Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
1.
Biomed J ; : 100784, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39134242

RESUMO

BACKGROUND: The incidence and mortality of colorectal cancer (CRC) are persistently higher in men than in women. CRC malignancy is strongly influenced by small non-coding RNAs (miRNAs). Moreover, deregulation of the circadian molecular oscillator has been associated with CRC facilitation. To analyse possible cumulative effects of the above-mentioned factors on CRC progression, we focused on functions of sex-biased miRNAs associated with the clock genes per2 and/or cry2, which are involved in the cell cycle control and DNA damage response. MAJOR FINDINGS: We identified miR-24, miR-92a, miR-181a, and miR-21 associated with per2 that are up-regulated in transformed colon tissue of men. miR-93, miR-17, miR-20a, and miR-24 with higher expression in males compared to females were linked to cry2. All these miRNAs possess oncogenic potential and exert their effects mainly via inhibition of the tumour suppressors phosphatase and tensin homolog (PTEN) and/or p53. Down-regulation of PTEN and p53 in men was further strengthened by inhibition of tumour suppressor per2. Oncogenic up-regulated miRNAs associated with per2 or cry2 in the transformed colon tissue of women were not detected. CONCLUSION: We conclude that the cancer-promoting, sex-biased miRNAs miR-24, miR-92a, miR-181a, miR-93, miR-17, miR-20a, and miR-21 associated with clock genes per2 and/or cry2 can contribute to the sex-dependent development of CRC via inhibition of the PTEN and p53 pathways.

2.
Mol Nutr Food Res ; : e2400323, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148153

RESUMO

SCOPE: The aim of this study is to investigate the effect of time-of-day on serum hormones and gene expression in adrenal glands, studying the impact of sex, obesogenic diet, and timing of proanthocyanidins administration, with a focus on glucocorticoids synthesis by this gland. METHODS AND RESULTS: Female and male rats, assigned to a standard chow or a cafeteria diet-fed group, receive a daily oral dose of a grape seed proanthocyanidin extract (GSPE), or a vehicle (when light is turned on, or when light is turned off). Corticosterone, estradiol, and testosterone serum levels, and the expression analysis of clock genes and genes related to corticosterone synthesis pathway, are assessed. Serum hormone levels exhibited a marked time-of-day effect also see in the expression of scavenger receptor class B member 1 (Scarb1) and cyp11b genes. The correlation between these two genes and period circadian regulator 2 (Per2) is also extended to other clock genes, although to a lesser extent: cryptochrome (Cry) and nuclear receptor subfamily 1 group D member 1 (Rev-erba). CONCLUSION: The strong correlations found suggest an important role of local Per2 (but also of Cry and Rev-erbA) in regulating the expression of the enzymes involved in the corticosterone synthesis pathway. The expression of clock genes in adrenals is influenced by sex and diet but not by GSPE.

3.
Mol Neurobiol ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39002057

RESUMO

With the global increase in life expectancy, there has been a rise in the incidence of cognitive impairments attributed to diverse etiologies. Notably, approximately 50% of individuals diagnosed with mild cognitive impairment (MCI) progress to dementia within 3 years. However, the precise mechanisms underlying MCI remain elusive. Therefore, this study aimed to elucidate potential mechanisms implicated in MCI utilizing Per2 knockout (KO) mice, which have previously been shown to have cognitive deficits. Behavioral (Y-maze, Barnes maze) and molecular (electrophysiology, RNA sequencing, western blot, and immunofluorescence) experiments were conducted in Per2 KO and wild-type (WT) mice. Per2 KO mice exhibited impaired spatial working memory in the Y-maze and Barnes maze. However, there were no significant group differences in hippocampal long-term potentiation (LTP) between Per2 KO and WT mice, whereas striatal LTP in Per2 KO mice was lower compared to WT mice. In RNA sequencing analysis, 58 genes were downregulated and 64 genes were upregulated in the striatum of Per2 KO mice compared to WT mice. Among the differentially expressed genes, four genes (Chrm2, EphB2, Htr1b, Oprm1) were identified. Optimal expression levels of EPHB2 and OPRM1 were found to significantly enhance cognitive performance in mice. Additionally, Per2 KO mice exhibited reduced EPHB2-NMDAR-LTP and OPRM-mTOR signaling, along with elevated amyloid beta (Aß) levels, when compared to WT mice. However, these alterations were reversed upon administration of morphine treatment. Striatal OPRM1-mTOR signaling, EPHB2-NMDAR-LTP signaling, and Aß expression levels may exert a combined effect on MCI under the control of Per2 expression.

4.
Cell Signal ; 122: 111327, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39079621

RESUMO

Cisplatin (CDDP) is a cornerstone chemotherapeutic agent used to treat oral squamous cell carcinoma (OSCC) and many solid cancers. However, the mechanisms underlying tumor resistance to CDDP obscure the enhancement of its therapeutic efficacy. In this study, we unveil diminished expression of the biological clock gene PER2 in OSCC, negatively correlated with the expression of multidrug resistance protein 1 (MDR1) and multidrug resistance-associated protein 1 (MRP1). The overexpression of PER2 suppressed MDR1 and MRP1 expression and increased intracellular CDDP levels and DNA damage, thereby bolstering OSCC cell sensitivity to CDDP. In vivo tumorigenic assays corroborated that PER2 overexpression notably increased OSCC sensitivity to CDDP, augmenting the suppression of OSCC tumorigenesis. Co-immunoprecipitation, GST pull-down, and cycloheximide tracking assays revealed that PER2, via its C-terminal domain, bound to and diminishes PDK1 stability. The degradation of PDK1 was further dependent on the suppression of the AKT/mTOR pathway to enhance the sensitivity of OSCC cells to CDDP. Our study supports PER2 as a target for improving CDDP sensitivity in OSCC, and the combination of PER2 and CDDP is a novel strategy with potential clinical therapeutic value.


Assuntos
Cisplatino , Neoplasias Bucais , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Cisplatino/farmacologia , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Neoplasias Bucais/tratamento farmacológico , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular Tumoral , Animais , Transdução de Sinais/efeitos dos fármacos , Proteínas Circadianas Period/metabolismo , Proteínas Circadianas Period/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Camundongos Nus , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Camundongos , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Masculino , Antineoplásicos/farmacologia , Feminino
5.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38982717

RESUMO

Steroidogenesis is associated with circadian clock genes. However, the regulation of steroid hormone production in sow granulosal cells by Per2, a crucial circadian regulator, remains unexplored. In this study, we have identified the presence of Per2 in ovarian granulosa cells and have observed its circadian expression pattern. Employing siRNA to interfere with Per2 expression, our investigation revealed that Per2 knockdown notably elevated progesterone (P4) levels along with increasing the expression of StAR but interference of Per2 did not alter the rhythm of clock-related gene (Bmal1, Clock, Per1, and Cry1) in granulosa cells. Subsequent mechanistic analysis showed that Per2 formed complexes with PPARγ and interference with Per2 promoted the formation of the PPARγ:RXRα heterodimer. Importantly, we uncovered that PPARγ:RXRα heterodimer could control the expression of StAR via direct peroxisome proliferator response element binding to its promoter to regulate its activity, and knockdown of Per2 promoted the transcription of StAR via increasing the binding of PPARγ:RXRα ligands. Altogether, these findings indicated a noncanonical role of Per2 in controlling PPARγ:RXRα binding to regulate transcription of StAR and progesterone synthesis, thus revealing potential avenues of pharmacological and therapeutic intervention.


The circadian clock can regulate ovarian function, and disruption of the circadian clock caused by environmental factors can seriously affect the reproductive capacity of female animals, leading to ovarian diseases. Therefore, it is necessary to investigate the relationship between clock genes and ovarian function. In this study, Per2, a key gene for the circadian clock, was expressed in ovarian granulosa cells according to a rhythmic pattern, but knocking out Per2 did not alter the circadian rhythm in granulosa cells. Interference of Per2 notably elevated progesterone (P4) levels along with increasing the expression of StAR (a key gene for P4 synthesis) in granulosa cells. Subsequent mechanistic analysis showed that knockdown of Per2 enhanced transcription of StAR by promoting the formation of the PPARγ:RXRα heterodimer. These results indicated a noncanonical role of Per2 in regulating PPARγ:RXRα binding to control transcription of StAR and P4 production.


Assuntos
Regulação da Expressão Gênica , Células da Granulosa , Proteínas Circadianas Period , Fosfoproteínas , Progesterona , Animais , Células da Granulosa/metabolismo , Feminino , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Suínos , Progesterona/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , PPAR gama/genética , PPAR gama/metabolismo
6.
J Physiol ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850551

RESUMO

Circadian rhythms, governed by the dominant central clock, in addition to various peripheral clocks, regulate almost all biological processes, including sleep-wake cycles, hormone secretion and metabolism. In certain contexts, the regulation and function of the peripheral oscillations can be decoupled from the central clock. However, the specific mechanisms underlying muscle-intrinsic clock-dependent modulation of muscle function and metabolism remain unclear. We investigated the outcome of perturbations of the primary and secondary feedback loops of the molecular clock in skeletal muscle by specific gene ablation of Period circadian regulator 2 (Per2) and RAR-related orphan receptor alpha (Rorα), respectively. In both models, a dampening of core clock gene oscillation was observed, while the phase was preserved. Moreover, both loops seem to be involved in the homeostasis of amine groups. Highly divergent outcomes were seen for overall muscle gene expression, primarily affecting circadian rhythmicity in the PER2 knockouts and non-oscillating genes in the RORα knockouts, leading to distinct outcomes in terms of metabolome and phenotype. These results highlight the entanglement of the molecular clock and muscle plasticity and allude to specific functions of different clock components, i.e. the primary and secondary feedback loops, in this context. The reciprocal interaction between muscle contractility and circadian clocks might therefore be instrumental to determining a finely tuned adaptation of muscle tissue to perturbations in health and disease. KEY POINTS: Specific perturbations of the primary and secondary feedback loop of the molecular clock result in specific outcomes on muscle metabolism and function. Ablation of Per2 (primary loop) or Rorα (secondary loop) blunts the amplitude of core clock genes, in absence of a shift in phase. Perturbation of the primary feedback loop by deletion of PER2 primarily affects muscle gene oscillation. Knockout of RORα and the ensuing modulation of the secondary loop results in the aberrant expression of a large number of non-clock genes and proteins. The deletion of PER2 and RORα affects muscle metabolism and contractile function in a circadian manner, highlighting the central role of the molecular clock in modulating muscle plasticity.

7.
Chronobiol Int ; 41(5): 757-766, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38695651

RESUMO

Delayed sleep phase disorder and advanced sleep phase disorder cause disruption of the circadian clock and present with extreme morning/evening chronotype with unclear role of the genetic etiology, especially for delayed sleep phase disorder. To assess if genotyping can aid in clinical diagnosis, we examined the presence of genetic variants in circadian clock genes previously linked to both sleep disorders in Slovenian patient cohort. Based on Morning-evening questionnaire, we found 15 patients with extreme chronotypes, 13 evening and 2 morning, and 28 controls. Sanger sequencing was used to determine the presence of carefully selected candidate SNPs in regions of the CSNK1D, PER2/3 and CRY1 genes. In a patient with an extreme morning chronotype and a family history of circadian sleep disorder we identified two heterozygous missense variants in PER3 gene, c.1243C>G (NM_001377275.1 (p.Pro415Ala)) and c.1250A>G (NM_001377275.1 (p.His417Arg)). The variants were significantly linked to Advanced sleep phase disorder and were also found in proband's father with extreme morningness. Additionally, a rare SNP was found in PER2 gene in a patient with clinical picture of Delayed sleep phase disorder. The novel variant in PER2 (NM_022817.3):c.1901-218 G>T was found in proband's parent with eveningness, indicating an autosomal dominant inheritance. We identified a family with autosomal dominant inheritance of two PER3 heterozygous variants that can be linked to Advanced sleep phase disorder. We revealed also a rare hereditary form of Delayed sleep phase disorder with a new PER2 variant with autosomal dominant inheritance, shedding the light into the genetic causality.


Assuntos
Relógios Circadianos , Proteínas Circadianas Period , Polimorfismo de Nucleotídeo Único , Transtornos do Sono do Ritmo Circadiano , Humanos , Proteínas Circadianas Period/genética , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Transtornos do Sono do Ritmo Circadiano/genética , Relógios Circadianos/genética , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Predisposição Genética para Doença , Eslovênia , Linhagem , Sono/genética , Sono/fisiologia , Adulto Jovem
8.
J Cell Mol Med ; 28(9): e18274, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38676362

RESUMO

TRP channels, are non-specific cationic channels that are involved in multiple physiological processes that include salivation, cellular secretions, memory extinction and consolidation, temperature, pain, store-operated calcium entry, thermosensation and functionality of the nervous system. Here we choose to look at the evidence that decisively shows how TRP channels modulate human neuron plasticity as it relates to the molecular neurobiology of sleep/circadian rhythm. There are numerous model organisms of sleep and circadian rhythm that are the results of the absence or genetic manipulation of the non-specific cationic TRP channels. Drosophila and mice that have had their TRP channels genetically ablated or manipulated show strong evidence of changes in sleep duration, sleep activity, circadian rhythm and response to temperature, noxious odours and pattern of activity during both sleep and wakefulness along with cardiovascular and respiratory function during sleep. Indeed the role of TRP channels in regulating sleep and circadian rhythm is very interesting considering the parallel roles of TRP channels in thermoregulation and thermal response with concomitant responses in growth and degradation of neurites, peripheral nerves and neuronal brain networks. TRP channels provide evidence of an ability to create, regulate and modify our sleep and circadian rhythm in a wide array of physiological and pathophysiological conditions. In the current review, we summarize previous results and novel recent advances in the understanding of calcium ion entry via TRP channels in different sleep and circadian rhythm conditions. We discuss the role of TRP channels in sleep and circadian disorders.


Assuntos
Ritmo Circadiano , Sono , Canais de Potencial de Receptor Transitório , Ritmo Circadiano/fisiologia , Ritmo Circadiano/genética , Animais , Humanos , Sono/fisiologia , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Potencial de Receptor Transitório/genética
9.
Arch Toxicol ; 98(5): 1485-1498, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38483585

RESUMO

Accumulating evidence indicates that chronic circadian rhythm disruption is associated with the development of neurodegenerative diseases induced by exposure to neurotoxic chemicals. Herein, we examined the relationship between cellular circadian rhythm disruption and cytotoxicity in neural cells. Moreover, we evaluated the potential application of an in vitro cellular circadian rhythm assay in determining circadian rhythm disruption as a sensitive and early marker of neurotoxicant-induced adverse effects. To explore these objectives, we established an in vitro cellular circadian rhythm assay using human glioblastoma (U87 MG) cells stably transfected with a circadian reporter vector (PER2-dLuc) and determined the lowest-observed-adverse-effect levels (LOAELs) of several common neurotoxicants. Additionally, we determined the LOAEL of each compound on multiple cytotoxicity endpoints (nuclear size [NC], mitochondrial membrane potential [MMP], calcium ions, or lipid peroxidation) using a multiparametric high-content screening (HCS) assay using transfected U87 MG cells treated with the same neurotoxicants for 24 and 72 h. Based on our findings, the LOAEL for cellular circadian rhythm disruption for most chemicals was slightly higher than that for most cytotoxicity indicators detected using HCS, and the LOAEL for MMP in the first 24 h was the closest to that for cellular circadian rhythm disruption. Dietary antioxidants (methylselenocysteine and N-acetyl-l-cysteine) prevented or restored neurotoxicant-induced cellular circadian rhythm disruption. Our results suggest that cellular circadian rhythm disruption is as sensitive as cytotoxicity indicators and occurs early as much as cytotoxic events during disease development. Moreover, the in vitro cellular circadian rhythm assay warrants further evaluation as an early screening tool for neurotoxicants.


Assuntos
Ritmo Circadiano , Neurônios , Humanos
10.
Biol Pharm Bull ; 47(3): 600-605, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38447992

RESUMO

Temperature-dependent translational control of the core clock gene Per2 plays an important role in establishing entrainment of the circadian clock to physiological body temperature cycles. Previously, we found an involvement of the phosphatidylinositol 3-kinase (PI3K) in causing Per2 protein expression in response to a warm temperature shift (WTS) within a physiological range (from 35 to 38.5 °C). However, signaling pathway mediating the Per2 protein expression in response to WTS is only sparsely understood. Additional factor(s) other than PI3K remains unknown. Here we report the identification of eukaryotic initiation factor 2α (eIF2α) kinases, protein kinase R (PKR) and PKR-like endoplasmic reticulum kinase (PERK), as a novel mediator of WTS-dependent Per2 protein expression. Canonically, eIF2α has been regarded as a major downstream target of PERK and PKR. However, we found that PERK and PKR mediate WTS response of Per2 in a manner not involving eIF2α. We observed that PERK and PKR serve as an upstream regulator of PI3K rather than eIF2α in the context of WTS-dependent Per2 protein expression. There have been studies reporting PI3K activation occurring depending on PERK and PKR, while its physiological contribution has remained elusive. Our finding therefore not only helps to enrich the knowledge of how WTS affects Per2 protein expression but also extends the region of cellular biology involving the PERK/PKR-mediated PI3K activation to include entrainment-mechanism of the circadian clock.


Assuntos
Relógios Circadianos , Fosfatidilinositol 3-Quinases , Temperatura , Regulação para Cima , Biotina , Fosfatidilinositol 3-Quinase , eIF-2 Quinase/genética
11.
J Cell Biochem ; 125(2): e30513, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38229522

RESUMO

Wound healing can be influenced by genes that control the circadian cycle, including Per2 and BMAL1, which coordinate the functions of several organs, including the skin. The aim of the study was to evaluate the role of PER2 during experimental skin wound healing. Two groups (control and Per2-KO), consisting of 14 male mice each, were anesthetized by inhalation, and two 6 mm wounds were created on their dorsal skin using a punch biopsy. A silicone ring was sutured around the wound perimeter to restrict contraction. The wound healing process was clinically measured daily (closure index) until complete wound repair. On Day 6, histomorphometric analysis was performed using the length and thickness of the epithelial migration tongue, in addition to counting vessels underlying the lesion by immunofluorescence assay and maturation of collagen fibers through picrosirius staining. Bromodeoxyuridine (BrdU) incorporation and quantification were performed using the subcutaneous injection technique 2 h before euthanasia and through immunohistochemical analysis of the proliferative index. In addition, the qualitative analysis of myofibroblasts and periostin distribution in connective tissue was performed by immunofluorescence. Statistically significant differences were observed in the healing time between the experimental groups (means: 15.5 days for control mice and 13.5 days for Per2-KO; p = 0.001). The accelerated healing observed in the Per2-KO group (p < 0.05) was accompanied by statistical differences in wound diameter and length of the migrating epithelial tongue (p = 0.01) compared to the control group. Regarding BrdU immunoreactivity, higher expression was observed in the intact epithelium of Per2-KO animals (p = 0.01), and this difference compared to control was also present, to a lesser extent, at the wound site (p = 0.03). Immunofluorescence in the connective tissue underlying the wound showed a higher angiogenic potential in the Per2-KO group in the intact tissue area and the wound region (p < 0.01), where increased expression of myofibroblasts was also observed. Qualitative analysis revealed the distribution of periostin protein and collagen fibers in the connective tissue underlying the wound, with greater organization and maturation during the analyzed period. Our research showed that the absence of the Per2 gene positively impacts the healing time of the skin in vivo. This acceleration depends on the increase of epithelial proliferative and angiogenic capacity of cells carrying the Per2 deletion.


Assuntos
Pele , Cicatrização , Camundongos , Masculino , Animais , Cicatrização/genética , Bromodesoxiuridina , Pele/lesões , Epiderme , Colágeno , Proteínas Circadianas Period/genética
12.
Physiol Behav ; 273: 114411, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37981094

RESUMO

The natural circadian rhythm in an individual governs the sleep-wake cycle over 24 h. Disruptions in this internal cycle can lead to major health hazards and sleep disorders. Reports suggest that at least 50 % of people worldwide suffer from sleep-related disorders. An increase in screen time, especially in the wake of the COVID-19 pandemic, is one of the external causative factors for this condition. While many factors govern the circadian clock and its aberrance, the PER2 gene has been strongly linked to chronotypes by many researchers. The current paper provides an extensive examination of key Single Nucleotide Polymorphisms within the PER2 gene and their potential connection to four major types of sleep disorders. This study investigates whether these SNPs play a causative role in sleep disorders or if they are solely associated with these conditions. Additionally, we explore whether these genetic variations exert a lifelong influence on these sleep patterns or if external triggers contribute to the development of sleep disorders. This gene is a crucial regulator of the circadian cycle responsible for the transcription of other clock genes. It regulates a variety of physiological systems such as metabolism, sleep, body temperature, blood pressure, endocrine, immunological, cardiovascular, and renal function. We aim to establish some clarity to the multifaceted nature of this gene, which is often overlooked, and seek to establish the mechanistic role of PER2 gene mutations in sleep disorders. This will improve further understanding, assessment, and treatment of these conditions in future.


Assuntos
Pandemias , Transtornos do Sono-Vigília , Humanos , Sono/genética , Ritmo Circadiano/genética , Transtornos do Sono-Vigília/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo
13.
FASEB J ; 38(1): e23348, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38084798

RESUMO

A robust endogenous clock is required for proper function of many physiological processes. The suprachiasmatic nucleus (SCN) constitutes our central circadian clock and allows us to adapt to daily changes in the environment. Aging can cause a decline in the amplitude of circadian rhythms in SCN and peripheral clocks, which contributes to increased risk of several chronic diseases. Strengthening clock function would therefore be an effective strategy to improve health. A high-throughput chemical screening has identified clock-enhancing molecule 3 (CEM3) as small molecule that increases circadian rhythm amplitude in cell lines and SCN explants. It is, however, currently not known whether CEM3 acts by enhancing the amplitude of individual single-cell oscillators or by enhancing synchrony among neurons. In view of CEM3's potential, it is of evident importance to clarify the mode of action of CEM3. Here, we investigated the effects of CEM3 on single-cell PERIOD2::LUCIFERASE rhythms in mouse SCN explants. CEM3 increased the amplitude in approximately 80%-90% of the individual cells in the SCN without disrupting the phase and/or period of their rhythms. Noticeably, CEM3's effect on amplitude is independent of the cell's initial amplitude. These findings make CEM3 a potential therapeutic candidate to restore compromised amplitude in circadian rhythms and will boost the development of other molecular approaches to improve health.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Camundongos , Animais , Ritmo Circadiano/fisiologia , Núcleo Supraquiasmático/fisiologia , Relógios Circadianos/fisiologia , Luciferases/metabolismo , Neurônios/metabolismo
14.
PeerJ ; 11: e16489, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38084142

RESUMO

Background: Dental papilla cells (DPCs) are one of the key stem cells for tooth development, eventually forming dentin and pulp. Previous studies have reported that PER2 is expressed in a 24-hour oscillatory pattern in DPCs in vitro. In vivo, PER2 is highly expressed in odontoblasts (which are differentiated from DPCs). However, whether PER2 modulates the odontogenic differentiation of DPCs is uncertain. This research was to identify the function of PER2 in the odontogenic differentiation of DPCs and preliminarily explore its mechanisms. Methods: We monitored the expression of PER2 in DPCs differentiated in vivo. We used PER2 overexpression and knockdown studies to assess the role of PER2 in DPC differentiation and performed intracellular ATP content and reactive oxygen species (ROS) assays to further investigate the mechanism. Results: PER2 expression was considerably elevated throughout the odontoblastic differentiation of DPCs in vivo. Overexpressing Per2 boosted levels of odontogenic differentiation markers, such as dentin sialophosphoprotein (Dspp), dentin matrix protein 1 (Dmp1), and alkaline phosphatase (Alp), and enhanced mineralized nodule formation in DPCs. Conversely, the downregulation of Per2 inhibited the differentiation of DPCs. Additionally, downregulating Per2 further affected intracellular ATP content and ROS levels during DPC differentiation. Conclusion: Overall, we demonstrated that PER2 positively regulates the odontogenic differentiation of DPCs, and the mechanism may be related to mitochondrial function as shown by intracellular ATP content and ROS levels.


Assuntos
Papila Dentária , Odontoblastos , Espécies Reativas de Oxigênio , Diferenciação Celular/genética , Trifosfato de Adenosina
15.
Endocrinology ; 165(1)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38128120

RESUMO

Repeated or chronic stress can change the phase of peripheral circadian rhythms. Melatonin (Mel) is thought to be a circadian clock-controlled signal that might play a role in synchronizing peripheral rhythms, in addition to its direct suppressing effects on the stress axis. In this study we test whether Mel can reduce the social-defeat stress-induced phase shifts in peripheral rhythms, either by modulating circadian phase or by modulating the stress axis. Two experiments were performed with male Mel-deficient C57BL/6J mice carrying the circadian reporter gene construct (PER2::LUC). In the first experiment, mice received night-restricted (ZT11-21) Mel in their drinking water, resulting in physiological levels of plasma Mel peaking in the early dark phase. This treatment facilitated re-entrainment of the activity rhythm to a shifted light-dark cycle, but did not prevent the stress-induced (ZT21-22) reduction of activity during stress days. Also, this treatment did not attenuate the phase-delaying effects of stress in peripheral clocks in the pituitary, lung, and kidney. In a second experiment, pituitary, lung, and kidney collected from naive mice (ZT22-23), were treated with Mel, dexamethasone (Dex), or a combination of the two. Dex application affected PER2 rhythms in the pituitary, kidney, and lung by changing period, phase, or both. Administering Mel did not influence PER2 rhythms nor did it alleviate Dex-induced delays in PER2 rhythms in those tissues. We conclude that exogenous Mel is insufficient to affect peripheral PER2 rhythms and reduce stress effects on locomotor activity and phase changes in peripheral tissues.


Assuntos
Relógios Circadianos , Melatonina , Camundongos , Masculino , Animais , Melatonina/farmacologia , Luz , Núcleo Supraquiasmático/fisiologia , Camundongos Endogâmicos C57BL , Ritmo Circadiano/fisiologia , Relógios Circadianos/fisiologia
16.
Hepatol Forum ; 4(3): 108-117, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37822309

RESUMO

Background and Aim: Genes related to the circadian rhythm control various biological processes. The aim of this study was to comprehensively investigate the mutational and mRNA profile of core circadian rhythm genes in hepatocellular cancer (HCC) samples. Materials and Methods: In this study, the gene profile of a total of 369 patients with HCC was examined over the data obtained from the cancer genome atlas database through-cBioPortal. The effects of mutations on protein were examined by scoring the Polymorphism Phenotyping v2, Mutation Assessor, and SIFT-databases. While the association of genes with other genes was determined with the GeneMANIA-database, the association of expression levels in the genes with overall survival (OS) was evaluated with the Kaplan-Meier Plot database. Results: As a result of the analyses, there were a total of 25 mutations. Decreased expression levels of PER1 (1.3e-05), PER3 (p=0.046), and CRY2 (p=1.8e-06) genes were found statistically associated with shorter OS. It was also found that increased expression levels of the PER2 (p=0.045) gene were associated with longer OS, and increased expression levels of the NPAS2 (p=9e-04) gene were associated with shorter OS. Conclusion: In particular, changes in the PER1, PER2, CRY2, and NPAS2 genes may provide possible molecular targets in chemotherapy and immunotherapy for HCC patients.

17.
J Biol Chem ; 299(10): 105219, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37660913

RESUMO

Rectal prolapse in serious inflammatory bowel disease is caused by abnormal reactions of the intestinal mucosal immune system. The circadian clock has been implicated in immune defense and inflammatory responses, but the mechanisms by which it regulates gut inflammation remain unclear. In this study, we investigate the role of the rhythmic gene Period2 (Per2) in triggering inflammation in the rectum and its contribution to the pathogenesis of rectal prolapse. We report that Per2 deficiency in mice increased susceptibility to intestinal inflammation and resulted in spontaneous rectal prolapse. We further demonstrated that PER2 was essential for the transcription of glycogen synthase 1 by interacting with the NF-κB p65. We show that the inhibition of Per2 reduced the levels of glycogen synthase 1 and glycogen synthesis in macrophages, impairing the capacity of pathogen clearance and disrupting the composition of gut microbes. Taken together, our findings identify a novel role for Per2 in regulating the capacity of pathogen clearance in macrophages and gut inflammation and suggest a potential animal model that more closely resembles human rectal prolapse.

18.
Life Sci ; 331: 122038, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37619835

RESUMO

AIM: Estrogen (E2) confers cardioprotection in premenopausal women and in models of menopause and its effects, mostly studied in female reproductive organs, vary on a circadian rhythm basis in relation to the circadian clock genes. However, it remains unknown if a similar circadian pattern exists in the female heart in a manner that explains, at least partly, the cardioprotective effect of E2. The aim of the present investigation was to determine if upregulation of the circadian clock Per2 and its regulated heart-specific miRNAs, and redox enzymes contribute to the E2-mediated cardioprotection in ovariectomized rats. MAIN METHODS: Rats were subjected to ovariectomy (OVX) 2-weeks prior to a 2-week E2 treatment. On the last treatment day, hearts were collected every 4 h. for ex-vivo biochemical measurements. In parallel studies, telemetric mean arterial pressure (MAP) was obtained at the tissue collection times. KEY FINDINGS: OVX + E2 rats exhibited lower body weight during daytime and MAP during day and night times, and their hearts exhibited: (1) higher Per2 protein abundance, cardioprotective miRNAs (miRNA1, miRNA133a, miRNA208a, miRNA499), mALDH2, and catalase; (2) lower reactive oxygen species, cardio-detrimental miRNA652, carbonyl, MDA and HO-1 levels. The reciprocal Per2/HO-1 relationship was more evident during the daytime and correlated with the upregulated cardioprotective miRNAs in OVX + E2 rats. Finally, cardiac Per2, heart-specific miRNAs and reactive oxygen species levels and redox enzymes activities were similar in normal female and OVX + E2 rats. SIGNIFICANCE: Enhancement of cardiac Per2, redox enzymes and heart-specific miRNAs likely contribute to E2-mediated mitigation of cardiac oxidative stress in OVX rats.


Assuntos
Relógios Circadianos , MicroRNAs , Humanos , Ratos , Feminino , Animais , Espécies Reativas de Oxigênio/metabolismo , Relógios Circadianos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Estrogênios/farmacologia , Estrogênios/metabolismo , Estresse Oxidativo , Ovariectomia , Estradiol , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo
19.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37445839

RESUMO

Human dental pulp stem cells (hDPSCs) possess remarkable self-renewal and multilineage differentiation ability. PER2, an essential circadian molecule, regulates various physiological processes. Evidence suggests that circadian rhythm and PER2 participate in physiological functions of DPSCs. However, the influence of PER2 on DPSCs' differentiation remains largely unknown. This study aimed to explore the effect and potential mechanism of PER2 on hDPSCs' differentiation. Dental pulp tissues were extracted, and hDPSCs were cultured for in vitro and in vivo experiments. Dorsal subcutaneous transplantation was performed in 6-week-old male BALB/c mice. The hDPSCs' odontoblastic/osteogenic differentiation was assessed, and mitochondrial metabolism was evaluated. The results indicated PER2 expression increasing during hDPSCs' odontoblastic/osteogenic differentiation. Gain- and loss-of function studies confirmed that PER2 promoted alkaline phosphatase (ALP) activity, mineralized nodules deposition, mRNA expression of DSPP, DMP1, COL1A1 and protein expression of DSPP and DMP1 in hDPSCs. Furthermore, PER2 enhanced collagen deposition, osteodentine-like tissue formation and DSPP expression in vivo. Mitochondrial metabolic evaluation aimed to investigate the mechanism of PER2-mediated hDPSC odontoblastic/osteogenic differentiation, which showed that PER2 increased ATP synthesis, elevated mitochondrial membrane potential and changed expression of proteins regulating mitochondrial dynamics. This study demonstrated that PER2 promoted hDPSCs' odontoblastic/osteogenic differentiation, which involved mitochondrial metabolic change.


Assuntos
Polpa Dentária , Osteogênese , Animais , Camundongos , Humanos , Masculino , Osteogênese/genética , Polpa Dentária/metabolismo , Odontoblastos/metabolismo , Diferenciação Celular/genética , Células-Tronco/metabolismo , Células Cultivadas , Proliferação de Células , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo
20.
Animals (Basel) ; 13(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37508112

RESUMO

Hair follicles (HF) represent a useful tissue for monitoring the circadian clock in mammals. Irregular light exposure causes circadian disruption and represents a welfare concern for stabled horses. We aimed to evaluate the impact of two stable lighting regimes on circadian clock gene rhythmicity in HF from racehorses. Two groups of five Thoroughbred racehorses in training at a commercial racehorse yard were exposed to standard incandescent light or a customized LED lighting system. The control group received light from incandescent bulbs used according to standard yard practice. The treatment group received timed, blue-enriched white LED light by day and dim red LED light at night. On weeks 0 and 20, mane hairs were collected at 4 h intervals for 24 h. Samples were stored in RNAlater at -20 °C. RNA was isolated and samples interrogated by quantitative PCR for the core clock genes: ARNTL, CRY1, PER1, PER2, NR1D2, and the clock-controlled gene DBP. Cosinor analyses revealed 24 h rhythmicity for NR1D2 and PER2 and approached significance for CRY1 (p = 0.013, p = 0.013, and p = 0.051, respectively) in week 20 in the treatment group only. No rhythmicity was detected in week 0 or in week 20 in the HF of control horses. Results suggest that lighting practices in racehorse stables may be improved to better stimulate optimum functioning of the circadian system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA