Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Front Mol Neurosci ; 17: 1405415, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011540

RESUMO

More than 650 reversible and irreversible post-translational modifications (PTMs) of proteins have been listed so far. Canonical PTMs of proteins consist of the covalent addition of functional or chemical groups on target backbone amino-acids or the cleavage of the protein itself, giving rise to modified proteins with specific properties in terms of stability, solubility, cell distribution, activity, or interactions with other biomolecules. PTMs of protein contribute to cell homeostatic processes, enabling basal cell functions, allowing the cell to respond and adapt to variations of its environment, and globally maintaining the constancy of the milieu interieur (the body's inner environment) to sustain human health. Abnormal protein PTMs are, however, associated with several disease states, such as cancers, metabolic disorders, or neurodegenerative diseases. Abnormal PTMs alter the functional properties of the protein or even cause a loss of protein function. One example of dramatic PTMs concerns the cellular prion protein (PrPC), a GPI-anchored signaling molecule at the plasma membrane, whose irreversible post-translational conformational conversion (PTCC) into pathogenic prions (PrPSc) provokes neurodegeneration. PrPC PTCC into PrPSc is an additional type of PTM that affects the tridimensional structure and physiological function of PrPC and generates a protein conformer with neurotoxic properties. PrPC PTCC into PrPSc in neurons is the first step of a deleterious sequence of events at the root of a group of neurodegenerative disorders affecting both humans (Creutzfeldt-Jakob diseases for the most representative diseases) and animals (scrapie in sheep, bovine spongiform encephalopathy in cow, and chronic wasting disease in elk and deer). There are currently no therapies to block PrPC PTCC into PrPSc and stop neurodegeneration in prion diseases. Here, we review known PrPC PTMs that influence PrPC conversion into PrPSc. We summarized how PrPC PTCC into PrPSc impacts the PrPC interactome at the plasma membrane and the downstream intracellular controlled protein effectors, whose abnormal activation or trafficking caused by altered PTMs promotes neurodegeneration. We discussed these effectors as candidate drug targets for prion diseases and possibly other neurodegenerative diseases.

2.
Autophagy ; 20(9): 1984-1999, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38726865

RESUMO

AQP3 (aquaporin 3 (Gill blood group)), a member of the AQP family, is an aquaglyceroporin which transports water, glycerol and small solutes across the plasma membrane. Beyond its role in fluid transport, AQP3 plays a significant role in regulating various aspects of tumor cell behavior, including cell proliferation, migration, and invasion. Nevertheless, the underlying regulatory mechanism of AQP3 in tumors remains unclear. Here, for the first time, we report that AQP3 is a direct target for ubiquitination by the SCFFBXW5 complex. In addition, we revealed that downregulation of FBXW5 significantly induced AQP3 expression to prompt macroautophagic/autophagic cell death in hepatocellular carcinoma (HCC) cells. Mechanistically, AQP3 accumulation induced by FBXW5 knockdown led to the degradation of PDPK1/PDK1 in a lysosomal-dependent manner, thus inactivating the AKT-MTOR pathway and inducing autophagic death in HCC. Taken together, our findings revealed a previously undiscovered regulatory mechanism through which FBXW5 degraded AQP3 to suppress autophagic cell death via the PDPK1-AKT-MTOR axis in HCC cells.Abbreviation: BafA1: bafilomycin A1; CQ: chloroquine; CRL: CUL-Ring E3 ubiquitin ligases; FBXW5: F-box and WD repeat domain containing 5; HCC: hepatocellular carcinoma; HSPA8/HSC70: heat shock protein family A (Hsp70) member 8; 3-MA: 3-methyladenine; PDPK1/PDK1: 3-phosphoinositide dependent protein kinase 1; RBX1/ROC1: ring-box 1; SKP1: S-phase kinase associated protein 1; SCF: SKP1-CUL1-F-box protein.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Aquaporina 3 , Autofagia , Carcinoma Hepatocelular , Proteínas F-Box , Neoplasias Hepáticas , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Autofagia/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Aquaporina 3/metabolismo , Aquaporina 3/genética , Proteínas F-Box/metabolismo , Linhagem Celular Tumoral , Ubiquitinação , Proteólise , Lisossomos/metabolismo , Animais
3.
BMC Genomics ; 25(1): 360, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605297

RESUMO

BACKGROUND: During mitosis the cell depends on proper attachment and segregation of replicated chromosomes to generate two identical progeny. In cancers defined by overexpression or dysregulation of the MYC oncogene this process becomes impaired, leading to genomic instability and tumor evolution. Recently it was discovered that the chromatin regulator WDR5-a critical MYC cofactor-regulates expression of genes needed in mitosis through a direct interaction with the master kinase PDPK1. However, whether PDPK1 and WDR5 contribute to similar mitotic gene regulation in MYC-overexpressing cancers remains unclear. Therefore, to characterize the influence of WDR5 and PDPK1 on mitotic gene expression in cells with high MYC levels, we performed a comparative transcriptomic analysis in neuroblastoma cell lines defined by MYCN-amplification, which results in high cellular levels of the N-MYC protein. RESULTS: Using RNA-seq analysis, we identify the genes regulated by N-MYC and PDPK1 in multiple engineered CHP-134 neuroblastoma cell lines and compare them to previously published gene expression data collected in CHP-134 cells following inhibition of WDR5. We find that as expected N-MYC regulates a multitude of genes, including those related to mitosis, but that PDPK1 regulates specific sets of genes involved in development, signaling, and mitosis. Analysis of N-MYC- and PDPK1-regulated genes reveals a small group of commonly controlled genes associated with spindle pole formation and chromosome segregation, which overlap with genes that are also regulated by WDR5. We also find that N-MYC physically interacts with PDPK1 through the WDR5-PDPK1 interaction suggesting regulation of mitotic gene expression may be achieved through a N-MYC-WDR5-PDPK1 nexus. CONCLUSIONS: Overall, we identify a small group of genes highly enriched within functional gene categories related to mitotic processes that are commonly regulated by N-MYC, WDR5, and PDPK1 and suggest that a tripartite interaction between the three regulators may be responsible for setting the level of mitotic gene regulation in N-MYC amplified cell lines. This study provides a foundation for future studies to determine the exact mechanism by which N-MYC, WDR5, and PDPK1 converge on cell cycle related processes.


Assuntos
Genes myc , Neuroblastoma , Humanos , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Linhagem Celular Tumoral , Segregação de Cromossomos , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neuroblastoma/metabolismo
4.
Cancer Biol Ther ; 25(1): 2329372, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38494680

RESUMO

Succinylation modification involves in the progression of human cancers. The present study aimed to investigate the role of CPT1A, which is a succinyltransferase in the progression of prostate cancer (PCa). CCK-8 was used to detect the cell viability. Seahorse was performed to evaluate the cell glycolysis. Luciferase assay was used to detect the transcriptional regulation. ChIP was performed to assess the binding between transcriptional factors with the promoters. Co-IP was used to assess the binding between proteins. We found that CPT1A was highly expressed in PCa tissues and cell lines. Silencing of CPT1A inhibited the viability and glycolysis of PCa cells. Mechanistically, CPT1A promoted the succinylation of SP5, which strengthened the binding between SP5 and the promoter of PDPK1. SP5 activated PDPK1 transcription and PDPK1 activated the AKT/mTOR signal pathway. These findings might provide novel targets for the diagnosis or therapy of prostate cancer.


Assuntos
Neoplasias da Próstata , Fatores de Transcrição , Masculino , Humanos , Fatores de Transcrição/metabolismo , Linhagem Celular , Transdução de Sinais , Neoplasias da Próstata/genética , Glicólise , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo
5.
Biochem Genet ; 62(5): 4087-4102, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38273153

RESUMO

Non-small-cell lung cancer (NSCLC) stands as a prevalent subtype of lung cancer, with circular RNAs emerging as key players in cancer development. This study elucidates the role of circRNA-CPA4 in NSCLC. Elevated circRNA-CPA4 expression in NSCLC lines was confirmed through qRT-PCR. Silencing circRNA-CPA4 with shRNA revealed, through CCK-8, colony formation, and flow cytometry assays, a notable constraint on proliferation and promotion of apoptosis in NSCLC cells. Subcellular localization analysis, RNA immunoprecipitation, and expression level assessments were employed to decipher the intricate interplay among miR-1183, circRNA-CPA4, and PDPK1. Results demonstrated heightened circRNA-CPA4 levels in NSCLC, and its knockdown curtailed NSCLC growth in vivo. Acting as a molecular sponge for miR-1183, circRNA-CPA4 regulated PDPK1 expression. Conversely, inhibiting miR-1183 counteracted the impact of circRNA-CPA4 silencing, reinstating NSCLC cell proliferation, and impeding apoptosis. Overall, this study unveils a novel mechanism: circRNA-CPA4 promotes PDPK1 expression by sequestering miR-1183, fostering NSCLC cell proliferation, and hindering apoptosis.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Apoptose , Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Neoplasias Pulmonares , MicroRNAs , RNA Circular , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Linhagem Celular Tumoral , Camundongos , Animais , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Células A549
6.
Chem Biol Drug Des ; 103(1): e14438, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38230783

RESUMO

Bronchopneumonia is the most common pneumonia in childhood. Therefore, we tested the effects of Remimazolam presented Bronchopneumonia and its possible mechanisms. Phillygenin increased survival rate, reduced W/D ratio, and lung injury score, and inhibited IL-1ß, IL-6, TNF-α, and INF-γ levels in mice model of bronchopneumonia. Remimazolam induced PDPK1 and p-AKT protein expressions, and suppressed NLRP3 protein expression in lung tissue of mice model. In vitro model, Remimazolam also induced PDPK1 and p-AKT protein expressions, and suppressed NLRP3 protein expression. Remimazolam also inhibited inflammation levels in vitro model. PDPK1 inhibitor, PHT-427 (100 mg/kg) reduced survival rate, increased W/D ratio and lung injury score, and promoted inflammation levels in mice model of bronchopneumonia by treated with Remimazolam. PHT-427 suppressed PDPK1 and p-AKT protein expressions and induced NLRP3 protein expression in mice model of bronchopneumonia by treated with Remimazolam. Remimazolam interlinked PDPK1 protein. Remimazolam increased the expressions of PDPK1 and p-AKT in vitro model. Remimazolam reduced PDPK1 ubiquitination in vitro model.


Assuntos
Benzenossulfonamidas , Benzodiazepinas , Broncopneumonia , Lesão Pulmonar , Tiadiazóis , Humanos , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Modelos Animais de Doenças , Sulfonamidas , Ubiquitinação , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo
7.
Biochem J ; 480(19): 1503-1532, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37792325

RESUMO

The protein kinase PDK1 phosphorylates at least 24 distinct substrates, all of which belong to the AGC protein kinase group. Some substrates, such as conventional PKCs, undergo phosphorylation by PDK1 during their synthesis and subsequently get activated by DAG and Calcium. On the other hand, other substrates, including members of the Akt/PKB, S6K, SGK, and RSK families, undergo phosphorylation and activation downstream of PI3-kinase signaling. This review presents two accepted molecular mechanisms that determine the precise and timely phosphorylation of different substrates by PDK1. The first mechanism involves the colocalization of PDK1 with Akt/PKB in the presence of PIP3. The second mechanism involves the regulated docking interaction between the hydrophobic motif (HM) of substrates and the PIF-pocket of PDK1. This interaction, in trans, is equivalent to the molecular mechanism that governs the activity of AGC kinases through their HMs intramolecularly. PDK1 has been instrumental in illustrating the bi-directional allosteric communication between the PIF-pocket and the ATP-binding site and the potential of the system for drug discovery. PDK1's interaction with substrates is not solely regulated by the substrates themselves. Recent research indicates that full-length PDK1 can adopt various conformations based on the positioning of the PH domain relative to the catalytic domain. These distinct conformations of full-length PDK1 can influence the interaction and phosphorylation of substrates. Finally, we critically discuss recent findings proposing that PIP3 can directly regulate the activity of PDK1, which contradicts extensive in vitro and in vivo studies conducted over the years.


Assuntos
Piruvato Desidrogenase Quinase de Transferência de Acetil , Humanos , Sítios de Ligação , Fosfatidilinositol 3-Quinase , Fosforilação , Proteínas Proto-Oncogênicas c-akt , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo
8.
Am J Chin Med ; 51(6): 1431-1457, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37530505

RESUMO

Chicoric acid (CA), a functional food ingredient, is a caffeic acid derivative that is mainly found in lettuce, pulsatilla, and other natural plants. However, the anti-inflammatory effects of CA in acute lung injury (ALI) remain poorly understood. This study was conducted to investigate potential drug usage of CA for ALI and the underlying molecular mechanisms of inflammation. C57BL/6 mice were given injections of liposaccharide (LPS) to establish the in vivo model. Meanwhile, BMDM cells were stimulated with LPS+ATP to build the in vitro model. CA significantly alleviated inflammation and oxidative stress in both the in vivo and in vitro models of ALI through the inhibition of NLR family pyrin domain-containing 3 (NLRP3)-mediated pyroptosis. In addition, CA attenuated mitochondrial damage to suppress NLRP3-mediated pyroptosis in the in vivo and in vitro models of ALI by suppressing the production of reactive oxygen species (ROS) via inhibiting the Akt/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. CA inhibited the interaction between Akt at T308 and phosphoinositide-dependent kinase-1 (PDPK1) at S549, thus promoting the phosphorylation of the Akt protein. Furthermore, CA directly targeted the PDPK1 protein and accelerated PDPK1 ubiquitination, indicating that 91-GLY, 111-LYS, 126-TYR, 162-ALA, 205-ASP, and 223-ASP might be responsible for the interaction between PDPK1 and CA. In conclusion, CA from Lettuce alleviated NLRP3-mediated pyroptosis in the ALI model through ROS-induced mitochondrial damage by activating Akt/Nrf2 pathway via PDPK1 ubiquitination. The present study suggests that CA might be a potential therapeutic drug to treat or prevent ALI in pneumonia or COVID-19.


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Proto-Oncogênicas c-akt , Piroptose , 1-Fosfatidilinositol 4-Quinase , Lipopolissacarídeos/efeitos adversos , Fator 2 Relacionado a NF-E2/metabolismo , Camundongos Endogâmicos C57BL , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/induzido quimicamente , Inflamação/tratamento farmacológico
9.
Phytomedicine ; 114: 154753, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37084628

RESUMO

BACKGROUND: Dehydroandrographolide (Deh) from Andrographis paniculata (Burm.f.) Wall has strong anti-inflammatory and antioxidant activities. PURPOSE: To explore the role of Deh in acute lung injury (ALI) of coronavirus disease 19 (COVID-19) and its inflammatory molecular mechanism. METHODS: Liposaccharide (LPS) was injected into a C57BL/6 mouse model of ALI, and LPS + adenosine triphosphate (ATP) was used to stimulate BMDMs in an in vitro model of ALI. RESULTS: In an in vivo and in vitro model of ALI, Deh considerably reduced inflammation and oxidative stress by inhibiting NLRP3-mediated pyroptosis and attenuated mitochondrial damage to suppress NLRP3-mediated pyroptosis through the suppression of ROS production by inhibiting the Akt/Nrf2 pathway. Deh inhibited the interaction between Akt at T308 and PDPK1 at S549 to promote Akt protein phosphorylation. Deh directly targeted PDPK1 protein and accelerated PDPK1 ubiquitination. 91-GLY, 111-LYS, 126-TYR, 162-ALA, 205-ASP and 223-ASP may be the reason for the interaction between PDPK1 and Deh. CONCLUSION: Deh from Andrographis paniculata (Burm.f.) Wall presented NLRP3-mediated pyroptosis in a model of ALI through ROS-induced mitochondrial damage through inhibition of the Akt/Nrf2 pathway by PDPK1 ubiquitination. Therefore, it can be concluded that Deh may be a potential therapeutic drug for the treatment of ALI in COVID-19 or other respiratory diseases.


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Andrographis paniculata , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Medicina Tradicional Chinesa , Piroptose , Lipopolissacarídeos/farmacologia , Fator 2 Relacionado a NF-E2 , Camundongos Endogâmicos C57BL , Lesão Pulmonar Aguda/induzido quimicamente , Inflamassomos
10.
Open Med (Wars) ; 18(1): 20230641, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36820067

RESUMO

Non-small cell lung cancer (NSCLC) accounts for 80% of total lung cancers, which are the main killer of cancer-related death worldwide. Circular RNA (circRNA) has been found to modulate NSCLC development. However, the role of circ_0000376 in NSCLC development has been underreported. The present work showed that circ_0000376 and 3-phos-phoinositide-dependent protein kinase-1 (PDPK1) expression were dramatically increased, but miR-545-3p was decreased in NSCLC tissues and cells. circ_0000376 expression was closely associated with lymph node metastasis, tumor-node-metastasis stage, and tumor size of NSCLC patients. circ_0000376 knockdown repressed NSCLC cell proliferation, migration, invasion, and glutaminolysis but induced cell apoptosis. Additionally, miR-545-3p bound to circ_0000376, and circ_0000376 regulated cell phenotypes by associating with miR-545-3p. MiR-545-3p also participated in NSCLC cell proliferation, migration, invasion, apoptosis, and glutaminolysis by targeting PDPK1. Further, circ_0000376 absence repressed tumor formation in vivo. Collectively, circ_0000376 regulated NSCLC cell tumor properties by the miR-545-3p/PDPK1 axis, suggesting that circ_0000376 could be employed as a therapeutic target for NSCLC.

11.
Int Immunopharmacol ; 117: 109896, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36812675

RESUMO

BACKGROUND: Prior evidence has demonstrated that miR-147 can regulate cellular proliferation, migration, apoptotic death, inflammatory responses, and the replication of viruses through its interactions with specific mRNA targets. LncRNA-miRNA-mRNA interactions are often found in various biological processes. No studies have documented lncRNA-miRNA-mRNA regulatory interactions in miR-147-/- mice. METHODS: Thymus tissue samples from miR-147-/- mice were systematically analyzed to detect patterns of lncRNA, miRNA, and mRNA dysregulation in the absence of this biologically important miRNA. Briefly, RNA-sequencing was used to analyze samples of thymus tissue from wild-type (WT) and miR-147-/- mice. Radiation damage models of miR-147-/- mice were prepared and prophylactic intervention with the drug trt was performed. The validation of miR-47, PDPK1,AKT and JNK were carried out by qRT-PCR, western blot and fluorescence in situ hybridization. Apoptosis was detected by Hoechst staining, and histopathological changes were detected by HE staining. RESULTS: We showed the identification of 235 mRNAs, 63 lncRNAs, and 14 miRNAs that were significantly upregulated in miR-147-/- mice as compared to WT controls, as well as 267 mRNAs, 66 lncRNAs and 12 miRNAs exhibiting significant downregulation. Predictive analyses of the miRNAs targeted by dysregulated lncRNAs and their associated mRNAs were further performed, highlighting the dysregulation of pathways including the Wnt signaling pathway, Thyroid cancer, Endometrial cancer (include PI3K/AKT) and Acute myeloid leukemia pathway(include PI3K/AKT) pathways. Troxerutin (TRT) upregulated PDPK1 via targeting miR-147 to promote AKT activation and inhibit JNK activation in the lungs of mice in radioprotection. CONCLUSION: Together, these results highlight the potentially important role of miR-147 as a key regulator of complex lncRNA-miRNA-mRNA interacting networks. Further research focusing on PI3K/AKT pathways in miR-147-/- mice in radioprotection will thus benefit current knowledge of miR-147 while also informing efforts to improve radioprotection.


Assuntos
MicroRNAs , RNA Longo não Codificante , Camundongos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Fosfatidilinositol 3-Quinases/genética , Hibridização in Situ Fluorescente , Redes Reguladoras de Genes , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética
12.
Cell Rep Med ; 3(9): 100741, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36099919

RESUMO

Although the MAPK pathway is aberrantly activated in triple-negative breast cancers (TNBCs), the clinical outcome of MEK-targeted therapy is still poor. Through a genome-wide CRISPR-Cas9 library screening, we find that inhibition of PSMG2 sensitizes TNBC cells BT549 and MB468 to the MEK inhibitor AZD6244. Mechanistically, PSMG2 knockdown impairs proteasome function, which in turn activates autophagy-mediated PDPK1 degradation. The PDPK1 degradation significantly enhances AZD6244-induced tumor cell growth inhibition by interrupting the negative feedback signals toward the AKT pathway. Consistently, co-targeting proteasomes and MEK with inhibitors synergistically suppresses tumor cell growth. The autophagy inhibitor chloroquine partially relieves the PDPK1 degradation and reverses the growth inhibition induced by combinatorial inhibition of MEK and proteasome. The combination regimen with the proteasome inhibitor MG132 plus AZD6244 synergistically inhibits tumor growth in a 4T1 xenograft mouse model. In summary, our study not only unravels the mechanism of MEK inhibitor resistance but also provides a combinatorial therapeutic strategy for TNBC in clinics.


Assuntos
Neoplasias de Mama Triplo Negativas , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Animais , Autofagia , Linhagem Celular Tumoral , Chaperoninas/uso terapêutico , Cloroquina/farmacologia , Humanos , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno , Complexo de Endopeptidases do Proteassoma/uso terapêutico , Inibidores de Proteassoma/uso terapêutico , Proteínas Proto-Oncogênicas c-akt , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
13.
Laryngoscope Investig Otolaryngol ; 7(3): 730-739, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35734041

RESUMO

Objectives: The epidermal growth factor receptor (EGFR) is related to the invasion and metastasis of external auditory canal (EAC) squamous cell carcinoma (SCC). The phosphoinositide-dependent protein kinase-1 (PDPK1) accelerates tumor cell growth through anti-apoptotic signaling under the influence of downstream EGFR-mediated signaling pathways. In this study, we investigated the EGFR/PDPK1 axis in the EAC under EGF stimulation. Methods: We confirmed EGFR and PDPK1 expression in human EACSCC specimens immunohistochemically. We next transfected the EGF expression vector in the mouse EAC and then conducted a PDPK1 inhibitory experiment. Immunohistochemical analysis was performed in the mouse EAC, using anti-EGF, anti-EGFR, anti-PDPK1, and anti-Ki67 antibodies. Immunohistochemical analysis of cleaved caspase-3 and terminal deoxy(d)-UTP nick end labeling (TUNEL) detection assays were also performed for the assessment of apoptosis in the inhibitory experiment. Results: Immunohistochemical analysis revealed overexpression and colocalization of EGFR and PDPK1 in human EACSCC specimens. The growth of a protuberant tumor was observed in the mouse EAC in which EGF expression vector was transfected, and EGF, EGFR, PDPK1, and Ki67 labeling indexes (LIs) were significantly increased. PDPK1 inhibition then induced normal epithelial appearance in the EAC. Moreover, EGF, EGFR, PDPK1, and Ki67 LIs were decreased, and cleaved caspase-3 and TUNEL LIs were increased in the EAC. Conclusion: We demonstrated the possibility that PDPK1 plays an important role in EACSCC.Level of Evidence: NA.

14.
Front Oncol ; 12: 820966, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392240

RESUMO

Primary pulmonary mucoepidermoid carcinoma (PMEC) is a very rare form of lung carcinoma. Due to the low incidence, little is known about its inherent genetic variation characteristics. The uniform treatment for PMEC has not been determined. In this case, we present a 45-year-old male with stage IA PMEC. The surgical specimens contained changes from low- to intermediate-to-high grade. We performed integrative analysis of whole-exome sequencing (WES-seq) and messenger ribonucleic acid sequencing (RNA-seq) to compare the molecular changes in the different lesions. Molecular testing exhibits the specimens harboring CRTC3-MAML2 fusion. The copy number gain of PDPK1 is only present in high-grade regional specimens. We also explored the level of immune infiltration by CIBERSORT. To our knowledge, this is the first report to describe a case of PMEC in the low- to intermediate-high-grade transition with multiomics analysis.

15.
J Bone Oncol ; 33: 100412, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35198364

RESUMO

BACKGROUND: Osteosarcoma is the most prevalent primary malignant bone tumor containing mesenchymal cells with poor prognosis. Being a hot spot of anti-tumor therapy researches, AKT/mammalian target of rapamycin (mTOR) signaling pathway could affect various cellular processes including transcription, protein synthesis, apoptosis, autophagy and growth. MATERIALS AND METHODS: The levels of RNA and protein were detected by quantitative real-time polymerase chain reaction (q-PCR) and western blot analyses respectively. Functional assays were carried out to analyze the malignant phenotypes of osteosarcoma cells. RNA-binding protein immunoprecipitation (RIP), Co-immunoprecipitation (Co-IP), RNA pulldown, luciferase reporter and in vitro kinase assays were conducted to uncover the specific mechanism of microRNA-451a (miR-451a) in osteosarcoma cells. RESULTS: Functionally, miR-451a represses the malignant progression of osteosarcoma. Mechanically, miR-451a could curb the AKT/mTOR pathway via 3-phosphoinositide dependent protein kinase 1 (PDPK1)-mediated phosphorylation modification. After the certification that YTH domain containing 1 (YTHDC1) regulates the m6A phosphorylation modification of PDPK1 mRNA, we further proved that miR-451a-mediated YTHDC1 stabilizes PDPK1 mRNA via m6A-dependent regulation. CONCLUSION: This study demonstrated that miR-451a regulates YTHDC1-mediated m6A methylation to activate the AKT/mTOR pathway, stimulating the malignancy of osteosarcoma.

16.
Cell Mol Life Sci ; 79(2): 89, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35072776

RESUMO

Human macrophages infiltrating hypoxic regions alter their metabolism, because oxygen becomes limited. Increased glycolysis is one of the most common cellular adaptations to hypoxia and mostly is regulated via hypoxia-inducible factor (HIF) and RAC-alpha serine/threonine-protein kinase (Akt) signaling, which gets activated under reduced oxygen content. We noticed that micro RNA (miR)-193a-3p enhances Akt phosphorylation at threonine 308 under hypoxia. In detail, miR-193a-3p suppresses the protein abundance of phosphatase PTC7 homolog (PPTC7), which in turn increases Akt phosphorylation. Lowering PPTC7 expression by siRNA or overexpressing miR-193a-3p increases Akt phosphorylation. Vice versa, inhibition of miR-193a-3p attenuates Akt activation and prevents a subsequent increase of glycolysis under hypoxia. Excluding effects of miR-193a-3p and Akt on HIF expression, stabilization, and function, we noticed phosphorylation of 6 phosphofructo-2-kinase/fructose 2,6-bisphosphatase PFKFB3 in response to the PI3K/Akt/mTOR signaling cascade. Inhibition of PFKFB3 blocked an increased glycolytic flux under hypoxia. Apparently, miR-193a-3p balances Akt phosphorylation and dephosphorylation by affecting PPTC7 protein amount. Suppression of PPTC7 increases Akt activation and phosphorylation of PFKFB3, which culminates in higher rates of glycolysis under hypoxia.


Assuntos
Glicólise , Hipóxia/fisiopatologia , Macrófagos/patologia , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfofrutoquinase-2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proliferação de Células , Humanos , Macrófagos/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfofrutoquinase-2/genética , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais
17.
Mol Brain ; 14(1): 31, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579325

RESUMO

Axon regeneration in the central nervous system is inefficient. However, the neurons in the peripheral nervous system display robust regeneration after injury, indicating that axonal regeneration is differentially controlled under various conditions. To identify those molecules regulating axon regeneration, comparative analysis from dorsal root ganglion neurons at embryonic or adult stages is utilized, which reveals that PDK1 is functions as a negative regulator of axon regeneration. PDK1 is downregulated in embryonic neurons after axotomy. In contrast, sciatic nerve axotomy upregulated PDK1 at protein levels from adult mice. The knockdown of PDK1 or the chemical inhibition of PDK1 promotes axon regeneration in vitro and in vivo. Here we present PDK1 as a new player to negatively regulate axon regeneration and as a potential target in the development of therapeutic applications.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Axônios/enzimologia , Axônios/fisiologia , Regeneração Nervosa/fisiologia , Canais de Cátion TRPP/metabolismo , Animais , Axônios/efeitos dos fármacos , Axotomia , Regulação para Baixo/efeitos dos fármacos , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Indazóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Regeneração Nervosa/efeitos dos fármacos , Pirimidinas/farmacologia , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/lesões , Nervo Isquiático/patologia , Regulação para Cima/efeitos dos fármacos
18.
Cell Rep ; 34(3): 108636, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33472061

RESUMO

The chromatin-associated protein WDR5 is a promising pharmacological target in cancer, with most drug discovery efforts directed against an arginine-binding cavity in WDR5 called the WIN site. Despite a clear expectation that WIN site inhibitors will alter the repertoire of WDR5 interaction partners, their impact on the WDR5 interactome remains unknown. Here, we use quantitative proteomics to delineate how the WDR5 interactome is changed by WIN site inhibition. We show that the WIN site inhibitor alters the interaction of WDR5 with dozens of proteins, including those linked to phosphatidylinositol 3-kinase (PI3K) signaling. As proof of concept, we demonstrate that the master kinase PDPK1 is a bona fide high-affinity WIN site binding protein that engages WDR5 to modulate transcription of genes expressed in the G2 phase of the cell cycle. This dataset expands our understanding of WDR5 and serves as a resource for deciphering the action of WIN site inhibitors.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/química , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Descoberta de Drogas , Fase G2/genética , Regulação da Expressão Gênica , Células HEK293 , Humanos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Modelos Moleculares , Terapia de Alvo Molecular , Ligação Proteica
19.
Inflammation ; 44(1): 129-147, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32940818

RESUMO

Microglia are resident macrophage-like cells in the central nervous system (CNS). The induction of microglial activation dampens neuroinflammation-related diseases by promoting microglial (re)polarization to the anti-inflammatory (M2) phenotype and can serve as a potential therapeutic approach. Mitochondrial respiration and metabolic reprogramming are required for the anti-inflammatory response of M2 macrophages. However, whether these mitochondrial-dependent pathways are involved in microglial (re)polarization to the anti-inflammatory (M2) phenotype under conditions of lipopolysaccharide (LPS)-induced neuroinflammation remains unclear. Moreover, the mechanisms that coordinate mitochondrial respiration and the functional reprogramming of microglial cells have not been fully elucidated. Rosmarinic acid (RA) possesses antioxidative and anti-inflammatory activities, and we previously reported that RA markedly suppresses LPS-stimulated M1 microglial activation in mice. In this study, we found that RA suppresses M1 microglial polarization and promotes microglial polarization to the M2 phenotype under conditions of neuroinflammation. We identified an increase in mitochondrial respiration and found that metabolic reprogramming is required for the RA-mediated promotion of microglial polarization to the M2 phenotype under LPS-induced neuroinflammation conditions. Hypoxia-inducible factor (HIF) subunits are the key effector molecules responsible for the effects of RA on the restoration of mitochondrial function, metabolic reprogramming, and phenotypic polarization to M2 microglia. The phosphoinositide-dependent protein kinase 1 (PDPK1)/Akt/mTOR pathway is involved in the RA-mediated regulation of HIF expression and increase in M2 marker expression. We propose that the inhibition of PDPK1/Akt/HIFs by RA might be a potential therapeutic approach for inhibiting neuroinflammation through the regulation of microglial M1/M2 polarization. Graphical abstract Schematic of the mechanism through which RA suppresses LPS-induced neuroinflammation by promoting microglial polarization to the M2 phenotype via PDPK1/Akt/HIFs. The bold arrows indicate the direction of the effects of RA (i.e., inhibitory or promoting effects on cytokines or mediators).


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/antagonistas & inibidores , Polaridade Celular/efeitos dos fármacos , Cinamatos/uso terapêutico , Depsídeos/uso terapêutico , Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Microglia/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Polaridade Celular/fisiologia , Cinamatos/farmacologia , Depsídeos/farmacologia , Relação Dose-Resposta a Droga , Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Células PC12 , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ácido Rosmarínico
20.
Autophagy ; 17(9): 2166-2183, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32876514

RESUMO

PDPK1 (3-phosphoinositide dependent protein kinase 1) is a phosphorylation-regulated kinase that plays a central role in activating multiple signaling pathways and cellular processes. Here, this study shows that PDPK1 turns on macroautophagy/autophagy as a SUMOylation-regulated kinase. In vivo data demonstrate that the SUMO modification of PDPK1 is a physiological feature in the brain and that it can be induced by viral infections. The SUMOylated PDPK1 regulates its own phosphorylation and subsequent activation of the AKT1 (AKT serine/threonine kinase 1)-MTOR (mechanistic target of rapamycin kinase) pathway. However, SUMOylation of PDPK1 is inhibited by binding to PIK3C3 (phosphatidylinositol 3-kinase catalytic subunit type 3). The nonSUMOylated PDPK1 then tethers LC3 to the endoplasmic reticulum to initiate autophagy, and it acts as a key component in forming the autophagic vacuole. Collectively, this study reveals the intricate molecular regulation of PDPK1 by post-translational modification in controlling autophagosome biogenesis, and it highlights the role of PDPK1 as a sensor of cellular stress and regulator of autophagosome biogenesis.Abbreviations: AKT1: AKT serine/threonine kinase 1; ATG14: autophagy related 14; Co-IP: co-immunoprecipitation; ER: endoplasmic reticulum; hpi: hours post-infection; mAb: monoclonal antibody; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MOI: multiplicity of infection; MTOR: mechanistic target of rapamycin kinase; pAb: polyclonal antibody; PDPK1: 3-phosphoinositide dependent protein kinase 1; PI3K: phosphoinositide 3-kinase; PIK3C3: phosphatidylinositol 3-kinase catalytic, subunit type 3; RPS6KB1: ribosomal protein S6 kinase B1; SGK: serum/glucocorticoid regulated kinase; SQSTM1: sequestosome 1; SUMO: small ubiquitin like modifier; UBE2I/UBC9: ubiquitin conjugating enzyme E2 I; UVRAG: UV radiation resistance associated.


Assuntos
Autofagossomos , Autofagia , Autofagossomos/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Macroautofagia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA