Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mult Scler Relat Disord ; 59: 103557, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35092946

RESUMO

Thermoregulation is a homeostatic mechanism that is disrupted in some neurological diseases. Patients with multiple sclerosis (MS) are susceptible to increases in body temperature, especially with more severe neurological signs. This condition can become intolerable when these patients suffer febrile infections such as coronavirus disease-2019 (COVID-19). We review the mechanisms of hyperthermia in patients with MS, and they may encounter when infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Finally, the thermoregulatory role and relevant adaptation to regular physical exercise are summarized.


Assuntos
COVID-19 , Esclerose Múltipla , Doenças do Sistema Nervoso , Exercício Físico , Humanos , Esclerose Múltipla/complicações , Esclerose Múltipla/terapia , SARS-CoV-2
2.
Saudi Dent J ; 33(7): 413-423, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34803281

RESUMO

BACKGROUND: Oral submucous fibrosis (OSMF) is one of the common oral potentially malignant disorders that can result in severe morbidity. Depending upon the stage of disease, multiple management therapies exist which include medicinal and surgical approaches. Although the surgical approach is preferred in severe conditions, numerous studies have reported its post-surgical deteriorating outcomes including increased fibrotic changes. To reduce these post-surgical complications, Light amplification by stimulated emission of radiation (Laser) has been introduced and studied as a non-invasive technique to treat oral submucous fibrosis. However, there exists a lack of knowledge about 'which laser shows a better post-treatment outcome'. Accordingly, this review aims to answer this question. MATERIALS AND METHODS: A systematic review of the published literature was performed using an electronic search in PubMed/Medline, Science Direct, Web of Science, Embase, J- STAGE, Google Scholar, and Scopus databases, from 1952 till 2019 using keywords like, 'Oral submucous fibrosis', 'Treatment', 'Laser', 'Trismus', ' Fibrosis', 'Surgical', 'Non-invasive', and 'Postoperative results'. RESULTS: The search strategy revealed 20 relevant published studies in which laser had been used to treat 250 patients of OSMF. Effective results were found without any complications in all the cases after follow up. CONCLUSION: Observing the current literature, it can be concluded that laser might be used as a potential non-invasive approach in the management of OSMF, however, large scale studies are required to investigate the efficacy and other effects of this technology.

3.
Acta Pharm Sin B ; 10(4): 582-602, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32322464

RESUMO

Monoacylglycerol lipase (MAGL) is a serine hydrolase that plays a crucial role catalysing the hydrolysis of monoglycerides into glycerol and fatty acids. It links the endocannabinoid and eicosanoid systems together by degradation of the abundant endocannabinoid 2-arachidaoylglycerol into arachidonic acid, the precursor of prostaglandins and other inflammatory mediators. MAGL inhibitors have been considered as important agents in many therapeutic fields, including anti-nociceptive, anxiolytic, anti-inflammatory, and even anti-cancer. Currently, ABX-1431, a first-in-class inhibitor of MAGL, is entering clinical phase 2 studies for neurological disorders and other diseases. This review summarizes the diverse (patho)physiological roles of MAGL and will provide an overview on the development of MAGL inhibitors. Although a large number of MAGL inhibitors have been reported, novel inhibitors are still required, particularly reversible ones.

4.
Asian J Pharm Sci ; 12(3): 209-215, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-32104332

RESUMO

Inflammation remains a key event during most of the diseases and physiological imbalance. Acute inflammation is an essential physiological event by immune system for a protective measure to remove cause of inflammation and failure of resolution lead to chronic inflammation. Over a period of time, a number of drugs mostly chemical have been deployed to combat acute and chronic inflammation. Recently, enzyme based anti-inflammatory drugs became popular over conventional chemical based drugs. Serratiopeptidase, a proteolytic enzyme from trypsin family, possesses tremendous scope in combating inflammation. Serine protease possesses a higher affinity for cyclooxygenase (COX-I and COX-II), a key enzyme associated with production of different inflammatory mediators including interleukins (IL), prostaglandins (PGs) and thromboxane (TXs) etc. Currently, arthritis, sinusitis, bronchitis, fibrocystic breast disease, and carpal tunnel syndrome, etc. are the leading inflammatory disorders that affected the entire the globe. In order to conquer inflammation, both acute and chronic world, physician mostly relies on conventional drugs. The most common drugs to combat acute inflammation are Nonsteroidal anti-inflammatory drugs (NSAIDs) alone and or in combination with other drugs. However, during chronic inflammation, NSAIDs are often used with steroidal drugs such as autoimmune disorders. These drugs possess several limitations such as side effects, ADR, etc. In order to overcome these limitations and complications, enzyme based drugs (anti-inflammatory) emerged, and aim for a new high since the last decade. Serine protease, the largest proteolytic family has been reported for several therapeutic applications, including anti-inflammatory. Serratiopeptidase is a leading enzyme which has a very long history in medical as an effective anti-inflammatory drug. Current study emphasizes present scenario and future prospect of serratiopeptidase as an anti-inflammatory drug. The study also illustrates a comparative analysis of conventional drugs and enzyme based therapeutic to combat inflammation.

5.
Saudi J Biol Sci ; 23(4): 542-53, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27298589

RESUMO

Nigella sativa (NS) or black cumin is a dark, thin, and crescent-shaped, seeded shrub belonging to the Ranunculaceae family commonly growing on Mediterranean coasts in Saudi Arabia, northern Africa and Asia. They have amazing curative and therapeutic features that make them one of the most popular, safe, non-detrimental, and cytoprotective medicinal plant that can be used for prevention and treatment of many complicated diseases. Originally, N. sativa was used to treat migraines and allergy, and researches have shown its effectiveness in destroying cancer cells as well. The gastro protective effect of NS oil and its constituents has also been reported earlier; however, the complete perception on etiology and pathogenesis of gastric ulcer is not yet clear. Herein, we attempt to unveil some of the potential mechanisms exhibited by NS in preventing problems related to gastric ulcers. Gastric ailments like ulcers and tumors are the most common disorders of the gastro-intestinal tract in the present day life of the industrialized world. Gastric ulcer being a multifaceted problem exhibits complex etiology and is the fourth most common cause of cancer mortality. Drug interactions and toxicity are the main hindrances in chemotherapy. The existing merits and demerits of modern-day drugs make us turn toward the plant kingdom which may provide a valuable resource of novel potent natural compounds for pharmaceuticals or alternately, as dietary supplements. In this context, the revered phytotherapeutic N. sativa comes as a promising savior in today's times. This review aims to summarize, both the functional and disease-related effects in the area of gastroenterology.

6.
FEBS Open Bio ; 5: 492-501, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26110105

RESUMO

Oxidative stress within the arthritis joint has been indicated to be involved in generating mediators for tissue degeneration and inflammation. COX-2 is a mediator in inflammatory action, pain and some catabolic reactions in inflamed tissues. Here, we demonstrated a direct relationship between oxidative stress and Cox-2 expression in the bovine synovial fibroblasts. Furthermore, we elucidated a novel mechanism, in which oxidative stress induced phosphorylation of MAPKs and NF-κB through TAK1 activation and resulted in increased Cox-2 and prostaglandin E2 expression. Finally, we demonstrated that ROS-induced Cox-2 expression was inhibited by supplementation of an antioxidant such as N-acetyl cysteamine and hyaluronic acid in vitro and in vivo. From these results, we conclude that oxidative stress is an important factor for generation of Cox-2 in synovial fibroblasts and thus its neutralization may be an effective strategy in palliative therapy for chronic joint diseases.

7.
Redox Biol ; 2: 610-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25114837

RESUMO

Dihomo-γ-linolenic acid (DGLA) and its downstream fatty acid arachidonic acid (AA) are both nutritionally important ω-6 polyunsaturated fatty acids (ω-6s). Evidence shows that, via COX-mediated peroxidation, DGLA and its metabolites (1-series prostaglandins) are associated with anti-tumor activity, while AA and its metabolites (2-series prostaglandins) could be tightly implicated in various cancer diseases. However, it still remains a mystery why DGLA and AA possess contrasting bioactivities. Our previous studies showed that DGLA could go through an exclusive C-8 oxygenation pathway during COX-catalyzed lipid peroxidation in addition to a C-15 oxygenation pathway shared by both DGLA and AA, and that the exclusive C-8 oxygenation could lead to the production of distinct DGLA׳s free radical derivatives that may be correlated with DGLA׳s anti-proliferation activity. In the present work, we further investigate the anti-cancer effect of DGLA׳s free radical derivatives and their associated molecular mechanisms. Our study shows that the exclusive DGLA׳s free radical derivatives from C-8 oxygenation lead to cell growth inhibition, cell cycle arrest and apoptosis in the human colon cancer cell line HCA-7 colony 29, probably by up-regulating the cancer suppressor p53 and the cell cycle inhibitor p27. In addition, these exclusive radical derivatives were also able to enhance the efficacy of 5-Fluorouracil (5-FU), a widely used chemo-drug for colon cancer. For the first time, we show how DGLA׳s radical pathway and metabolites are associated with DGLA׳s anti-cancer activities and able to sensitize colon cancer cells to chemo-drugs such as 5-FU. Our findings could be used to guide future development of a combined chemotherapy and dietary care strategy for colon cancer treatment.


Assuntos
Ácido 8,11,14-Eicosatrienoico/metabolismo , Antineoplásicos/farmacologia , Neoplasias do Colo/patologia , Fluoruracila/farmacologia , Radicais Livres/metabolismo , Peroxidação de Lipídeos , Prostaglandina-Endoperóxido Sintases/metabolismo , Ácido 8,11,14-Eicosatrienoico/química , Apoptose/efeitos dos fármacos , Biocatálise , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Radicais Livres/química , Humanos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA