Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542067

RESUMO

Porcine epidemic diarrhea virus (PEDV), a member of the Alpha-coronavirus genus in the Coronaviridae family, induces acute diarrhea, vomiting, and dehydration in neonatal piglets. This study aimed to investigate the genetic dependencies of PEDV and identify potential therapeutic targets by using a single-guide RNA (sgRNA) lentiviral library to screen host factors required for PEDV infection. Protein kinase C θ (PKCθ), a calcium-independent member of the PKC family localized in the cell membrane, was found to be a crucial host factor in PEDV infection. The investigation of PEDV infection was limited in Vero and porcine epithelial cell-jejunum 2 (IPEC-J2) due to defective interferon production in Vero and the poor replication of PEDV in IPEC-J2. Therefore, identifying suitable cells for PEDV investigation is crucial. The findings of this study reveal that human embryonic kidney (HEK) 293T and L929 cells, but not Vero and IPEC-J2 cells, were suitable for investigating PEDV infection. PKCθ played a significant role in endocytosis and the replication of PEDV, and PEDV regulated the expression and phosphorylation of PKCθ. Apoptosis was found to be involved in PEDV replication, as the virus activated the PKCθ-B-cell lymphoma 2 (BCL-2) ovarian killer (BOK) axis in HEK293T and L929 cells to increase viral endocytosis and replication via mitochondrial apoptosis. This study demonstrated the suitability of HEK293T and L929 cells for investigating PEDV infection and identified PKCθ as a host factor essential for PEDV infection. These findings provide valuable insights for the development of strategies and drug targets for PEDV infection.


Assuntos
Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Humanos , Suínos , Chlorocebus aethiops , Vírus da Diarreia Epidêmica Suína/genética , Proteína Quinase C-theta/genética , Sistemas CRISPR-Cas , Células HEK293 , RNA Guia de Sistemas CRISPR-Cas , Células Vero , Doenças dos Suínos/genética , Replicação Viral/genética
2.
Front Microbiol ; 13: 931922, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35859736

RESUMO

Stress granules (SGs) are dynamic cytoplasmic protein-RNA structures that form in response to various stress conditions, including viral infection. Porcine epidemic diarrhea virus (PEDV) variant-related diarrhea has caused devastating economic losses to the swine industry worldwide. In this study, we found that the percentage of PEDV-infected cells containing SGs is nearly 20%; meanwhile, PEDV-infected cells were resistant to sodium arsenite (SA)-induced SGs formation, as demonstrated by the recruitment of SGs marker proteins, including G3BP1 and TIA1. Moreover, the formation of SGs induced by SA treatment was suppressed by PEDV papain-like protease confirmed by confocal microscopy. Further study showed that PEDV infection disrupted SGs formation by downregulating G3BP1 expression. Additionally, PEDV replication was significantly enhanced when SGs' assembly was impaired by silencing G3BP1. Taken together, our findings attempt to illuminate the specific interaction mechanism between SGs and PEDV, which will help us to elucidate the pathogenesis of PEDV infection in the near future.

3.
Front Pharmacol ; 13: 879733, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600889

RESUMO

Porcine epidemic diarrhea virus (PEDV) is an alphacoronavirus (α-CoV) that causes high mortality in suckling piglets, leading to severe economic losses worldwide. No effective vaccine or commercial antiviral drug is readily available. Several replicative enzymes are responsible for coronavirus replication. In this study, the potential candidates targeting replicative enzymes (PLP2, 3CLpro, RdRp, NTPase, and NendoU) were screened from 187,119 compounds in ZINC natural products library, and seven compounds had high binding potential to NTPase and showed drug-like property. Among them, ZINC12899676 was identified to significantly inhibit the NTPase activity of PEDV by targeting its active pocket and causing its conformational change, and ZINC12899676 significantly inhibited PEDV replication in IPEC-J2 cells. It first demonstrated that ZINC12899676 inhibits PEDV replication by targeting NTPase, and then, NTPase may serve as a novel target for anti-PEDV.

4.
Viruses ; 14(5)2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35632790

RESUMO

In this study, we investigated the correlation between the mechanism involved in porcine epidemic diarrhea virus (PEDV) replication and autophagic flux. In this study, we found that as PEDV replicated, production of LC3-II was significantly induced up to 24 h post-infection (hpi). Interestingly, although there was significant production of LC3-II, greater p62 accumulation was simultaneously found. Pretreatment with rapamycin significantly induced PEDV replication, but autolysosome formation was reduced. These results were confirmed by the evaluation of ATG5/ATG12 and LAMP1/LAMP2. Taken together, we conclude that PEDV infection induces autophagosome formation but inhibits autolysosome formation during replication.


Assuntos
Autofagossomos/metabolismo , Vírus da Diarreia Epidêmica Suína , Animais , Autofagossomos/genética , Chlorocebus aethiops , Lisossomos/genética , Lisossomos/metabolismo , Macroautofagia , Vírus da Diarreia Epidêmica Suína/imunologia , Suínos , Células Vero
5.
Animals (Basel) ; 12(4)2022 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-35203166

RESUMO

Porcine epidemic diarrhea (PED), one of the serious enteric diseases caused by the porcine epidemic diarrhea virus (PEDV), is responsible for enormous economic losses in the global swine industry. However, available commercial vaccines fail to protect pigs from PEDV infection due to the appearance of PEDV variants. Hence, it is necessary to find an effective and cost-efficient natural product to protect pigs from PEDV infection. In this study, we first found that an aqueous leaf extract of M. oleifera (MOE) exhibited antiviral activity in response to PEDV infection. Furthermore, time-of-addition experiments revealed that MOE inhibited PEDV replication rather than attachment and internalization. Mechanistically, MOE significantly suppressed the production of reactive oxygen species (ROS) and malondialdehyde (MDA) induced by PEDV infection, and restored glutathione peroxidase (GSH-Px) activity. Importantly, the addition of MOE alleviated oxidative stress and the expression of inflammatory cytokines and resulted in fewer apoptotic cells during PEDV infection. These results indicated that MOE might be an effective anti-PEDV drug used to control PED disease and may be helpful in developing a new prophylactic and therapeutic strategy against PEDV.

6.
Vet Res ; 51(1): 136, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33176871

RESUMO

Porcine epidemic diarrhea virus (PEDV) causes lethal diarrhea in suckling piglets, leading to severe economic losses worldwide. There is an urgent need to find new therapeutic methods to prevent and control PEDV. Not only is there a shortage of commercial anti-PEDV drugs, but available commercial vaccines fail to protect against highly virulent PEDV variants. We screened an FDA-approved library of 911 natural products and found that tomatidine, a steroidal alkaloid extracted from the skin and leaves of tomatoes, demonstrates significant inhibition of PEDV replication in Vero and IPEC-J2 cells in vitro. Molecular docking and molecular dynamics analysis predicted interactions between tomatidine and the active pocket of PEDV 3CL protease, which were confirmed by fluorescence spectroscopy and isothermal titration calorimetry (ITC). The inhibiting effect of tomatidine on 3CL protease was determined using cleavage visualization and FRET assay. Tomatidine-mediated blocking of 3CL protease activity in PEDV-infected cells was examined by western blot detection of the viral polyprotein in PEDV-infected cells. It indicates that tomatidine inhibits PEDV replication mainly by targeting 3CL protease. In addition, tomatidine also has antiviral activity against transmissible gastroenteritis virus (TGEV), porcine reproductive and respiratory syndrome virus (PRRSV), encephalo myocarditis virus (EMCV) and seneca virus A (SVA) in vitro. These results may be helpful in developing a new prophylactic and therapeutic strategy against PEDV and other swine disease infections.


Assuntos
Antivirais/farmacologia , Vírus da Diarreia Epidêmica Suína/fisiologia , Tomatina/análogos & derivados , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos , Antivirais/química , Peptídeo Hidrolases/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Vírus da Diarreia Epidêmica Suína/efeitos dos fármacos , Vírus da Diarreia Epidêmica Suína/enzimologia , Tomatina/química , Tomatina/farmacologia , Replicação Viral/fisiologia
7.
Viruses ; 9(3)2017 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-28335505

RESUMO

The new porcine epidemic diarrhea (PED) has caused devastating economic losses to the swine industry worldwide. Despite extensive research on the relationship between autophagy and virus infection, the concrete role of autophagy in porcine epidemic diarrhea virus (PEDV) infection has not been reported. In this study, autophagy was demonstrated to be triggered by the effective replication of PEDV through transmission electron microscopy, confocal microscopy, and Western blot analysis. Moreover, autophagy was confirmed to benefit PEDV replication by using autophagy regulators and RNA interference. Furthermore, autophagy might be associated with the expression of inflammatory cytokines and have a positive feedback loop with the NF-κB signaling pathway during PEDV infection. This work is the first attempt to explore the complex interplay between autophagy and PEDV infection. Our findings might accelerate our understanding of the pathogenesis of PEDV infection and provide new insights into the development of effective therapeutic strategies.


Assuntos
Autofagia , Interações Hospedeiro-Patógeno , Vírus da Diarreia Epidêmica Suína/fisiologia , Replicação Viral , Animais , Western Blotting , Chlorocebus aethiops , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA