Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 499
Filtrar
1.
BMC Vet Res ; 20(1): 288, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961481

RESUMO

BACKGROUND: Porcine epidemic diarrhea virus (PEDV) mainly causes acute and severe porcine epidemic diarrhea (PED), and is highly fatal in neonatal piglets. No reliable therapeutics against the infection exist, which poses a major global health issue for piglets. Luteolin is a flavonoid with anti-viral activity toward several viruses. RESULTS: We evaluated anti-viral effects of luteolin in PEDV-infected Vero and IPEC-J2 cells, and identified IC50 values of 23.87 µM and 68.5 µM, respectively. And found PEDV internalization, replication and release were significantly reduced upon luteolin treatment. As luteolin could bind to human ACE2 and SARS-CoV-2 main protease (Mpro) to contribute viral entry, we first identified that luteolin shares the same core binding site on pACE2 with PEDV-S by molecular docking and exhibited positive pACE2 binding with an affinity constant of 71.6 µM at dose-dependent increases by surface plasmon resonance (SPR) assay. However, pACE2 was incapable of binding to PEDV-S1. Therefore, luteolin inhibited PEDV internalization independent of PEDV-S binding to pACE2. Moreover, luteolin was firmly embedded in the groove of active pocket of Mpro in a three-dimensional docking model, and fluorescence resonance energy transfer (FRET) assays confirmed that luteolin inhibited PEDV Mpro activity. In addition, we also observed PEDV-induced pro-inflammatory cytokine inhibition and Nrf2-induced HO-1 expression. Finally, a drug resistant mutant was isolated after 10 cell culture passages concomitant with increasing luteolin concentrations, with reduced PEDV susceptibility to luteolin identified at passage 10. CONCLUSIONS: Our results push forward that anti-PEDV mechanisms and resistant-PEDV properties for luteolin, which may be used to combat PED.


Assuntos
Antivirais , Luteolina , Vírus da Diarreia Epidêmica Suína , Luteolina/farmacologia , Vírus da Diarreia Epidêmica Suína/efeitos dos fármacos , Animais , Antivirais/farmacologia , Chlorocebus aethiops , Células Vero , Suínos , Simulação de Acoplamento Molecular , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Linhagem Celular , Simulação por Computador , Doenças dos Suínos/virologia , Doenças dos Suínos/tratamento farmacológico
2.
J Virol ; : e0103924, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012142

RESUMO

In maintaining organismal homeostasis, gut immunity plays a crucial role. The coordination between the microbiota and the immune system through bidirectional interactions regulates the impact of microorganisms on the host. Our research focused on understanding the relationships between substantial changes in jejunal intestinal flora and metabolites and intestinal immunity during porcine epidemic diarrhea virus (PEDV) infection in piglets. We discovered that Lactobacillus rhamnosus GG (LGG) could effectively prevent PEDV infection in piglets. Further investigation revealed that LGG metabolites interact with type 3 innate lymphoid cells (ILC3s) in the jejunum of piglets through the aryl hydrocarbon receptor (AhR). This interaction promotes the activation of ILC3s and the production of interleukin-22 (IL-22). Subsequently, IL-22 facilitates the proliferation of IPEC-J2 cells and activates the STAT3 signaling pathway, thereby preventing PEDV infection. Moreover, the AhR receptor influences various cell types within organoids, including intestinal stem cells (ISCs), Paneth cells, and enterocytes, to promote their growth and development, suggesting that AhR has a broad impact on intestinal health. In conclusion, our study demonstrated the ability of LGG to modulate intestinal immunity and effectively prevent PEDV infection in piglets. These findings highlight the potential application of LGG as a preventive measure against viral infections in livestock.IMPORTANCEWe observed high expression of the AhR receptor on pig and human ILC3s, although its expression was negligible in mouse ILC3s. ILC3s are closely related to the gut microbiota, particularly the secretion of IL-22 stimulated by microbial signals, which plays a crucial regulatory role in intestinal immunity. In our study, we found that metabolites produced by beneficial gut bacteria interact with ILC3s through AhR, thereby maintaining intestinal immune homeostasis in pigs. Moreover, LGG feeding can enhance the activation of ILC3s and promote IL-22 secretion in the intestines of piglets, ultimately preventing PEDV infection.

3.
J Biol Chem ; : 107549, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002673

RESUMO

Porcine epidemic diarrhea virus (PEDV) belongs to the Alphacoronavirus genus within the Coronavirus family, causing severe watery diarrhea in piglets and resulting in significant economic losses. Medium-chain acyl-CoA dehydrogenase (ACADM) is an enzyme participating in lipid metabolism associated with metabolic diseases and pathogen infections. Nonetheless, the precise role of ACADM in regulating PEDV replication remains uncertain. In this study, we identified ACADM as the host binding partner of NSP4 via immunoprecipitation-mass spectrometry (IP-MS) analysis. The interaction between ACADM and NSP4 was subsequently corroborated through co-immunoprecipitation and laser confocal microscopy. Following this, a notable upsurge in ACADM expression was observed during PEDV infection. ACADM overexpression effectively inhibited virus replication, whereas ACADM knockdown facilitated virus replication, suggesting ACADM has negative regulation effect on PEDV infection. Furthermore, we demonstrated fatty acid ß-oxidation affected PEDV replication for the first time, inhibition of fatty acid ß-oxidation reduced PEDV replication. ACADM decreased PEDV-induced ß-oxidation to suppress PEDV replication. Mechanistically, ACADM reduced cellular free fatty acid (FFA) levels and subsequent ß-oxidation by hindering AMPK-mediated lipophagy. In summary, our results reveal that ACADM plays a negative regulatory role in PEDV replication by regulating lipid metabolism. The present study introduces a novel approach for the prevention and control of PEDV infection.

4.
Open Vet J ; 14(5): 1224-1242, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38938443

RESUMO

Background: Porcine epidemic diarrhea (PED), caused by the porcine epidemic diarrhea virus (PEDV), is associated with high mortality and morbidity rates, especially in neonatal pigs. This has resulted in significant economic losses for the pig industry. PEDV genotype II-based vaccines were found to confer better immunity against both heterologous and homologous challenges; specifically, spike (S) proteins, which are known to play a significant role during infection, are ideal for vaccine development. Aim: This study aims to design a multi-epitope subunit vaccine targeting the S protein of the PEDV GIIa strain using an immunoinformatics approach. Methods: Various bioinformatics tools were used to predict HTL, CTL, and B-cell epitopes. The epitopes were connected using appropriate linkers and conjugated with the CTB adjuvant and M-ligand. The final multiepitope vaccine construct (fMEVc) was then docked to toll-like receptor 4 (TLR4). The stability of the fMEVc-TLR4 complex was then simulated using GROMACS. C-immsim was then used to predict the in vitro immune response of the fMEVc. Results: Six epitopes were predicted to induce antibody production, ten epitopes were predicted to induce CTL responses, and four epitopes were predicted to induce HTL responses. The assembled epitopes conjugated with the CTB adjuvant and M-ligand, fMEVc, is antigenic, non-allergenic, stable, and soluble. The construct showed a favorable binding affinity for TLR4, and the protein complex was shown to be stable through molecular dynamics simulations. A robust immune response was induced after immunization, as demonstrated through immune stimulation. Conclusion: In conclusion, the multi-epitope subunit vaccine construct for PEDV designed in this study exhibits promising antigenicity, stability, and immunogenicity, eliciting robust immune responses and suggesting its potential as a candidate for further vaccine development.


Assuntos
Biologia Computacional , Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Glicoproteína da Espícula de Coronavírus , Doenças dos Suínos , Vacinas de Subunidades Antigênicas , Vacinas Virais , Animais , Vírus da Diarreia Epidêmica Suína/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Suínos , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Vacinas Virais/imunologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Genótipo , Epitopos/imunologia , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito B/imunologia , Simulação de Acoplamento Molecular , Imunoinformática
5.
BMC Vet Res ; 20(1): 239, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831363

RESUMO

The porcine epidemic diarrhea virus (PEDV) infection inflicted substantial economic losses upon the global pig-breeding industry. This pathogen can infect all pigs and poses a particularly high fatality risk for suckling piglets. The S1 subunit of spike protein is a crucial target protein for inducing the particularly neutralizing antibodies that can intercept the virus-host interaction and neutralize virus infectivity. In the present study, the HEK293F eukaryotic expression system was successfully utilized to express and produce recombinant S1 protein. Through quantitative analysis, five monoclonal antibodies (mAbs) specifically targeting the recombinant S1 protein of PEDV were developed and subsequently evaluated using enzyme-linked immunosorbent assay (ELISA), indirect immunofluorescence assay (IFA), and flow cytometry assay (FCA). The results indicate that all five mAbs belong to the IgG1 isotype, and their half-maximal effective concentration (EC50) values measured at 84.77, 7.42, 0.89, 14.64, and 7.86 pM. All these five mAbs can be utilized in ELISA, FCA, and IFA for the detection of PEDV infection. MAb 5-F9 exhibits the highest sensitivity to detect as low as 0.3125 ng/mL of recombinant PEDV-S1 protein in ELISA, while only 0.096 ng/mL of mAb 5-F9 is required to detect PEDV in FCA. The results from antigen epitope analysis indicated that mAb 8-G2 is the sole antibody capable of recognizing linear epitopes. In conclusion, this study has yielded a highly immunogenic S1 protein and five high-affinity mAbs specifically targeting the S1 protein. These findings have significant implications for early detection of PEDV infection and provide a solid foundation for further investigation into studying virus-host interactions.


Assuntos
Anticorpos Monoclonais , Infecções por Coronavirus , Ensaio de Imunoadsorção Enzimática , Vírus da Diarreia Epidêmica Suína , Glicoproteína da Espícula de Coronavírus , Vírus da Diarreia Epidêmica Suína/imunologia , Anticorpos Monoclonais/imunologia , Animais , Glicoproteína da Espícula de Coronavírus/imunologia , Suínos , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Ensaio de Imunoadsorção Enzimática/veterinária , Anticorpos Antivirais/imunologia , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia , Células HEK293 , Humanos , Proteínas Recombinantes/imunologia , Camundongos Endogâmicos BALB C , Camundongos , Técnica Indireta de Fluorescência para Anticorpo/veterinária
6.
J Virol ; : e0041323, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864728

RESUMO

Porcine epidemic diarrhea virus (PEDV) is a type A coronavirus that causes severe watery diarrhea in piglets, resulting in severe economic losses worldwide. Therefore, new approaches to control PEDV infection are essential for a robust and sustainable pig industry. We screened 314 small-molecule drug libraries provided by Selleck and found that four drugs had obviously inhibitory effects on PEDV in Vero cells. PA-824, which had the highest SI index and the most reliable clinical safety, was selected for in vivo experiments. Animal attack tests showed that PA-824 effectively alleviated the clinical signs, intestinal pathological changes, and inflammatory responses in lactating piglets after PEDV infection. To further investigate the antiviral mechanism of PA-824, we measured the inhibitory effect of PA-824 on PEDV proliferation in a dose-dependent manner. By exploring the effect of PA-824 on the PEDV life cycle, we found that PA-824 acted directly on viral particles and hindered the adsorption, internalization, and replication phases of the virus, followed by molecular docking analysis to predict the interaction between PA-824 and PEDV non-structural proteins. Finally, we found that PA-824 could inhibit the apoptotic signaling pathway by suppressing PEDV-induced p53 activation. These results suggest that PA-824 could be protective against PEDV infection in piglets and could be developed as a drug or a feed additive to prevent and control PEDV diseases.IMPORTANCEPEDV is a highly contagious enteric coronavirus that widely spread worldwide, causing serious economic losses. There is no drug or vaccine to effectively control PEDV. In this study, we found that PA-824, a compound of mycobacteria causing pulmonary diseases, inhibited PEDV proliferation in both in vitro and in vivo. We also found that PA-824 directly acted on viral particles and hindered the adsorption, internalization, and replication stages of the virus. In addition, we found that PA-824 could inhibit the apoptotic signaling pathway by inhibiting PEDV-induced p53 activation. In conclusion, it is expected to be developed as a drug or a feed additive to prevent and control PEDV diseases.

7.
Int J Biol Macromol ; 273(Pt 1): 133008, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38852736

RESUMO

The mucosal barrier and scavenging effect of the mucosal layer are two main obstacles in inducing mucosal immunization. To overcome these obstacles, we synthesized a bio-inspired mucoadhesive material, chitosan-catechol (ChiC), for surface modification of inactive porcine epidemic diarrhea virus (PEDV). Studies have revealed that PEDV particles can be facilely and mildly modified by Chi-C forming Chi-C-PEDV nanoparticles (Chic-Ps) through the covalent and electrostatic bond, which effectively prolongs the retention time of PEDV in the nasal mucosa. The cell co-culture model demonstrated that Chic-Ps exhibit enhanced recruitment of dendritic cells via the secretion of stimulating chemokine CCL20 and improving antigen permeability by disruption the distribution of ZO-1 protein in epithelial cells. Additionally, the flow cytometry (FCM) analysis revealed that Chic-Ps facilitate trafficking to lymph nodes and induce stronger cellular and humoral immune responses compared to unmodified PEDV. Notably, Chic-Ps induced a higher level of PEDV neutralizing antibody was induced by Chic-Ps in the nasal washes, as confirmed by a plaque reduction neutralization test. These results demonstrate that Chi-C is a promising nasal delivery system for vaccines. Proof of principle was obtained for inactivated PEDV, but similar delivery mechanisms could be applied in other vaccines when intranasal administration is needed.


Assuntos
Administração Intranasal , Catecóis , Quitosana , Quitosana/química , Animais , Catecóis/química , Camundongos , Imunização , Suínos , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Nanopartículas/química , Mucosa Nasal/imunologia , Mucosa Nasal/metabolismo , Chlorocebus aethiops , Sistemas de Liberação de Medicamentos , Células Vero
8.
Vet Microbiol ; 295: 110152, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38896938

RESUMO

The intestinal barrier of newborn piglets is vulnerable and underdeveloped, making them susceptible to enteric virus infections. Benzoic acid (BA), employed as a growth promoter, exhibits the potential to enhance the gut health of piglets by modulating intestinal morphometry and tight junction dynamics. However, the extent to which BA regulates the intestinal mucus barrier through its impact on stem cells remains inadequately elucidated. Therefore, this study was conducted to investigate the effects of BA on the intestinal barrier and the differentiation of intestinal stem cells, employing in vivo piglet and in vitro intestinal organoid models. Our investigation revealed a significant increase in the number of goblet cells within the small intestine, as well as the strengthening of the mucus barrier in vivo following oral treatment with BA, providing partial protection against PEDV infection in piglets. Additionally, in vitro cultivation of enteroids with BA led to a notable increase in the number of MUC2+ GCs, indicating the promotion of GC differentiation by BA. Furthermore, transcriptome analysis revealed an upregulation of the number of GCs and the expression of cell vesicle transport-related genes during BA stimulation, accompanied by the downregulation of the Wnt and Notch signaling pathways. Mechanistically, MCT1 facilitated the transport of BA, subsequently activating the MAPK pathway to mediate GC differentiation. Overall, this study highlights a novel function for BA as a feed additive in enhancing the intestinal mucus barrier by promoting intestinal GC differentiation, and further prevents viral infection in piglets.


Assuntos
Ácido Benzoico , Infecções por Coronavirus , Mucosa Intestinal , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Suínos , Ácido Benzoico/farmacologia , Doenças dos Suínos/virologia , Doenças dos Suínos/tratamento farmacológico , Vírus da Diarreia Epidêmica Suína/efeitos dos fármacos , Vírus da Diarreia Epidêmica Suína/fisiologia , Mucosa Intestinal/efeitos dos fármacos , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Infecções por Coronavirus/tratamento farmacológico , Animais Recém-Nascidos , Células Caliciformes/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Organoides/virologia , Organoides/efeitos dos fármacos , Intestinos/virologia , Intestinos/efeitos dos fármacos
9.
J Virol Methods ; 329: 114986, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914314

RESUMO

Porcine Epidemic Diarrhea Virus (PEDV) poses a significant threat to the swine industry, causing severe disease and resulting in substantial economic losses. Despite China's implementation of a large-scale vaccine immunization strategy in recent years, various strains of PEDV, including classical attenuated vaccine strains, continue to emerge in immunized pig herds. Here, we established a one-step real-time fluorescent reverse transcription PCR (one-step real-time RT-PCR) assay targeting a 24-nucleotide deletion in the ORF1 region of three PEDV classical attenuated vaccine strains, derived from classical strains. This assay effectively distinguishes between PEDV classical attenuated vaccine strains and wild-type strains, and we also explore the causes of this discriminatory target deficiency of this method through phylogenetic and recombination analysis. We found that these three classical attenuated vaccine strains exhibit closer phylogenetic relationships and higher sequence similarity with five cell-adapted strains. Recombination analysis revealed that although recombination is widespread in the PEDV genome, the 24-nucleotide deletion site remains stable without undergoing recombination and can be utilized as a target for identification. Further analysis revealed there are no enzyme cleavage sites near the 24-nucleotide site, suggesting that this deletion may have been lost during the process of culturing these viral strains in cells.The detection method we have established exhibits high specificity and sensitivity to PEDV, without cross-reactivity with other viruses causing diarrheal diseases. A total of 117 swine fecal samples were analyzed using this established one-step real-time reverse transcription PCR assay, indicating the presence of classical attenuated vaccine strains in pig herds in Gansu province, China. Additionally, the designed primer pairs and two probes can be placed in a single reaction tube to differentiate between these two types of strains, effectively reducing detection costs. These findings offer an efficient and cost-effective technological platform for clinical rapid identification testing of both wild-type and classical attenuated vaccine strains of PEDV, as well as for precise investigation of clinical data on natural infections and vaccine immunity in pig herds.

10.
Front Microbiol ; 15: 1380849, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690365

RESUMO

Introduction: Porcine viral diarrhea is a common clinical disease, which results in high mortality and economic losses in the pig industry. Porcine epidemic diarrhea virus (PEDV), porcine rotavirus (PoRV), and porcine deltacoronavirus (PDCoV) are important diarrhea viruses in pig herds. The similarities of their clinical symptoms and pathological changes make it difficult to distinguish these three viruses clinically. Therefore, there is a need for a highly sensitive and specific method to simultaneously detect and differentiate these viruses. Methods: A multiplex real-time PCR assay using TaqMan probes was developed to simultaneously detect PEDV, PoRV, and PDCoV. To assess the efficacy of the established assay, 30 clinical samples with diarrhea symptoms were used to compare the results obtained from the multiplex real-time PCR assay with those obtained from commercial singleplex real-time PCR kit. Importantly, a total of 4,800 diarrhea samples were tested and analyzed to validate the utility of the assay. Results: This multiplex real-time PCR assay showed high sensitivity, specificity, and excellent repeatability with a detection limit of 1 × 102 copies/µL. Comparing the results of the commercial singleplex real-time PCR kit and the multiplex real-time PCR method for detecting PEDV, PoRV, and PDCoV, there was complete agreement between the two approaches. Clinical data revealed single infection rates of 6.56% for PEDV, 21.69% for PoRV, and 6.65% for PDCoV. The co-infection rates were 11.83% for PEDV + PoRV, 0.29% for PEDV + PDCoV, 5.71% for PoRV + PDCoV, and 1.29% for PEDV + PDCoV + PoRV, respectively. Discussion: The multiplex real-time PCR method established in this study is a valuable diagnostic tool for simultaneously differentiating PEDV, PoRV, and PDCoV. This method is expected to significantly contribute to prevent and control the spread of infectious diseases, as well as aid in conducting epidemiological investigations.

11.
Vaccines (Basel) ; 12(5)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38793808

RESUMO

Porcine epidemic diarrhea virus (PEDV) is the etiology of porcine epidemic diarrhea (PED), a highly contagious digestive disease in pigs and especially in neonatal piglets, in which a mortality rate of up to 100% will be induced. Immunizing pregnant sows remains the most promising and effective strategy for protecting their neonatal offspring from PEDV. Although half a century has passed since its first report in Europe and several prophylactic vaccines (inactivated or live attenuated) have been developed, PED still poses a significant economic concern to the swine industry worldwide. Hence, there is an urgent need for novel vaccines in clinical practice, especially live attenuated vaccines (LAVs) that can induce a strong protective lactogenic immune response in pregnant sows. Reverse genetic techniques provide a robust tool for virological research from the function of viral proteins to the generation of rationally designed vaccines. In this review, after systematically summarizing the research progress on virulence-related viral proteins, we reviewed reverse genetics techniques for PEDV and their application in the development of PED LAVs. Then, we probed into the potential methods for generating safe, effective, and genetically stable PED LAV candidates, aiming to provide new ideas for the rational design of PED LAVs.

12.
Microb Cell Fact ; 23(1): 142, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773481

RESUMO

The Porcine epidemic diarrhea virus (PEDV) presents a substantial risk to the domestic pig industry, resulting in extensive and fatal viral diarrhea among piglets. Recognizing the mucosal stimulation triggered by PEDV and harnessing the regulatory impact of lactobacilli on intestinal function, we have developed a lactobacillus-based vaccine that is carefully designed to elicit a strong mucosal immune response. Through bioinformatics analysis, we examined PEDV S proteins to identify B-cell linear epitopes that meet the criteria of being non-toxic, soluble, antigenic, and capable of neutralizing the virus. In this study, a genetically modified strain of Lactobacillus mucosae G01 (L.mucosae G01) was created by utilizing the S layer protein (SLP) as a scaffold for surface presentation. Chimeric immunodominant epitopes with neutralizing activity were incorporated at various sites on SLP. The successful expression of SLP chimeric immunodominant epitope 1 on the surface of L.mucosae G01 was confirmed through indirect immunofluorescence and transmission electron microscopy, revealing the formation of a transparent membrane. The findings demonstrate that the oral administration of L.mucosae G01, which expresses the SLP chimeric immunodominant gene epitope1, induces the production of secreted IgA in the intestine and feces of mice. Additionally, there is an elevation in IgG levels in the serum. Moreover, the levels of cytokines IL-2, IL-4, IFN-γ, and IL-17 are significantly increased compared to the negative control group. These results suggest that L. mucosae G01 has the ability to deliver exogenous antigens and elicit a specific mucosal immune response against PEDV. This investigation presents new possibilities for immunoprophylaxis against PEDV-induced diarrhea.


Assuntos
Epitopos de Linfócito B , Lactobacillus , Vírus da Diarreia Epidêmica Suína , Glicoproteína da Espícula de Coronavírus , Animais , Vírus da Diarreia Epidêmica Suína/imunologia , Camundongos , Glicoproteína da Espícula de Coronavírus/imunologia , Epitopos de Linfócito B/imunologia , Lactobacillus/imunologia , Camundongos Endogâmicos BALB C , Suínos , Feminino , Vacinas Virais/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Imunidade nas Mucosas , Imunoglobulina A/imunologia , Glicoproteínas de Membrana
13.
Front Cell Infect Microbiol ; 14: 1371916, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716199

RESUMO

Porcine epidemic diarrhea virus (PEDV) has become a challenging problem in pig industry worldwide, causing significant profit losses. Lactobacillus rhamnosus GG (LGG) has been regarded as a safe probiotic strain and has been shown to exert protective effects on the intestinal dysfunction caused by PEDV. This study evaluated the effect of LGG on the gut health of lactating piglets challenged with PEDV. Fifteen piglets at 7 days of age were equally assigned into 3 groups (5 piglets per group): 1) control group (basal diet); 2) PEDV group: (basal diet + PEDV challenged); 3) LGG + PEDV group (basal diet + 3×109 CFU/pig/day LGG + PEDV). The trial lasted 11 days including 3 days of adaptation. The treatment with LGG was from D4 to D10. PEDV challenge was carried out on D8. PEDV infection disrupted the cell structure, undermined the integrity of the intestinal tract, and induced oxidative stress, and intestinal damage of piglets. Supplementation of LGG improved intestinal morphology, enhanced intestinal antioxidant capacity, and alleviated jejunal mucosal inflammation and lipid metabolism disorders in PEDV-infected piglets, which may be regulated by LGG by altering the expression of TNF signaling pathway, PPAR signaling pathway, and fat digestion and absorption pathway.


Assuntos
Infecções por Coronavirus , Suplementos Nutricionais , Lacticaseibacillus rhamnosus , Vírus da Diarreia Epidêmica Suína , Probióticos , Doenças dos Suínos , Animais , Suínos , Probióticos/administração & dosagem , Doenças dos Suínos/prevenção & controle , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/terapia , Estresse Oxidativo , Intestinos/patologia , Pós , Mucosa Intestinal/patologia
14.
ACS Nano ; 18(19): 12235-12260, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38696217

RESUMO

Variants of coronavirus porcine epidemic diarrhea virus (PEDV) frequently emerge, causing an incomplete match between the vaccine and variant strains, which affects vaccine efficacy. Designing vaccines with rapidly replaceable antigens and high efficacy is a promising strategy for the prevention of infection with PEDV variant strains. In our study, three different types of self-assembled nanoparticles (nps) targeting receptor-binding N-terminal domain (NTD) and C-terminal domain (CTD) of S1 protein, named NTDnps, CTDnps, and NTD/CTDnps, were constructed and evaluated as vaccine candidates against PEDV. NTDnps and CTDnps vaccines mediated significantly higher neutralizing antibody (NAb) titers than NTD and CTD recombinant proteins in mice. The NTD/CTDnps in varying ratios elicited significantly higher NAb titers when compared with NTDnps and CTDnps alone. The NTD/CTDnps (3:1) elicited NAb with titers up to 92.92% of those induced by the commercial vaccine. Piglets immunized with NTD/CTDnps (3:1) achieved a passive immune protection rate of 83.33% of that induced by the commercial vaccine. NTD/CTDnps (3:1) enhanced the capacity of mononuclear macrophages and dendritic cells to take up and present antigens by activating major histocompatibility complex I and II molecules to stimulate humoral and cellular immunity. These data reveal that a combination of S1-NTD and S1-CTD antigens targeting double receptor-binding domains strengthens the protective immunity of nanoparticle vaccines against PEDV. Our findings will provide a promising vaccine candidate against PEDV.


Assuntos
Nanopartículas , Vírus da Diarreia Epidêmica Suína , Vacinas Virais , Vírus da Diarreia Epidêmica Suína/imunologia , Animais , Nanopartículas/química , Suínos , Camundongos , Vacinas Virais/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/imunologia , Camundongos Endogâmicos BALB C , Antígenos Virais/imunologia , Antígenos Virais/química , Anticorpos Neutralizantes/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/química , Domínios Proteicos/imunologia , Feminino , Nanovacinas
15.
Int J Biol Macromol ; 270(Pt 2): 132408, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754683

RESUMO

Porcine Epidemic Diarrhea Virus (PEDV) is a highly contagious virus that causes Porcine Epidemic Diarrhea (PED). This enteric disease results in high mortality rates in piglets, leading to significant financial losses in the pig industry. However, vaccines cannot provide sufficient protection against epidemic strains. Spike (S) protein exposed on the surface of virion mediates PEDV entry into cells. Our findings imply that matrine (MT), a naturally occurring alkaloid, inhibits PEDV infection targeting S protein of virions and biological process of cells. The GLY434 residue in the autodocking site of the S protein and MT conserved based on sequence comparison. This study provides a comprehensive analysis of viral attachment, entry, and virucidal effects to investigate how that MT inhibits virus replication. MT inhibits PEDV attachment and entry by targeting S protein. MT was added to cells before, during, or after infection, it exhibits anti-PEDV activities and viricidal effects. Network pharmacology focuses on addressing causal mechanisms rather than just treating symptoms. We identified the key genes and screened the cell apoptosis involved in the inhibition of MT on PEDV infection in network pharmacology. MT significantly promotes cell apoptosis in PEDV-infected cells to inhibit PEDV infection by activating the MAPK signaling pathway. Collectively, we provide the biological foundations for the development of single components of traditional Chinese medicine to inhibit PEDV infection and spread.


Assuntos
Alcaloides , Antivirais , Apoptose , Sistema de Sinalização das MAP Quinases , Matrinas , Vírus da Diarreia Epidêmica Suína , Quinolizinas , Glicoproteína da Espícula de Coronavírus , Quinolizinas/farmacologia , Quinolizinas/química , Alcaloides/farmacologia , Alcaloides/química , Animais , Vírus da Diarreia Epidêmica Suína/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/metabolismo , Antivirais/farmacologia , Antivirais/química , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Chlorocebus aethiops , Células Vero , Suínos , Replicação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
16.
Vet Microbiol ; 294: 110124, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38795403

RESUMO

PEDV, a single-stranded RNA virus, causes significant economic losses in the pig industry. Sin3-associated protein 18 (SAP18) is known for its role in transcriptional inhibition and RNA splicing. However, research on SAP18's involvement in PEDV infection is limited. Here, we identified an interaction between SAP18 and PEDV nonstructural protein 10 (Nsp10) using immunoprecipitation-mass spectrometry (IP-MS) and confirmed it through immunoprecipitation and laser confocal microscopy. Additionally, PEDV Nsp10 reduced SAP18 protein levels and induced its cytoplasmic accumulation. Overexpressing SAP18 suppressed PEDV replication, meanwhile its knockdown via short interfering RNA (siRNA) enhanced replication. SAP18 overexpression boosted IRF3 and NF-κB P65 phosphorylation, nuclear translocation, and IFN-ß antiviral response. Furthermore, SAP18 upregulated RIG-I expression and facilitated its dephosphorylation, while SAP18 knockdown had the opposite effect. Finally, SAP18 interacted with phosphatase 1 (PP1) catalytic subunit alpha (PPP1CA), promoting PPP1CA-RIG-I interaction during PEDV infection. These findings highlight SAP18's role in activating the type I interferon pathway and inhibiting viral replication by promoting RIG-I dephosphorylation through its interaction with PPP1CA.


Assuntos
Vírus da Diarreia Epidêmica Suína , Proteínas não Estruturais Virais , Replicação Viral , Animais , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Vírus da Diarreia Epidêmica Suína/fisiologia , Vírus da Diarreia Epidêmica Suína/genética , Fosforilação , Suínos , Linhagem Celular , Proteína DEAD-box 58/metabolismo , Proteína DEAD-box 58/genética , Chlorocebus aethiops
17.
Virol Sin ; 39(3): 501-512, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38789039

RESUMO

The infection caused by porcine epidemic diarrhea virus (PEDV) is associated with high mortality in piglets worldwide. Host factors involved in the efficient replication of PEDV, however, remain largely unknown. Our recent proteomic study in the virus-host interaction network revealed a significant increase in the accumulation of CALML5 (EF-hand protein calmodulin-like 5) following PEDV infection. A further study unveiled a biphasic increase of CALML5 in 2 and 12 â€‹h after viral infection. Similar trends were observed in the intestines of piglets in the early and late stages of the PEDV challenge. Moreover, CALML5 depletion reduced PEDV mRNA and protein levels, leading to a one-order-of-magnitude decrease in virus titer. At the early stage of PEDV infection, CALML5 affected the endosomal trafficking pathway by regulating the expression of endosomal sorting complex related cellular proteins. CALML5 depletion also suppressed IFN-ß and IL-6 production in the PEDV-infected cells, thereby indicating its involvement in negatively regulating the innate immune response. Our study reveals the biological function of CALML5 in the virology field and offers new insights into the PEDV-host cell interaction.


Assuntos
Calmodulina , Endossomos , Imunidade Inata , Vírus da Diarreia Epidêmica Suína , Replicação Viral , Animais , Vírus da Diarreia Epidêmica Suína/imunologia , Vírus da Diarreia Epidêmica Suína/fisiologia , Suínos , Calmodulina/metabolismo , Calmodulina/genética , Endossomos/metabolismo , Endossomos/virologia , Interações Hospedeiro-Patógeno/imunologia , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia , Células Vero , Chlorocebus aethiops , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Infecções por Coronavirus/veterinária , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-6/imunologia , Interferon beta/genética , Interferon beta/imunologia , Interferon beta/metabolismo
18.
Front Immunol ; 15: 1397118, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812505

RESUMO

Porcine epidemic diarrhea virus (PEDV) causes a highly contagious enteric disease with major economic losses to swine production worldwide. Due to the immaturity of the neonatal piglet immune system and given the high virulence of PEDV, improving passive lactogenic immunity is the best approach to protect suckling piglets against the lethal infection. We tested whether oral vitamin A (VA) supplementation and PEDV exposure of gestating and lactating VA-deficient (VAD) sows would enhance their primary immune responses and boost passive lactogenic protection against the PEDV challenge of their piglets. We demonstrated that PEDV inoculation of pregnant VAD sows in the third trimester provided higher levels of lactogenic protection of piglets as demonstrated by >87% survival rates of their litters compared with <10% in mock litters and that VA supplementation to VAD sows further improved the piglets' survival rates to >98%. We observed significantly elevated PEDV IgA and IgG antibody (Ab) titers and Ab-secreting cells (ASCs) in VA-sufficient (VAS)+PEDV and VAD+VA+PEDV sows, with the latter maintaining higher Ab titers in blood prior to parturition and in blood and milk throughout lactation. The litters of VAD+VA+PEDV sows also had the highest serum PEDV-neutralizing Ab titers at piglet post-challenge days (PCD) 0 and 7, coinciding with higher PEDV IgA ASCs and Ab titers in the blood and milk of their sows, suggesting an immunomodulatory role of VA in sows. Thus, sows that delivered sufficient lactogenic immunity to their piglets provided the highest passive protection against the PEDV challenge. Maternal immunization during pregnancy (± VA) and VA sufficiency enhanced the sow primary immune responses, expression of gut-mammary gland trafficking molecules, and passive protection of their offspring. Our findings are relevant to understanding the role of VA in the Ab responses to oral attenuated vaccines that are critical for successful maternal vaccination programs against enteric infections in infants and young animals.


Assuntos
Imunidade Adaptativa , Anticorpos Antivirais , Infecções por Coronavirus , Imunidade Materno-Adquirida , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Vitamina A , Animais , Vírus da Diarreia Epidêmica Suína/imunologia , Feminino , Suínos , Gravidez , Vitamina A/administração & dosagem , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Anticorpos Antivirais/sangue , Doenças dos Suínos/imunologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia , Animais Recém-Nascidos , Lactação/imunologia , Suplementos Nutricionais , Deficiência de Vitamina A/imunologia , Imunização
19.
Vet Immunol Immunopathol ; 271: 110753, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608406

RESUMO

Porcine epidemic diarrhea virus (PEDV) causes immensely large economic losses worldwide in the swine industry. PEDV attacks the intestine, disrupts intestinal epithelium morphology and barrier integrity, and results in profound diarrhea and high mortality. A commercially available isotonic protein solution (IPS) (Tonisity Px) has anecdotally been reported to be effective in supportive treatment of piglets with active PEDV infections. This study evaluated the effects of supplementing (or not) the drinking water of 14 day old PEDV-infected piglets with the IPS on the content of E-cadherin, fibronectin, interferon-alpha (IFN-α), and matrix metalloproteinase 9 (MMP-9) in duodenal tissue. The content of PEDV DNA in feces was also measured. Though both groups had similar PEDV shedding at day 1, IPS piglets had significantly lower PEDV shedding at day 5, 14 and 21. The IPS group also had a shorter duration of PEDV virus shedding. Levels of E-cadherin and fibronectin, both of which are structural proteins in the intestine, remained unchanged from baseline in the IPS group, whereas the same molecules decreased significantly in the control group. IFN-α, an antiviral cytokine, and MMP-9, an enzyme that aids in tissue remodeling, were increased at days 5 and 14 post infection, and then decreased at day 21 post-infection in the IPS group compared to control. Overall, the IPS used in this study enhanced epithelial intercellular adhesion (E-cadherin) and extracellular matrix structure (fibronectin), resulted in significantand favorable changes in MMP-9 activity, and favorably modulated IFN-α production. This is the first report of this panel of biomarkers, especially MMP-9 and IFN-α, in the face of in vivo PEDV infection. This is also the first report to investigate a commercially available swine product that does not need to be administered in solid feed, and that is already registered for use throughout Asia, Europe, South America, and North America. Overall, the results of this study serve to clarify the behavior of 4 key biomarkers in the presence of in vivo PEDV infection. The results also indicate that IPS (Tonisity Px) supplementation is a viable intervention to modulate the porcine intestinal immune response with favorable effects on the intestine.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Eliminação de Partículas Virais , Animais , Suínos , Vírus da Diarreia Epidêmica Suína/fisiologia , Vírus da Diarreia Epidêmica Suína/imunologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia , Fibronectinas/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Caderinas/metabolismo , Intestinos/imunologia , Intestinos/virologia , Interferon-alfa/imunologia , Adesão Celular , Mucosa Intestinal/imunologia
20.
Autophagy ; : 1-18, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38597182

RESUMO

Non-structural protein 2 (nsp2) exists in all coronaviruses (CoVs), while its primary function in viral pathogenicity, is largely unclear. One such enteric CoV, porcine epidemic diarrhea virus (PEDV), causes high mortality in neonatal piglets worldwide. To determine the biological role of nsp2, we generated a PEDV mutant containing a complete nsp2 deletion (rPEDV-Δnsp2) from a highly pathogenic strain by reverse genetics, showing that nsp2 was dispensable for PEDV infection, while its deficiency reduced viral replication in vitro. Intriguingly, rPEDV-Δnsp2 was entirely avirulent in vivo, with significantly increased productions of IFNB (interferon beta) and IFN-stimulated genes (ISGs) in various intestinal tissues of challenged newborn piglets. Notably, nsp2 targets and degrades TBK1 (TANK binding kinase 1), the critical kinase in the innate immune response. Mechanistically, nsp2 induced the macroautophagy/autophagy process and recruited a selective autophagic receptor, NBR1 (NBR1 autophagy cargo receptor). NBR1 subsequently facilitated the K48-linked ubiquitination of TBK1 and delivered it for autophagosome-mediated degradation. Accordingly, the replication of rPEDV-Δnsp2 CoV was restrained by reduced autophagy and excess productions of type I IFNs and ISGs. Our data collectively define enteric CoV nsp2 as a novel virulence determinant, propose a crucial role of nsp2 in diminishing innate antiviral immunity by targeting TBK1 for NBR1-mediated selective autophagy, and pave the way to develop a new type of nsp2-based attenuated PEDV vaccine. The study also provides new insights into the prevention and treatment of other pathogenic CoVs.Abbreviations: 3-MA: 3-methyladenine; Baf A1: bafilomycin A1; CoV: coronavirus; CQ: chloroquine; dpi: days post-inoculation; DMVs: double-membrane vesicles; GABARAP: GABA type A receptor-associated protein; GFP: green fluorescent protein; GIGYF2: GRB10 interacting GYF protein 2; hpi: hours post-infection; IFA: immunofluorescence assay; IFIH1: interferon induced with helicase C domain 1; IFIT2: interferon induced protein with tetratricopeptide repeats 2; IFITM1: interferon induced transmembrane protein 1; IFNB: interferon beta; IRF3: interferon regulatory factor 3; ISGs: interferon-stimulated genes; mAb: monoclonal antibody; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; NBR1: NBR1 autophagy cargo receptor; nsp2: non-structural protein 2; OAS1: 2'-5'-oligoadenylate synthetase 1; PEDV: porcine epidemic diarrhea virus; PRRs: pattern recognition receptors; RIGI: RNA sensor RIG-I; RT-qPCR: reverse transcription quantitative polymerase chain reaction; SQSTM1: sequestosome 1; TBK1: TANK binding kinase 1; TCID50: 50% tissue culture infectious doses; VSV: vesicular stomatitis virus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA