Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Med Microbiol ; 70(5)2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34048334

RESUMO

Introduction. Staphylococcus aureus (SA) and Staphylococcus epidermidis (SE) are the most common pathogens from the genus Staphylococcus causing biofilm-associated infections. Generally, biofilm-associated infections represent a clinical challenge. Bacteria in biofilms are difficult to eradicate due to their resistance and serve as a reservoir for recurring persistent infections.Gap Statement. A variety of protocols for in vitro drug activity testing against staphylococcal biofilms have been introduced. However, there are often fundamental differences. All these differences in methodical approaches can then be reflected in the form of discrepancies between results.Aim. In this study, we aimed to develop optimal conditions for staphylococcal biofilm formation on pegs. The impact of peg surface modification was also studied.Methodology. The impact of tryptic soy broth alone or supplemented with foetal bovine serum (FBS) or human plasma (HP), together with the impact of the inoculum density of bacterial suspensions and the shaking versus the static mode of cultivation, on total biofilm biomass production in SA and SE reference strains was studied. The surface of pegs was modified with FBS, HP, or poly-l-lysine (PLL). The impact on total biofilm biomass was evaluated using the crystal violet staining method and statistical data analysis.Results. Tryptic soy broth supplemented with HP together with the shaking mode led to crucial potentiation of biofilm formation on pegs in SA strains. The SE strain did not produce biofilm biomass under the same conditions on pegs. Preconditioning of peg surfaces with FBS and HP led to a statistically significant increase in biofilm biomass formation in the SE strain.Conclusion. Optimal cultivation conditions for robust staphylococcal biofilm formation in vitro might differ among different bacterial strains and methodical approaches. The shaking mode and supplementation of cultivation medium with HP was beneficial for biofilm formation on pegs for SA (ATCC 29213) and methicillin-resistant SA (ATCC 43300). Peg conditioning with HP and PLL had no impact on biofilm formation in either of these strains. Peg coating with FBS showed an adverse effect on the biofilm formation of these strains. By contrast, there was a statistically significant increase in biofilm biomass production on pegs coated with FBS and HP for SE (ATCC 35983).


Assuntos
Técnicas Bacteriológicas/instrumentação , Biofilmes/crescimento & desenvolvimento , Staphylococcus/fisiologia , Animais , Técnicas Bacteriológicas/métodos , Biofilmes/classificação , Biofilmes/efeitos dos fármacos , Biomassa , Meios de Cultura/química , Meios de Cultura/farmacologia , Matriz Extracelular de Substâncias Poliméricas/classificação , Matriz Extracelular de Substâncias Poliméricas/efeitos dos fármacos , Humanos , Especificidade da Espécie , Staphylococcus/classificação , Staphylococcus/efeitos dos fármacos
2.
Int J Mol Sci ; 21(21)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142808

RESUMO

Polyethylene glycol (PEG) coating of gold nanoparticles (AuNPs) improves AuNP distribution via blood circulation. The use of PEG-coated AuNPs was shown to result in acute injuries to the liver, kidney, and spleen, but long-term toxicity has not been well studied. In this study, we investigated reporter induction for up to 90 days in NF-κB transgenic reporter mice following intravenous injection of PEG-coated AuNPs. The results of different doses (1 and 4 µg AuNPs per gram of body weight), particle sizes (13 nm and 30 nm), and PEG surfaces (methoxyl- or carboxymethyl-PEG 5 kDa) were compared. The data showed up to 7-fold NF-κB reporter induction in mouse liver from 3 h to 7 d post PEG-AuNP injection compared to saline-injected control mice, and gradual reduction to a level similar to control by 90 days. Agglomerates of PEG-AuNPs were detected in liver Kupffer cells, but neither gross pathological abnormality in liver sections nor increased activity of liver enzymes were found at 90 days. Injection of PEG-AuNPs led to an increase in collagen in liver sections and elevated total serum cholesterol, although still within the normal range, suggesting that inflammation resulted in mild fibrosis and affected hepatic function. Administrating PEG-AuNPs inevitably results in nanoparticles entrapped in the liver; thus, further investigation is required to fully assess the long-term impacts by PEG-AuNPs on liver health.


Assuntos
Ouro/química , Inflamação/patologia , Fígado/patologia , Nanopartículas Metálicas/toxicidade , NF-kappa B/genética , Polietilenoglicóis/química , Animais , Inflamação/induzido quimicamente , Inflamação/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Luciferases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NF-kappa B/metabolismo
3.
Polymers (Basel) ; 10(6)2018 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-30966613

RESUMO

The purpose of this work was to more exhaustively study the influence of nanocarrier matrix composition and also the polyethylene glycol (PEG)-modified surface on the performances of formulations as lipophilic drug delivery systems. Poly (d,l-lactide-co-glycolide), two vegetable oils (Nigella sativa oil and Echium oil) and indomethacin were employed to prepare novel PEG-coated nanocarriers through emulsion solvent evaporation method. The surface modification was achieved by physical PEG adsorption (in the post-production step). Transmission electron microscopy (TEM) nanographs highlighted the core-shell structure of hybrid formulations while scanning electron microscopy (SEM) images showed no obvious morphological changes after PEG adsorption. Drug loading (DL) and entrapment efficiency (EE) varied from 4.6% to 16.4% and 28.7% to 61.4%, solely depending on the type of polymeric matrix. The oil dispersion within hybrid matrix determined a more amorphous structure, as was emphasized by differential scanning calorimetry (DSC) investigations. The release studies highlighted the oil effect upon the ability of nanocarrier to discharge in a more sustained manner the encapsulated drug. Among the kinetic models employed, the Weibull and Korsmeyer-Peppas models showed the better fit (R² = 0.999 and 0.981) with n < 0.43 indicating a Fickian type release pattern. According to cytotoxic assessment the PEG presence on the surface increased the cellular viability with ~1.5 times as compared to uncoated formulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA