by real-time reverse transcription-polymerase chain reaction (RT-qPCR) method, and receiver operating characteristic (ROC) curve analysis has been performed to determine the potential diagnostic value of PDCD4 and SMAD1. An oxygen-glucose deprivation (OGD) model has been used to investigate the effects of PDCD4 and SMAD1 on CI in vitro. Cell apoptosis was evaluated using TdT-mediated dUTP nick end labeling (TUNEL) assays. The interaction between SMAD1 and PDCD4 axis has been confirmed by using dual-luciferase reporter as well as chromatin immunoprecipitation (Ch-IP) assays. Finally, the effects of SMAD1/PDCD4 axis on the ferroptosis of neuron cells have been examined. PDCD4 was overexpressed in blood samples of CI patients. ROC analysis showed the AUC for PDCD4 was 0.7478, and NIHSS and MRS scores were positively correlated with PDCD4 expression. Moreover, the cellular OGD model was established and knockdown of PDCD4 suppressed the apoptosis of neurons. Besides, knockdown of PDCD4 also inhibited ferroptosis of OGD-treated neuron cells in vitro. Additionally, SMAD1 was upregulated in blood samples of CI patients, NIHSS and MRS scores were positively correlated with SMAD1 expression, and SMAD1 is a transcriptional factor of PDCD4, and SMAD1 could transcriptionally regulate the expression of PDCD4. Finally, SMAD1 could regulate the ferroptosis of neuron cells through regulating the transcription of PDCD4. The SMAD1/PDCD4 axis regulates the growth, apoptosis, and ferroptosis of neuron cells, suggesting that targeting the SMAD1/PDCD4 axis may be a potential therapeutic method.

4.
Microbiol Spectr ; 12(8): e0006224, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38912807

RESUMO

Programmed cell death protein 4 (PDCD4) is instrumental in regulating a range of cellular processes such as translation, apoptosis, signal transduction, and inflammatory responses. There is a notable inverse correlation between PDCD4 and the mammalian target of rapamycin (mTOR) pathway, which is integral to cellular growth control. Activation of mTOR is associated with the degradation of PDCD4. Although the role of PDCD4 is well established in oncogenesis and immune response regulation, its function in mycobacterial infections and its interplay with the mTOR pathway necessitate further elucidation. This study investigates the modulation of PDCD4 expression in the context of mycobacterial infections, revealing a consistent pattern of downregulation across diverse mycobacterial species. This observation underscores the potential utility of PDCD4 as a biomarker for assessing mTOR pathway activation during such infections. Building on this finding, we employed a novel approach using PDCD4-based mTOR (Tor)-signal-indicator (TOSI) reporter cells for the high-throughput screening of FDA-approved drugs, focusing on mTOR inhibitors. This methodology facilitated the identification of several agents, inclusive of known mTOR inhibitors, which upregulated PDCD4 expression and concurrently exhibited efficacy in impeding mycobacterial proliferation within macrophages. These results not only reinforce the significance of PDCD4 as a pivotal marker in the understanding of infectious diseases, particularly mycobacterial infections, but also illuminate its potential in the identification of mTOR inhibitors, thereby contributing to the advancement of therapeutic strategies. IMPORTANCE: This study emphasizes the critical role of the mammalian target of rapamycin (mTOR) pathway in macrophage responses to mycobacterial infections, elucidating how mycobacteria activate mTOR, resulting in PDCD4 degradation. The utilization of the (Tor)-signal-indicator (TOSI) vector for real-time monitoring of mTOR activity represents a significant advancement in understanding mTOR regulation during mycobacterial infection. These findings deepen our comprehension of mycobacteria's innate immune mechanisms and introduce PDCD4 as a novel marker for mTOR activity in infectious diseases. Importantly, this research laid the groundwork for high-throughput screening of mTOR inhibitors using FDA-approved drugs, offering the potential for repurposing treatments against mycobacterial infections. The identification of drugs that inhibit mTOR activation opens new avenues for host-directed therapies, marking a significant step forward in combating tuberculosis and other mycobacterial diseases.


Assuntos
Proteínas Reguladoras de Apoptose , Biomarcadores , Infecções por Mycobacterium , Proteínas de Ligação a RNA , Transdução de Sinais , Serina-Treonina Quinases TOR , Serina-Treonina Quinases TOR/metabolismo , Humanos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Infecções por Mycobacterium/microbiologia , Infecções por Mycobacterium/tratamento farmacológico , Infecções por Mycobacterium/metabolismo , Infecções por Mycobacterium/imunologia , Biomarcadores/metabolismo , Macrófagos/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Camundongos , Mycobacterium/genética
5.
Behav Brain Res ; 468: 115028, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38723677

RESUMO

Early life stress (ELS) increases the risk of depression later in life. Programmed cell death factor 4 (PDCD4), an apoptosis-related molecule, extensively participates in tumorigenesis and inflammatory diseases. However, its involvement in a person's susceptibility to ELS-related depression is unknown. To examine the effects and underlying mechanisms of PDCD4 on ELS vulnerability, we used a "two-hit" stress mouse model: an intraperitoneal injection of lipopolysaccharide (LPS) into neonatal mice was performed on postnatal days 7-9 (P7-P9) and inescapable foot shock (IFS) administration in adolescent was used as a later-life challenge. Our study shows that compared with mice that were only exposed to the LPS or IFS, the "two-hit" stress mice developed more severe depression/anxiety-like behaviors and social disability. We detected the levels of PDCD4 in the hippocampus of adolescent mice and found that they were significantly increased in "two-hit" stress mice. The results of immunohistochemical staining and Sholl analysis showed that the number of microglia in the hippocampus of "two-hit" stress mice significantly increased, with morphological changes, shortened branches, and decreased numbers. However, knocking down PDCD4 can prevent the number and morphological changes of microglia induced by ELS. In addition, we confirmed through the Golgi staining and immunohistochemical staining results that knocking down PDCD4 can ameliorate ELS-induced synaptic plasticity damage. Mechanically, the knockdown of PDCD4 exerts neuroprotective effects, possibly via the mediation of BDNF/AKT/CREB signaling. Combined, these results suggest that PDCD4 may play an important role in the ELS-induced susceptibility to depression and, thus, may become a therapeutic target for depressive disorders.


Assuntos
Proteínas Reguladoras de Apoptose , Depressão , Hipocampo , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Proteínas de Ligação a RNA , Estresse Psicológico , Animais , Masculino , Camundongos , Animais Recém-Nascidos , Proteínas Reguladoras de Apoptose/metabolismo , Comportamento Animal/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/metabolismo , Depressão/fisiopatologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Hipocampo/metabolismo , Lipopolissacarídeos/farmacologia , Microglia/metabolismo , Plasticidade Neuronal/fisiologia , Proteínas de Ligação a RNA/metabolismo , Estresse Psicológico/metabolismo , Feminino
6.
J Virol ; 98(5): e0006024, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38557170

RESUMO

As obligate parasites, viruses have evolved multiple strategies to evade the host immune defense. Manipulation of the host proteasome system to degrade specific detrimental factors is a common viral countermeasure. To identify host proteins targeted for proteasomal degradation by porcine reproductive and respiratory syndrome virus (PRRSV), we conducted a quantitative proteomics screen of PRRSV-infected Marc-145 cells under the treatment with proteasome inhibitor MG132. The data revealed that the expression levels of programmed cell death 4 (PDCD4) were strongly downregulated by PRRSV and significantly rescued by MG132. Further investigation confirmed that PRRSV infection induced the translocation of PDCD4 from the nucleus to the cytoplasm, and the viral nonstructural protein 9 (Nsp9) promoted PDCD4 proteasomal degradation in the cytoplasm by activating the Akt-mTOR-S6K1 pathway. The C-terminal domain of Nsp9 was responsible for PDCD4 degradation. As for the role of PDCD4 during PRRSV infection, we demonstrated that PDCD4 knockdown favored viral replication, while its overexpression significantly attenuated replication, suggesting that PDCD4 acts as a restriction factor for PRRSV. Mechanistically, we discovered eukaryotic translation initiation factor 4A (eIF4A) was required for PRRSV. PDCD4 interacted with eIF4A through four sites (E249, D253, D414, and D418) within its two MA3 domains, disrupting eIF4A-mediated translation initiation in the 5'-untranslated region of PRRSV, thereby inhibiting PRRSV infection. Together, our study reveals the antiviral function of PDCD4 and the viral strategy to antagonize PDCD4. These results will contribute to our understanding of the immune evasion strategies employed by PRRSV and offer valuable insights for developing new antiviral targets.IMPORTANCEPorcine reproductive and respiratory syndrome virus (PRRSV) infection results in major economic losses in the global swine industry and is difficult to control effectively. Here, using a quantitative proteomics screen, we identified programmed cell death 4 (PDCD4) as a host protein targeted for proteasomal degradation by PRRSV. We demonstrated that PDCD4 restricts PRRSV replication by interacting with eukaryotic translation initiation factor 4A, which is required for translation initiation in the viral 5'-untranslated region. Additionally, four sites within two MA3 domains of PDCD4 are identified to be responsible for its antiviral function. Conversely, PRRSV nonstructural protein 9 promotes PDCD4 proteasomal degradation in the cytoplasm by activating the Akt-mTOR-S6K1 pathway, thus weakening the anti-PRRSV function. Our work unveils PDCD4 as a previously unrecognized host restriction factor for PRRSV and reveals that PRRSV develops countermeasures to overcome PDCD4. This will provide new insights into virus-host interactions and the development of new antiviral targets.


Assuntos
Proteínas Reguladoras de Apoptose , Fator de Iniciação 4A em Eucariotos , Vírus da Síndrome Respiratória e Reprodutiva Suína , Proteínas de Ligação a RNA , Proteínas não Estruturais Virais , Replicação Viral , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Animais , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4A em Eucariotos/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Suínos , Linhagem Celular , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Interações Hospedeiro-Patógeno , Proteólise , Humanos , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
7.
Cell Signal ; 119: 111178, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38640981

RESUMO

STAT1 (Signal Transducer and Activator of Transcription 1), belongs to the STAT protein family, essential for cytokine signaling. It has been reported to have either context dependent oncogenic or tumor suppressor roles in different tumors. Earlier, we demonstrated that Glioblastoma multiforme (GBMs) overexpressing FAT1, an atypical cadherin, had poorer outcomes. Overexpressed FAT1 promotes pro-tumorigenic inflammation, migration/invasion by downregulating tumor suppressor gene, PDCD4. Here, we demonstrate that STAT1 is a novel mediator downstream to FAT1, in downregulating PDCD4 in GBMs. In-silico analysis of GBM databases as well as q-PCR analysis in resected GBM tumors showed positive correlation between STAT1 and FAT1 mRNA levels. Kaplan-Meier analysis showed poorer survival of GBM patients having high FAT1 and STAT1 expression. SiRNA-mediated knockdown of FAT1 decreased STAT1 and increased PDCD4 expression in glioblastoma cells (LN229 and U87MG). Knockdown of STAT1 alone resulted in increased PDCD4 expression. In silico analysis of the PDCD4 promoter revealed four putative STAT1 binding sites (Site1-Site4). ChIP assay confirmed the binding of STAT1 to site1. ChIP-PCR revealed decrease in the binding of STAT1 on the PDCD4 promoter after FAT1 knockdown. Site directed mutagenesis of Site1 resulted in increased PDCD4 luciferase activity, substantiating STAT1 mediated PDCD4 inhibition. EMSA confirmed STAT1 binding to the Site 1 sequence. STAT1 knockdown led to decreased expression of pro-inflammatory cytokines and EMT markers, and reduced migration/invasion of GBM cells. This study therefore identifies STAT1 as a novel downstream mediator of FAT1, promoting pro-tumorigenic activity in GBM, by suppressing PDCD4 expression.


Assuntos
Proteínas Reguladoras de Apoptose , Caderinas , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Glioblastoma , Proteínas de Ligação a RNA , Fator de Transcrição STAT1 , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Caderinas/metabolismo , Caderinas/genética , Linhagem Celular Tumoral , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Regiões Promotoras Genéticas/genética , Movimento Celular , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia
8.
Int Immunopharmacol ; 132: 111779, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38581987

RESUMO

This study aimed to investigate the molecular mechanism of the effect of PDCD4 on radiotherapy-induced acute kidney injury (AKI) in rectal cancer through the regulation of FGR/NF-κB signaling. Differentially expressed genes were identified using Gene Expression Omnibus (GEO) datasets (GSE90627 for rectal cancer and GSE145085 for AKI) and R software. The human renal tubular epithelial cell line, HK-2, was used to establish an in vitro model of radiotherapy-induced AKI. RT-qPCR and western blotting were used to detect gene and protein expression levels, respectively. Cell proliferation and apoptosis were assessed using the CCK-8 assay and flow cytometry, respectively. The malondialdehyde and superoxide dismutase levels in the cell culture supernatants were determined. Additionally, an in vivo AKI model was established using BALB/c mice, and kidney tissue morphology, expression of the renal injury molecule KIM-1, apoptosis of renal tubular cells, and TAS and TOS in serum were evaluated. Bioinformatics analysis revealed the upregulated expression of PDCD4 in AKI. In vitro experiments demonstrated that PDCD4 induced apoptosis in renal tubular cells by promoting FGR expression, which activated the NF-κB signaling pathway and triggered an oxidative stress response. In vivo animal experiments confirmed that PDCD4 promoted oxidative stress response and radiotherapy-induced AKI through the activation of the FGR/NF-κB signaling pathway. Silencing PDCD4 attenuated radiotherapy-induced AKI. Our findings suggest that PDCD4 may induce radiotherapy-induced AKI in rectal cancer by promoting FGR expression, activating the NF-κB signaling pathway, and triggering an oxidative stress response.


Assuntos
Injúria Renal Aguda , Proteínas Reguladoras de Apoptose , Camundongos Endogâmicos BALB C , NF-kappa B , Estresse Oxidativo , Proteínas de Ligação a RNA , Neoplasias Retais , Transdução de Sinais , Animais , Humanos , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/genética , NF-kappa B/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Camundongos , Neoplasias Retais/radioterapia , Neoplasias Retais/genética , Apoptose , Masculino , Linhagem Celular
9.
Yi Chuan ; 46(4): 290-305, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38632092

RESUMO

The tumor suppressor programmed cell death 4 (PDCD4) is downregulated in various tumor tissues indicating poor prognosis. PDCD4 is the first protein found to resist tumor transformation, invasion, and metastasis by inhibiting translation. The functions of PDCD4 dependent on its structures are affected by extracellular signals. It regulates tumor-related proteins through a variety of mechanisms, especially involved in two major signaling pathways, PI3K-Akt-mTOR and MAPK. By analyzing the relationship between the structures, functions and diseases of PDCD4, this review summarizes the roles of PDCD4 in several physiological processes and diseases such as apoptosis, autophagy, tumor, and inflammation in recent years, thereby providing insights for the study of the signaling pathways of PDCD4 and related proteins and the treatment of diseases targeting them.


Assuntos
Proteínas Reguladoras de Apoptose , Fosfatidilinositol 3-Quinases , Proteínas de Ligação a RNA , Apoptose , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Humanos , Transdução de Sinais/genética
10.
Sci Rep ; 14(1): 6638, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503934

RESUMO

Worldwide, myocardial infarction (MI) is the leading cause of death and disability-adjusted life years lost. Recent researches explored new methods of detecting biomarkers that can predict the risk of developing myocardial infarction, which includes identifying genetic markers associated with increased risk. We induced myocardial infarction in mice by occluding the left anterior descending coronary artery and performed TTC staining to assess cell death. Next, we performed ChIP assays to measure the enrichment of histone modifications at the promoter regions of key genes involved in mitochondrial fission. We used qPCR and western blot to measure expression levels of relative apoptotic indicators. We report that miR-181a inhibits myocardial ischemia-induced apoptosis and preserves left ventricular function after MI. We show that programmed cell death protein 4 (PDCD4) is the target gene involved in miR-181a-mediated anti-ischemic injury, which enhanced BID recruitment to the mitochondria. In addition, we discovered that p53 inhibits the expression of miR-181a via transcriptional regulation. Here, we discovered for the first time a mitochondrial fission and apoptosis pathway which is controlled by miR-181a and involves PDCD4 and BID. This pathway may be controlled by p53 transcriptionally, and we presume that miR-181a may lead to the discovery of new therapeutic and preventive targets for ischemic heart diseases.


Assuntos
MicroRNAs , Infarto do Miocárdio , Isquemia Miocárdica , Camundongos , Animais , Dinâmica Mitocondrial/genética , Proteína Supressora de Tumor p53/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/genética , Miócitos Cardíacos/metabolismo
11.
J Pharm Pharmacol ; 76(3): 257-268, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38334432

RESUMO

OBJECTIVES: Celastrus orbiculatus ethyl acetate extract (COE) is the main extract of the stem of the Chinese herbal C. orbiculatus, which has anti-tumor and anti-inflammatory biological effects. Our previous study showed that COE had a certain reversal effect on the precancerous lesions of gastric cancer (PLGC) in rats, but the exact mechanism of action remains elusive. We aimed to explore the therapeutic effects of COE on PLGC and the potential mechanisms. METHODS: The PLGC rat model was successfully constructed by N-methyl-N´-nitro-N-nitrosoguanidine (MNNG) multifactorial induction method. Then, COE was prepared to treat the PLGC rat model. Hematoxylin & eosin staining was used to observe gastric mucosal lesions in rats, AB-PAS and HID-AB staining were used to observe intestinal metaplasia. PDCD4-ATG5 signaling pathway was detected by immunohistochemistry (IHC) and reverse transcription polymerase chain reaction (RT-PCR) in vivo, and autophagy level was detected by IHC, transmission electron microscopy, and RT-PCR in vivo. Besides, the PLGC (MC) cell model was successfully constructed by treating GES-1 cells with MNNG. Then, the morphology, proliferation, and apoptosis of MC cells, and the role of the PDCD4-ATG5 signaling pathway and autophagy in MC cells were evaluated by COE and after the overexpression of PDCD4 treatment. KEY FINDINGS: COE significantly improved gastric mucosal injury and cellular heteromorphism and retarded the progression of PLGC in rats. Further studies indicated COE not only inhibited the level of autophagy but also interfered with the PDCD4-ATG5 signaling pathway in vivo. On the other hand, COE treatment could effectively reverse MC cell damage, inhibit MC cell proliferation, and promote MC cell apoptosis. Furthermore, COE also promoted PDCD4 and inhibited ATG5 expression in vitro, and the inhibitory effect of COE on ATG5-mediated autophagy was further enhanced after the overexpression of PDCD4. CONCLUSIONS: The study revealed that COE could regulate the PDCD4-ATG5 signaling pathway to inhibit autophagy in gastric epithelial cells, which contributes to reversing the progression of PLGC.


Assuntos
Celastrus , Extratos Vegetais , Lesões Pré-Cancerosas , Neoplasias Gástricas , Animais , Ratos , Proteínas Reguladoras de Apoptose , Autofagia , Celastrus/química , Linhagem Celular Tumoral , Metilnitronitrosoguanidina , Lesões Pré-Cancerosas/tratamento farmacológico , Transdução de Sinais , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Extratos Vegetais/uso terapêutico
12.
Reprod Biomed Online ; 48(4): 103685, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38324980

RESUMO

RESEARCH QUESTION: What role does programmed cell death 4 (PDCD4) play in premature ovarian insufficiency (POI)? DESIGN: A PDCD4 gene knockout (PDCD4-/-) mouse model was constructed, a POI mouse model was established similar to human POI with 4-vinylcyclohexene dioxide (VCD), a PDCD4-overexpressed adenovirus was designed and the regulatory role in POI in vitro and in vivo was investigated. RESULTS: PDCD4 expression was significantly increased in the ovarian granulosa cells of patients with POI (P ≤ 0.002 protein and mRNA) and mice with VCD-induced POI (P < 0.001 protein expression in both mouse ovaries and granulosa cells). In POI-induced mice model, PDCD4 knockouts significantly increased anti-Müllerian hormone, oestrodiol and numbers of developing follicles, and the PI3K-AKT-Bcl2/Bax signalling pathway is involved in it. CONCLUSION: The expression and regulation of PDCD4 significantly affects the POI pathology in a mouse model. This effect is closely related to the regulation of Bcl2/Bax and the activation of the PI3K-AKT signalling pathway.


Assuntos
Cicloexenos , Insuficiência Ovariana Primária , Animais , Feminino , Humanos , Camundongos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteína X Associada a bcl-2/metabolismo , Modelos Animais de Doenças , Fosfatidilinositol 3-Quinases/metabolismo , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas de Ligação a RNA/genética
13.
Andrology ; 12(6): 1439-1448, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38217461

RESUMO

BACKGROUND: Apoptosis is an important pathologic mechanism of erectile dysfunction after radical prostatectomy. Studies have shown that programmed cell death factor 4 is connected to the modulation of apoptosis in many cells. However, the programmed cell death factor 4 function in the cavernous nerve injury erectile dysfunction is unclear. OBJECTIVE: This investigation aimed to explore the programmed cell death factor 4 function in erectile dysfunction in rats with bilateral cavernous nerve crush. MATERIALS AND METHODS: The experiment used 30 male Sprague Dawley rats (18 months old) that were screened for normal erectile function by the apomorphine test. Ten rats were randomized into Sham and bilateral cavernous nerve crush groups to detect changes in programmed cell death factor 4 expression. The remaining 20 rats were distributed at random to four groups: the Sham group treated by sham surgery, the phosphate-buffered saline group, the lentivirus containing negative control short hairpin RNA group, and the lentivirus containing short hairpin RNA targeting programmed cell death factor 4 group underwent bilateral cavernous nerve crush and were afterward administered intracavernous injections of phosphate-buffered saline, lentivirus containing negative control short hairpin RNA, or lentivirus containing short hairpin RNA targeting programmed cell death factor 4. Electrical stimulation of the cavernous nerve was conducted 2 weeks later for penile erectile function assessment. The cavernous tissue was collected for histological analysis and western blotting. RESULTS: The apoptosis level in rat corpus cavernosum was elevated, and programmed cell death factor 4 expression was increased after bilateral cavernous nerve crush. Knockdown of programmed cell death factor 4 significantly improved erectile function in bilateral cavernous nerve crush rats. Furthermore, lentivirus containing short hairpin RNA targeting programmed cell death factor 4 treatment raised smooth muscle content and attenuated cavernous fibrosis and apoptotic levels. Additionally, programmed cell death factor 4 was found to mediate the PI3K/AKT pathway. DISCUSSION AND CONCLUSION: Elevated programmed cell death factor 4 expression may be an important pathogenetic mechanism for erectile dysfunction after bilateral cavernous nerve crush, and the knockdown of programmed cell death factor 4 enhanced erectile function in 18-month-old rats after cavernous nerve damage. The potential mechanism may be the stimulation of the PI3K/AKT pathway to attenuate the cavernous apoptosis level.


Assuntos
Apoptose , Disfunção Erétil , Ereção Peniana , Pênis , Ratos Sprague-Dawley , Animais , Masculino , Disfunção Erétil/terapia , Disfunção Erétil/etiologia , Ratos , Pênis/inervação , Ereção Peniana/fisiologia , Compressão Nervosa , Técnicas de Silenciamento de Genes , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Traumatismos dos Nervos Periféricos/metabolismo
14.
Mol Biotechnol ; 66(5): 1154-1164, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38253901

RESUMO

To explore the potential mechanism of microRNA (miR)-181b-5p promoting the progression of thyroid cancer (TC) by targeting programmed cell death 4 (PDCD4). Analysis of miR-181b-5p and PDCD4 expression in TC was performed. The impact of miR-181b-5p and PDCD4 on proliferation, migration, invasion, and apoptosis of TC cells was examined. The binding relationship between miR-181b-5p and PDCD4 was predicted and verified. miR-181b-5p was up-regulated in TC, while PDCD4 was down-regulated. Down-regulating miR-181b-5p or up-regulating PDCD4 inhibited the proliferation, migration, and invasion of TC cells, and promoted cell apoptosis. PDCD4 was the downstream target of miR-181b-5p, and down-regulation of PDCD4 counteracted the inhibitory effect of down-regulation of miR-181b-5p on the proliferation, migration, and invasion of TC cells and the promoting effect on apoptosis. miR-181b-5p inhibits the proliferation, migration, and invasion of TC cells and promotes cell apoptosis by targeting PDCD4.


Assuntos
Proteínas Reguladoras de Apoptose , Apoptose , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Proteínas de Ligação a RNA , Neoplasias da Glândula Tireoide , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Apoptose/genética , Invasividade Neoplásica/genética , Masculino , Pessoa de Meia-Idade , Regulação para Baixo , Feminino
15.
Mol Biol Rep ; 51(1): 77, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38183433

RESUMO

INTRODUCTION: Sepsis is a pathogenic syndrome of prolonged excessive inflammation and immunosuppression produced by invading pathogens. Programmed cell death 4 (PDCD4) may be implicated in a range of inflammatory lesions, and this study aimed to confirm the involvement of PDCD4 in septic lung injury. MATERIALS AND METHODS: Mice and bronchial epithelial 16HBE cells were separately subjected to CLP and LPS to generate in vivo and in vitro models. Following the level of PDCD4 was determined, the impacts of PDCD4 knockdown on mouse lung injury degree, inflammation, apoptosis, and pyroptosis levels were evaluated. Afterward, cells were treated with the NLRP3 agonist, and the influences of NLRP3 activation on the regulations of PDCD4 knockdown were determined. RESULTS: PDCD4 was elevated following mice developed septic lung injury, PDCD4 knockdown ameliorated septic lung injury and reduced lung inflammation and apoptosis. Moreover, PDCD4 knockdown suppressed NLRP3-mediated pyroptosis, indicating that PDCD4 also mediated pyroptosis. According to cellular models, NLRP3 activation broke the effects of PDCD4 knockdown on cells. CONCLUSIONS: The current study reveals that PDCD4 governs NLRP3-mediated pyroptosis in septic lung injury. PDCD4 is not only related to apoptosis and expands the knowledge of PDCD4 regulation of different cell death modes.


Assuntos
Lesão Pulmonar , Piroptose , Animais , Camundongos , Apoptose , Inflamação , Pulmão , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética
16.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(1): 25-35, 2024 Jan 20.
Artigo em Chinês | MEDLINE | ID: mdl-38293973

RESUMO

OBJECTIVE: To elucidate the role of programmed cell death factor 4 (PDCD4) in mitochondrial dysfunction caused by sepsis-related vascular endothelial damage. METHODS: Cultured human umbilical vein endothelial cells (HUVECs) and mouse vascular endothelial cells (C166 cells) were transfected with a small interfering RNA targeting PDCD4 followed by treatment with lipopolysaccharide (LPS) alone or in combination with carbonyl cyanide 3-chlorophenylhydrazone (FCCP). The proteomic changes in the cells after PDCD4 knockdown were analyzed using LC-MS/MS technique. The mRNA expressions of PDCD4 and the genes associated with cell inflammation and apoptosis were detected with RT-PCR, and the expressions of FIS1, DRP1 and OPA1 proteins key to mitochondrial fission and fusion were determined using Western blotting. JC-1 and MitoSOX fluorescent probes were used to observe the changes in mitochondrial membrane potential and mitochondrial reactive oxygen species levels under by a laser confocal microscope. RESULTS: LPS stimulation of the cells significantly increased the mRNA expressions of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein 1 (MCP1) and enhanced the cellular expression of PDCD4 (P < 0.05). Proteomic analysis suggested a correlation between PDCD4 knockdown and changes in mitochondrial dynamics in the cells. LPS treatment significantly increased the expressions of mitochondrial fission proteins FIS1 and DRP1 and lowered the expression of the fusion protein OPA1 in the cells (P < 0.05), causing also mitochondrial oxidative stress and reduction of the mitochondrial membrane potential (P < 0.05). In HUVECs, treatment with FCCP significantly attenuated the protective effect of PDCD4 knockdown, which inhibited LPS-induced inflammation and oxidative stress and restored the balance between mitochondrial fission and fusion. CONCLUSION: PDCD4 knockdown protects vascular endothelial cells against LPS-induced damages by repressing mitochondrial fission and oxidative stress, promoting mitochondrial fusion, and maintaining normal mitochondrial function.


Assuntos
Lipopolissacarídeos , Dinâmica Mitocondrial , Animais , Humanos , Camundongos , Proteínas Reguladoras de Apoptose/metabolismo , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/metabolismo , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Cromatografia Líquida , Células Endoteliais da Veia Umbilical Humana/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/efeitos adversos , Proteômica , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Espectrometria de Massas em Tandem
17.
Clin Hemorheol Microcirc ; 85(4): 355-370, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37927249

RESUMO

BACKGROUND: circRNAs (circRNAs) are involved in the process of cerebral ischemia-reperfusion injury (CI/RI). Our study aims to explore circRBM33 in the endothelial function of the blood-brain barrier (BBB). METHODS: The mouse middle cerebral artery occlusion model (MCAO) was established and restored to perfusion, and OGD/R-induced endothelial cells were used to simulate CI/RI. circRBM33, miR-6838-5p and PDCD4, as well as Occludin, ZO-1 and Claudin-5 TJs were evaluated by quantitative PCR and Western blot. The ring structure of circRBM33 was verified by RNAse R and actinomycin D experiments. MTT and LDH Cytotoxicity assay determined viability and toxicity, and flow cytometry determined apoptosis rate. Inflammatory cytokines and the number of microglia in brain tissue were measured by ELISA and IHC. The interaction between genes was verified by RIP and dual luciferase reporter assay. RESULTS: circRBM33 was a circrRNA present in the cytoplasm and up-regulated in the brain tissue of MCAO mice and OGD/R-induced endothelial cells. Silenced circRBM33 promoted Occludin, ZO-1, and Claudin-5 expression and cell proliferation, and inhibited cytotoxicity, inflammatory response, and apoptosis. Functionally, circRBM33-absorbed miR-6838-5p was involved in regulating PDCD4, leading to endothelial cell dysfunction, and thus affecting the function of the BBB. CONCLUSIONS: circRBM33 by mediating miR-6838-5p/PDCD4 axis induces endothelial dysfunction, thereby affecting the BBB in mice with CI/RI.


Assuntos
MicroRNAs , RNA Circular , Traumatismo por Reperfusão , Animais , Camundongos , Apoptose , Barreira Hematoencefálica/metabolismo , Claudina-5/metabolismo , Células Endoteliais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Ocludina/genética , Ocludina/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , RNA Circular/genética
18.
Ann Hematol ; 102(12): 3401-3412, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37878012

RESUMO

Acute myeloid leukemia (AML) is a common heterogeneous malignancy. Novel molecular markers aid diagnosis, patient sub-categorization, and optimal clinical decisions. Here, we explored the prognostic implications associated with the expression of the programmed cell death (PDCD) family of molecules in AML patients. Based on the findings from the TCGA and OHSU cohorts, we observed that the mRNA abundance of PDCD4 is significantly higher compared to other molecules within the PDCD family. Furthermore, high expression of PDCD4 was associated with predicted long-term patient survival in diagnosed AML patients. In the chemotherapy group, patients with high PDCD4 expression showed a tendency toward longer overall survival (OS) (P = 0.0266) and event-free survival (EFS) (P = 0.0008). High PDCD4 levels served as a favorable independent predictor for both OS and EFS in AML patients. However, subgroup analyses in the hematopoietic stem cell transplantation (HSCT) group revealed no significant difference in OS or EFS between individuals with high and low PDCD4 expression. Furthermore, in the low PDCD4 expression group, AML patients who underwent HSCT experienced improved survival outcomes (P = 0.0015), helping to mitigate the unfavorable prognosis associated with PDCD4 downregulation. Conversely, in the high PDCD4 expression group, HSCT offered a notable short-term survival advantage, while patients with high PDCD4 expression responded favorably to long-term survival through chemotherapy. Biological function enrichment showed that the expression of PDCD4 was correlated with complement and coagulation cascades, cell receptor signaling pathways, and cholesterol metabolism. The findings from this study will aid in better categorizing heterogeneous AML patients and guiding more appropriate clinical decision-making.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Humanos , Prognóstico , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Intervalo Livre de Progressão , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/uso terapêutico , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/uso terapêutico
19.
ACS Infect Dis ; 9(10): 1846-1857, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37723647

RESUMO

Studies have confirmed that the colonization of Porphyromonas gingivalis (Pg) could promote the malignant evolution of esophageal squamous cell carcinoma (ESCC). Since pathogenic microorganisms can promote malignant tumor proliferation by inhibiting programmed cell death factor 4 (PDCD4) and the decrease of PDCD4 activity can enhance the stemness of cancer cells, we here investigated the functional mechanism by which Pg promoted ESCC chemoresistance and malignancy through inhibiting PDCD4 and enriching cancer stem cells (CSCs). The effects of Pg and PDCD4 on CSCs, chemoresistance and malignancy of ESCC cells were evaluated by in vitro studies. The expression of Pg, PDCD4, and ALDH1 in ESCC tissues were detected by IHC, and the correlations between each index and postoperative survival of ESCC patients were analyzed. The results showed that Pg could inhibit PDCD4 expression and lead to CSCs enrichment in ESCC cells. After eliminating Pg, the expression of PDCD4 was upregulated, the percentage of CSCs, chemoresistance and malignancy were decreased. ESCC patients with Pg-positive, PDCD4-negative, and ALDH1-positive have a significant shorter survival. This study proved that eliminating Pg and blocking CSCs enrichment caused by decreasing PDCD4 activity may provide a new strategy for ESCC treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA