Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Front Pharmacol ; 15: 1367417, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39224778

RESUMO

Background: Hepatocellular carcinoma currently has the third highest mortality rate in the world. Patients with hepatocellular carcinoma are on the rise and at a younger age, but research into the pharmacological effects of cancer is mostly single-component, and natural plant products can have additive or synergistic effects that can better amplify the effects of intervention in cancer. Aim: To evaluate the synergistic therapeutic effects of 6-shogaol and curcumin against hepatocellular carcinoma line HepG2 cells. Methods: In this study, a network pharmacology approach was used to predict and validate the mol ecular targets and pathways of the hepatocellular carcinoma (HCC) of 6-shogaol and curcumin in combination and to investigate their mechanism of action. The results were also validated by cellular assays. HepG2 cells were treated with 6-shogaol and curcumin as well as the combination of the two. The combination index of 6-shogaol and curcumin in HepG2 cells was calculated using Compusyn software according to the Chou-Talalay equation. The synergistic anti-cancer effect was next investigated by MTT assay, apoptosis assay and cell cycle assay. The combined anti-hepatocellular carcinoma effect of the Ras-mediated PI3K/AKT and MAPK signalling pathways was analysed using protein blotting assays. Results: A network pharmacology-based screening identified 72 core targets of 6-curcumin and curcumin in hepatocellular carcinoma, and predicted that the main signalling pathway is the Ras signalling pathway. The anti-cancer effects of 6-shogaol and curcumin were validated in cell-based assays and the optimal synergistic concentrations of 5 µmoL/L for 6-shogaol and 30 µmoL/L for curcumin were determined. 6-shogaol and curcumin synergistically blocked the cell cycle in the G2/M phase and promoted apoptosis. Immunoblot analysis confirmed for the first time the combined action of both in down-regulating the Ras-mediated PI3K/AKT and MAPK signaling pathways. In addition, 6-shogaol and curcumin acting together downregulated Cyclin-B, CDK-1, Bcl-2, and upregulated BAX. Conclusion: 6-shogaol and curcumin act synergistically to alter the morphology of hepatocellular carcinoma cells, block the cell cycle in the G2/M phase, inhibit proliferation and division, and effectively promote late apoptosis. The combined action of these two components provides a theoretical basis for the further development of novel anti-liver cancer products.

2.
Mod Pathol ; 37(6): 100488, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38588881

RESUMO

Biomarker-driven therapeutic clinical trials require the implementation of standardized, evidence-based practices for sample collection. In diffuse glioma, phosphatidylinositol 3 (PI3)-kinase/AKT/mTOR (PI3/AKT/mTOR) signaling is an attractive therapeutic target for which window-of-opportunity clinical trials could facilitate the identification of promising new agents. Yet, the relevant preanalytic variables and optimal tumor sampling methods necessary to measure pathway activity are unknown. To address this, we used a murine model for isocitrate dehydrogenase (IDH)-wildtype glioblastoma (GBM) and human tumor tissue, including IDH-wildtype GBM and IDH-mutant diffuse glioma. First, we determined the impact of delayed time-to-formalin fixation, or cold ischemia time (CIT), on the quantitative assessment of cellular expression of 6 phosphoproteins that are readouts of PI3K/AK/mTOR activity (phosphorylated-proline-rich Akt substrate of 40 kDa (p-PRAS40, T246), -mechanistic target of rapamycin (p-mTOR; S2448); -AKT (p-AKT, S473); -ribosomal protein S6 (p-RPS6, S240/244 and S235/236), and -eukaryotic initiation factor 4E-binding protein 1 (p-4EBP1, T37/46). With CITs ≥ 2 hours, typical of routine clinical handling, all had reduced or altered expression with p-RPS6 (S240/244) exhibiting relatively greater stability. A similar pattern was observed using patient tumor samples from the operating room with p-4EBP1 more sensitive to delayed fixation than p-RPS6 (S240/244). Many clinical trials utilize unstained slides for biomarker evaluation. Thus, we evaluated the impact of slide storage conditions on the detection of p-RPS6 (S240/244), p-4EBP1, and p-AKT. After 5 months, storage at -80°C was required to preserve the expression of p-4EBP1 and p-AKT, whereas p-RPS6 (240/244) expression was not stable regardless of storage temperature. Biomarker heterogeneity impacts optimal tumor sampling. Quantification of p-RPS6 (240/244) expression in multiple regionally distinct human tumor samples from 8 patients revealed significant intratumoral heterogeneity. Thus, the accurate assessment of PI3K/AKT/mTOR signaling in diffuse glioma must overcome intratumoral heterogeneity and multiple preanalytic factors, including time-to-formalin fixation, slide storage conditions, and phosphoprotein of interest.


Assuntos
Neoplasias Encefálicas , Glioma , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Glioma/patologia , Glioma/metabolismo , Glioma/genética , Camundongos , Biomarcadores Tumorais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Modelos Animais de Doenças , Manejo de Espécimes/métodos
3.
Pediatr Neurol ; 153: 1-10, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38306744

RESUMO

Moebius syndrome (MBS) is a congenital cranial dysinnervation disorder (CCDD) characterized by a bilateral palsy of abducens and facial cranial nerves, which may coexist with other cranial nerves palsies, mostly those found in the dorsal pons and medulla oblongata. MBS is considered a "rare" disease, occurring in only 1:50,000 to 1:500,000 live births, with no gender predominance. Three independent theories have been described to define its etiology: the vascular theory, which talks about a transient blood flow disruption; the genetic theory, which takes place due to mutations related to the facial motor nucleus neurodevelopment; and last, the teratogenic theory, associated with the consumption of agents such as misoprostol during the first trimester of pregnancy. Since the literature has suggested the existence of these theories independently, this review proposes establishing a theory by matching the MBS molecular bases. This review aims to associate the three etiopathogenic theories at a molecular level, thus submitting a combined postulation. MBS is most likely an underdiagnosed disease due to its low prevalence and challenging diagnosis. Researching other elements that may play a key role in the pathogenesis is essential. It is common to assume the difficulty that patients with MBS have in leading an everyday social life. Research by means of PubMed and Google Scholar databases was carried out, same in which 94 articles were collected by using keywords with the likes of "Moebius syndrome," "PLXND1 mutations," "REV3L mutations," "vascular disruption AND teratogens," and "congenital facial nerve palsy." No exclusion criteria were applied.


Assuntos
Paralisia Facial , Síndrome de Möbius , Humanos , Síndrome de Möbius/genética , Síndrome de Möbius/diagnóstico , Teratogênicos/toxicidade , Nervo Facial , Mutação , DNA Polimerase Dirigida por DNA/genética , Proteínas de Ligação a DNA/genética
4.
Transl Oncol ; 43: 101857, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38412661

RESUMO

Targeting aberrantly expressed kinases in malignant pleural mesothelioma (MPM) is a promising therapeutic strategy. We here investigated the effect of the novel and highly selective Phosphoinositide 3-kinase delta (PI3K-δ) inhibitor roginolisib (IOA-244) on MPM cells and on the immune cells in MPM microenvironment. To this aim, we analyzed the expression of PI3K-δ by immunohistochemistry in specimens from primary MPM, cell viability and death in three different MPM cell lines treated with roginolisib alone and in combination with ipatasertib (AKT inhibitor) and sapanisertib (mTOR inhibitor). In a co-culture model of patient-derived MPM cells, autologous peripheral blood mononuclear cells and fibroblasts, the tumor cell viability and changes in immune cell composition were investigated after treatment of roginolisib with nivolumab and cisplatin. PI3K-δ was detected in 66/89 (74%) MPM tumors and was associated with reduced overall survival (12 vs. 25 months, P=0.0452). Roginolisib induced apoptosis in MPM cells and enhanced the anti-tumor efficacy of AKT and mTOR kinase inhibitors by suppressing PI3K-δ/AKT/mTOR and ERK1/2 signaling. Furthermore, the combination of roginolisib with chemotherapy and immunotherapy re-balanced the immune cell composition, increasing effector T-cells and reducing immune suppressive cells. Overall, roginolisib induces apoptosis in MPM cells and increases the antitumor immune cell effector function when combined with nivolumab and cisplatin. These results provide first insights on the potential of roginolisib as a therapeutic agent in patients with MPM and its potential in combination with established immunotherapy regimen.

5.
Mol Neurobiol ; 61(2): 1100-1118, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37682453

RESUMO

Neurodegenerative diseases constitute a major threat to human health and are usually accompanied by progressive structural and functional loss of neurons. Abnormalities in synaptic plasticity are involved in neurodegenerative disorders. Aberrant cell signaling cascades play a predominant role in the initiation, progress as well as in the severity of these ailments. Notch signaling is a pivotal role in the maintenance of neural stem cells and also participates in neurogenesis. PI3k/Akt cascade regulates different biological processes including cell proliferation, apoptosis, and metabolism. It regulates neurotoxicity and mediates the survival of neurons. Moreover, the activated BDNF/TrkB cascade is involved in promoting the transcription of genes responsible for cell survival and neurogenesis. Despite significant progress made in delineating the underlying pathological mechanisms involved and derangements in cellular metabolic promenades implicated in these diseases, satisfactory strategies for the clinical management of these ailments are yet to be achieved. Therefore, the molecules targeting these cell signaling cascades may emerge as useful leads in developing newer management strategies. Osthole is an important ingredient of traditional Chinese medicinal plants, often found in various plants of the Apiaceae family and has been observed to target these aforementioned mediators. Until now, no review has been aimed to discuss the possible molecular signaling cascades involved in osthole-mediated neuroprotection at one platform. The current review aimed to explore the interplay of various mediators and the modulation of the different molecular signaling cascades in osthole-mediated neuroprotection. This review could open new insights into research involving diseases of neuronal origin, especially the effect on neurodegeneration, neurogenesis, and synaptic plasticity. The articles gathered to compose the current review were extracted by using the PubMed, Scopus, Science Direct, and Web of Science databases. A methodical approach was used to integrate and discuss all published original reports describing the modulation of different mediators by osthole to confer neuroprotection at one platform to provide possible molecular pathways. Based on the inclusion and exclusion criteria, 32 articles were included in the systematic review. Moreover, literature evidence was also used to construct the biosynthetic pathway of osthole. The current review reveals that osthole promotes neurogenesis and neuronal functioning via stimulation of Notch, BDNF/Trk, and P13k/Akt signaling pathways. It upregulates the expression of various proteins, such as BDNF, TrkB, CREB, Nrf-2, P13k, and Akt. Activation of Wnt by osthole, in turn, regulates downstream GSK-1ß to inhibit tau phosphorylation and ß-catenin degradation to prevent neuronal apoptosis. The activation of Wnt and inhibition of oxidative stress, Aß, and GSK-3ß mediated ß-catenin degradation by osthole might also be involved in mediating the protection against neurodegenerative diseases. Furthermore, it also inhibits neuroinflammation by suppressing MAPK/NF-κB-mediated transcription of genes involved in the generation of inflammatory cytokines and NLRP-3 inflammasomes. This review delineates the various underlying signaling pathways involved in mediating the neuroprotective effect of osthole. Modulation of Notch, BDNF/Trk, MAPK/NF-κB, and P13k/Akt signaling pathways by osthole confers protection against neurodegenerative diseases. The preclinical effects of osthole suggest that it could be a valuable molecule in inspiring the development of new drugs for the management of neurodegenerative diseases and demands clinical studies to explore its potential. An effort has been made to unify the varied mechanisms and target sites involved in the neuroprotective effect of osthole. The comprehensive description of the molecular pathways in the present work reflects its originality and thoroughness. The reviewed literature findings may be extrapolated to suggest the role of othole as a "biological response modifier" which contributes to neuroprotection through kinase modulatory, immunomodulatory, and anti-oxidative activity, which is documented even at lower doses. The current review attempts to emphasize the gaps in the existing literature which can be explored in the future.


Assuntos
Cumarínicos , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , beta Catenina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , NF-kappa B/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Transdução de Sinais
6.
J Biochem Mol Toxicol ; 38(1): e23576, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37906532

RESUMO

Arsenic (As) toxicity can generate reactive free radicals, which play an important role in the evolution of cardiomyopathy. The aim of this research is to see if sulforaphane (SFN) protects against As-induced heart damage, oxidative stress, and mitochondrial complex dysfunction via the PI3K/Akt/Nrf2 signaling pathway. The rats were placed into four groups, each with eight rats. Group 1: Normal rats (control group); Group 2: Treatment group (5 mg/kg body weight); Group 3: SFN+As-treatment group (80 mg/kg body weight + 5 mg/kg body weight); Group 4: SFN group only (80 mg/kg body weight). The swot will last 4 weeks. At the end of the intermission (28 days), all of the rats starved overnight and killed with cervical decapitation. As administration considerably (p < 0.05) inflated the extent of free radicals (O2-, OH-), lipoid peroxidation (malondialdehyde, 4-hydroxynonenal), lipoid profile (low-density lipoprotein-cholesterol, very low-density lipoprotein-cholesterol (VLDL-C), total cholesterol, triglyceride, and phospholipids), cardiac Troponin (cTnT&I), and Mitochondrial complex III. A noteworthy (p < 0.05) diminish the level of HDL-C, Mitochondrial complex I and II, enzymatic (superoxide dismutase, catalase, and glutathione peroxidase), and nonenzymatic antioxidant (glutathione and total sulfhydryl groups) and PI3k, Akt, and Nrf2 sequence in As treated rats. The western blot, real-time polymerase chain reaction, flowcytometric, and histology studies all corroborated the biochemical findings which revealed significant heart damage in rats. Pretreatment with SFN significantly (p < 0.05) reduced the invitro free radicals, lipid oxidative indicators, mitochondrial complex, lipid profiles, and increased phase II antioxidants in the heart. This result shows that dietary supplementation of SFN protects against As-induced cardiotoxicity via PI3k/Akt/Nrf2 pathway in rats.


Assuntos
Arsênio , Sulfóxidos , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/prevenção & controle , Estresse Oxidativo , Isotiocianatos/farmacologia , Antioxidantes/farmacologia , Transdução de Sinais , Radicais Livres , Peso Corporal , Lipoproteínas LDL/metabolismo , Colesterol , Lipídeos
7.
Braz. dent. sci ; 27(1): 1-10, 2024. ilus, tab
Artigo em Inglês | LILACS, BBO - odontologia (Brasil) | ID: biblio-1552196

RESUMO

Oral Submucous Fibrosis is a potentially malignant disorder caused by habitual areca nut chewing, which contributes to the dispersion of active alkaloids into subepithelial tissues, stimulating excessive extracellular matrix deposition. Various treatment modalities are available; however, their efficacy in inhibiting fibrosis progression remains limited. Sulforaphane (SFN), an isothiocyanate found abundantly in cruciferous plants, is known to have effective antifibrotic properties. Objective: The present study investigated the antifibrotic effect of SFN via phosphatidylinositol 3 kinase (PI3K), Serine/Threonine Kinase 1 (AKT-1), mammalian target of rapamycin (mTOR) pathway in arecoline (AER) induced fibrosis in human gingival fibroblasts [HGFs]. Material and Methods: MTT assay determined the half-maximal inhibitory concentration of AER and SFN at 24h in the HGF cell line. Expression levels of transforming growth factor ß1 (TGFß1), collagen type 1 alpha 2 (COL1A2), hydroxyproline (HYP), PI3, AKT, mTOR, and nuclear factor erythroid 2­related factor 2 (NRF2) were assessed post-AER and SFN treatment using qPCR and western blot analysis. Results: The findings of the study revealed that AER elicited a stimulatory effect, upregulating TGFß1, COL1A2, HYP, PI3K, AKT, and mTOR and downregulating NRF2 expression. Conversely, SFN treatment significantly upregulated NRF2, inhibiting TGFß1 mediated PI3/AKT/mTOR pathway. Conclusion: These observations suggest that SFN can be used as a promising synergistic antifibrotic agent to combat fibrogenesis via the non-Smad pathway (AU)


Fibrose submucosa oral é uma desordem potencialmente maligna causada pelo habito de mascar a noz da areca, o que contribui para a dispersão de alcalóides ativos nos tecidos subepiteliais, estimulando a deposição excessiva de matriz extracelular. Há várias modalidades terapêuticas, no entanto, com eficácia limitada no controle da progressão da fibrose. O sulforafano (SFN), isotiocianato encontrado abundantemente em plantas crucíferas, é conhecido por suas propriedades antifibróticas. Objetivo: Investigar os efeitos antifibróticos do SFN na via fosfatidilinositol3-quinase (PI3K), via quinase serina/treonina 1 (AKT-1), via do alvo da rapamicina em mamíferos (mTOR), na fibrose induzida por arecolina (AER) em fibroblastos gengivais de humanos (HGFs). Material e Métodos: A meia concentração inibitória mínima de AER e SFN em 24 horas nas células HGFs foi determinada por MTT. Os níveis de expressão de ß1 (TGFß1), colágeno tipo 1 alfa 2 (COL1A2), hidroxiprolina (HYP), PI3K, AKT, mTOR, fator nuclear eritroide 2 relacionado ao fator 2 (NRF2) foram analisados após tratamento com ERA e SFN através de qPCR e western blot. Resultados: O ERA apresentou efeito estimulatório aumentando a expressão de TGFß1, COL1A2, HYP, PI3K, AKT e mTOR e diminuindo a expressão de NRF2. Por outro lado, tratamento com SFN aumentou significativamente a expressão de NRF2, inibindo a liberação de TGFß1 mediada pela via PI3/AKT/mTOR. Conclusão: Esses achados sugerem que o SFN pode ser um agente antifibrótico promissor no combate à fibrogênese decorrente da via não-Smad (AU)


Assuntos
Fibrose Oral Submucosa , Arecolina , Fator 2 Relacionado a NF-E2
8.
Mol Cell Biochem ; 478(6): 1307-1324, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36308670

RESUMO

Insulin resistance is common in type 2 diabetes mellitus (T2DM), neurodegenerative diseases, cardiovascular diseases, kidney diseases, and polycystic ovary syndrome. Impairment in insulin signaling pathways, such as the PI3K/Akt/mTOR pathway, would lead to insulin resistance. It might induce the synthesis and deposition of advanced glycation end products (AGEs), reactive oxygen species, and reactive nitrogen species, resulting in stress, protein misfolding, protein accumulation, mitochondrial dysfunction, reticulum function, and metabolic syndrome dysregulation, inflammation, and apoptosis. It plays a huge role in various neurodegenerative diseases like Parkinson's disease, Alzheimer's disease, Huntington's disease, and Amyloid lateral sclerosis. In this review, we intend to focus on the possible effect of insulin resistance in the progression of neurodegeneration via the impaired P13K/Akt/mTOR signaling pathway, AGEs, and receptors for AGEs.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Doenças Neurodegenerativas , Feminino , Humanos , Doenças Neurodegenerativas/metabolismo , Insulina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Produtos Finais de Glicação Avançada/metabolismo
9.
Fundam Clin Pharmacol ; 37(1): 4-30, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35996185

RESUMO

Neurodegeneration is a pathological process characterized by progressive neuronal impairment, dysfunction, and loss due to mitochondrial dysfunction, oxidative stress, inflammation, and apoptosis. Many studies have shown that lithium protects against neurodegeneration. Herein, we summarize recent clinical and laboratory studies on the neuroprotective effects of lithium against neurodegeneration and its potential to modulate mitochondrial dysfunction, oxidative stress, inflammation, and apoptosis. Recent findings indicate that lithium regulates critical intracellular pathways such as phosphatidylinositol-3 (PI3)/protein kinase B (Akt)/glycogen synthase kinase-3 (GSK3ß) and PI3/Akt/response element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF). We queried PubMed, Web of Science, Scopus, Elsevier, and other related databases using search terms related to lithium and its neuroprotective effect in various neurodegenerative diseases and events from January 2000 to May 2022. We reviewed the major findings and mechanisms proposed for the effects of lithium. Lithium's neuroprotective potential against neural cell degeneration is mediated by inducing anti-inflammatory factors, antioxidant enzymes, and free radical scavengers to prevent mitochondrial dysfunction. Lithium effects are regulated by two essential pathways: PI3/Akt/GSK3ß and PI3/Akt/CREB/BDNF. Lithium acts as a neuroprotective agent against neurodegeneration by preventing inflammation, oxidative stress, apoptosis, and mitochondrial dysfunction using PI3/Akt/GSK3ß and PI3/Akt/CREB/BDNF signaling pathways.


Assuntos
Lítio , Fármacos Neuroprotetores , Humanos , Lítio/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glicogênio Sintase Quinase 3 beta , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Apoptose , Inflamação/tratamento farmacológico
10.
Int J Mol Sci ; 23(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36430934

RESUMO

Renal luminal sodium transport is essential for physiological blood pressure control, and abnormalities in this process are strongly implicated in the pathogenesis of essential hypertension. Renal G protein-coupled receptors (GPCRs) are critical for the regulation of the reabsorption of essential nutrients, ions, and water from the glomerular filtrate. Recently, we showed that GPCR 37L1 (GPR37L1) is expressed on the apical membrane of renal proximal tubules (RPT) and regulates luminal sodium transport and blood pressure by modulating the function of the sodium proton exchanger 3 (NHE3). However, little is known about GPR37L1 intracellular signaling. Here, we show that GPR37L1 is localized to the nuclear membrane, in addition to the plasma membrane in human RPT cells. Furthermore, GPR37L1 signals via the PI3K/AKT/mTOR pathway to decrease the expression of DNA (cytosine-5)-methyltransferase 1 (DNMT1) and enhance NHE3 transcription. Overall, we demonstrate the direct role of a nuclear membrane GPCR in the regulation of renal sodium through epigenetic gene regulation.


Assuntos
Fosfatidilinositol 3-Quinases , Trocadores de Sódio-Hidrogênio , Humanos , Trocador 3 de Sódio-Hidrogênio/genética , Trocador 3 de Sódio-Hidrogênio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Sódio/metabolismo , Epigênese Genética
11.
Mol Cells ; 45(6): 376-387, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35611687

RESUMO

Extracellular vesicles (EVs) play an essential role in the communication between cells and the tumor micro-environment. However, the effect of tumor-derived EVs on the growth and metastasis of lung adenocarcinoma (LUAD) remains to be explored. This study aimed to elucidate the role of miR-153-3p-EVs in the invasion and migration capabilities of LUAD cells and explore its mechanism through in vivo and in vitro experiments. We found that miR-153-3p was specifically and highly expressed in LUAD and its secreted EVs. Furthermore, the expression of BANCR was negatively regulated by miR-153-3p and identified as a target gene of miR-153-3p using luciferase reporter assays. Through further investigation, we found that the downregulation of BANCR activates the PI3K/AKT pathway and accelerates the process of epithelial-mesenchymal transition (EMT), which ultimately leads to the aggravation of LUAD. The orthotopic xenograft mouse model was established to illustrate the effect of miR-153-3p-EVs on LUAD. Animal studies showed that miR-153-3p-EVs accelerated tumor growth in mice. Besides, we found that miR-153-3p-EVs could damage the respiratory ability of mice and produce a mass of inflammatory cells around the lung tissue of mice. Nevertheless, antagomir-153-3p treatment could inhibit the deterioration of respiratory function and inhibit the growth of lung tumors in mice. In conclusion, our study reveals the potential molecular mechanism of miR-153-3p-EVs in the development of LUAD and provides a potential strategy for the treatment of LUAD.


Assuntos
Adenocarcinoma de Pulmão , Vesículas Extracelulares , Neoplasias Pulmonares , MicroRNAs , Adenocarcinoma de Pulmão/patologia , Animais , Proliferação de Células/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Humanos , Neoplasias Pulmonares/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases , Microambiente Tumoral
12.
J Hazard Mater ; 432: 128654, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35286933

RESUMO

Fluoride at high doses is a well-known toxic agent for the musculoskeletal system, primarily in bone and cartilage cells. Research on fluoride toxicity concerning particularly on the skeletal muscle is scanty. We hypothesized that during skeletal fluorosis, along with bone, muscle is also affected, so we have evaluated the effects of Sodium fluoride (NaF) on mouse skeletal muscles. Sodium fluoride (80 ppm) was administered to 5-week-old C57BL6 mice drinking water for 15 and 60 days, respectively. We carried out histology, primary culture, molecular and proteomic analysis of fluoride administered mouse skeletal muscles. Results indicated an increase in the muscle mass (hypertrophy) in vivo and myotubes ex vivo by activating the IGF1/PI3/Akt/mTOR signalling pathway due to short term NaF exposure. The long-term exposure of mice to NaF caused loss of muscle proteins leading to muscle atrophy due to activation of the ubiquitin-proteasome pathway. Differentially expressed proteins were characterized and mapped using a proteomic approach. Moreover, the factors responsible for protein synthesis and PI3/Akt/mTOR pathway were upregulated, leading to muscle hypertrophy during the short term NaF exposure. Long term exposure to NaF resulted in down-regulation of metabolic pathways. Elevated myostatin resulted in the up-regulation of the muscle-specific E3 ligases-MuRF1, promoting the ubiquitination and proteasome-mediated degradation of critical sarcomeric proteins.


Assuntos
Água Potável , Fluoreto de Sódio , Animais , Fluoretos/toxicidade , Hipertrofia/induzido quimicamente , Hipertrofia/metabolismo , Hipertrofia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fluoreto de Sódio/metabolismo , Fluoreto de Sódio/toxicidade , Serina-Treonina Quinases TOR/metabolismo
13.
Front Pharmacol ; 12: 666502, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366841

RESUMO

Sporadic Alzheimer's disease (AD) is the most common neurodegenerative disorder with cognitive dysfunction. Remarkably, alteration in the gut microbiome and resultant insulin resistance has been shown to be connected to metabolic syndrome, the crucial risk factor for AD, and also to be implicated in AD pathogenesis. Thus, this study, we assessed the efficiency of probiotics fermentation technology (PFT), a kefir product, in enhancing insulin signaling via modulation of gut microbiota to halt the development of AD. We also compared its effectiveness to that of pioglitazone, an insulin sensitizer that has been confirmed to substantially treat AD. AD was induced in mice by a single injection of intracerebroventricular streptozotocin (STZ; 3 mg/kg). PFT (100, 200, 400 mg/kg) and pioglitazone (30 mg/kg) were administered orally for 3 weeks. Behavioral tests were conducted to assess cognitive function, and hippocampal levels of acetylcholine (Ach) and ß-amyloid (Aß1-42) protein were assessed along with histological examination. Moreover, the expression of the insulin receptor, insulin degrading enzyme (IDE), and the phosphorylated forms of phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), glycogen synthase kinase-3ß (GSK-3ß), mammalian target of rapamycin (mTOR), and tau were detected. Furthermore, oxidative stress and inflammatory biomarkers were estimated. Treatment with PFT reversed STZ-induced neurodegeneration and cognitive impairment, enhanced hippocampal Ach levels, and reduced Aß1-42 levels after restoration of IDE activity. PFT also improved insulin signaling, as evidenced by upregulation of insulin receptor expression and activation of PI3K/Akt signaling with subsequent suppression of GSK-3ß and mTOR signaling, which result in the downregulation of hyperphosphorylated tau. Moreover, PFT significantly diminished oxidative stress and inflammation induced by STZ. These potential effects were parallel to those produced by pioglitazone. Therefore, PFT targets multiple mechanisms incorporated in the pathogenesis of AD and hence might be a beneficial therapy for AD.

14.
Exp Neurol ; 341: 113697, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33727095

RESUMO

Epidermal growth factor receptor (EGFR) signaling plays a substantial role in learning and memory. The upregulation of EGFR has been embroiled in the pathophysiology of Alzheimer's disease (AD). Nevertheless, most of EGFR-tyrosine kinase inhibitors (EGFR-TKIs) have been extensively studied for non-CNS diseases such as cancer and rheumatoid arthritis. TKIs targeting-based research in neurodegenerative disorders sounds to be lagging behind those of other diseases. Hence, this study aims to explore the molecular signaling pathways and the efficacy of treatment with lapatinib ditosylate (LAP), as one of EGFR-TKIs that has not yet been investigated in AD, on cognitive decline induced by ovariectomy (OVX) with chronic administration of D-galactose (D-gal) in female Wistar albino rats. OVX rats were injected with 150 mg/kg/day D-gal ip for 8 weeks to induce AD. Administration of 100 mg/kg/day LAP p.o. for 3 weeks starting after the 8th week of D-gal administration improved memory and debilitated histopathological alterations. LAP decreased the expression of GFAP, p-tau, and Aß 1-42. Besides, it reduced EGFR, HER-2, TNF-α, NOX-1, GluR-II, p38 MAPK, and p-mTOR. LAP increased nitrite, and neuronal pro-survival transduction proteins; p-PI3K, p-AKT, and p-GSK-3ß levels. Taken together, these findings suggest the role of LAP in ameliorating D-gal-induced AD in OVX rats via activating the pro-survival pathway; PI3K-Akt-GSK-3ß, while inhibiting p-mTOR, NOX-1, and p38 MAPK pathways. Moreover, this research offered a significant opportunity to advance awareness of the repositioning of TKI anti-cancer drugs for the treatment of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Reposicionamento de Medicamentos/métodos , Galactose/toxicidade , Lapatinib/uso terapêutico , Transtornos da Memória/tratamento farmacológico , Ovariectomia/efeitos adversos , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Relação Dose-Resposta a Droga , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Lapatinib/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Fragmentos de Peptídeos/metabolismo , Ratos , Ratos Wistar , Resultado do Tratamento
15.
Mini Rev Med Chem ; 21(13): 1646-1665, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33402081

RESUMO

During cancer progression, the unrestricted proliferation of cells is supported by the impaired cell death response provoked by certain oncogenes. Both autophagy and apoptosis are the signaling pathways of cell death, which are targeted for cancer treatment. Defects in apoptosis result in reduced cell death and ultimately tumor progression. The tumor cells lacking apoptosis phenomena are killed by ROS- mediated autophagy. The autophagic programmed cell death requires apoptosis protein for inhibiting tumor growth; thus, the interconnection between these two pathways determines the fate of a cell. The cross-regulation of autophagy and apoptosis is an important aspect to modulate autophagy, apoptosis and to sensibilise apoptosis-resistant tumor cells under metabolic stress and might be a rational approach for drug designing strategy for the treatment of cancer. Numerous proteins involved in autophagy have been investigated as the druggable target for anticancer therapy. Several compounds of natural origin have been reported, to control autophagy activity through the PI3K/Akt/mTOR key pathway. Diosgenin, a steroidal sapogenin has emerged as a potential candidate for cancer treatment. It induces ROS-mediated autophagy, inhibits PI3K/Akt/mTOR pathway, and produces cytotoxicity selectively in cancer cells. This review aims to focus on optimal strategies using diosgenin to induce apoptosis by modulating the pathways involved in autophagy regulation and its potential implication in the treatment of various cancer. The discussion has been extended to the medicinal chemistry of semi-synthetic derivatives of diosgenin exhibiting anticancer activity.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Diosgenina/análogos & derivados , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Diosgenina/farmacologia , Diosgenina/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
16.
Mol Neurobiol ; 58(1): 184-203, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32914394

RESUMO

Misfolding and accumulation of aberrant α-synuclein in the brain is associated with the distinct class of neurodegenerative diseases known as α-synucleinopathies, which include Parkinson's disease, dementia with Lewy bodies and multiple system atrophy. Pathological changes in astrocytes contribute to all neurological disorders, and astrocytes are reported to possess α-synuclein inclusions in the context of α-synucleinopathies. Astrocytes are known to express and secrete numerous growth factors, which are fundamental for neuroprotection, synaptic connectivity and brain metabolism; changes in growth factor secretion may contribute to pathobiology of neurological disorders. Here we analysed the effect of α-synuclein overexpression in cultured human astrocytes on growth factor expression and release. For this purpose, the intracellular and secreted levels of 33 growth factors (GFs) and 8 growth factor receptors (GFRs) were analysed in cultured human astrocytes by chemiluminescence-based western/dot blot. Overexpression of human α-synuclein in cultured foetal human astrocytes significantly changes the profile of GF production and secretion. We found that human astrocytes express and secrete FGF2, FGF6, EGF, IGF1, AREG, IGFBP2, IGFBP4, VEGFD, PDGFs, KITLG, PGF, TGFB3 and NTF4. Overexpression of human α-synuclein significantly modified the profile of GF production and secretion, with particularly strong changes in EGF, PDGF, VEGF and their receptors as well as in IGF-related proteins. Bioinformatics analysis revealed possible interactions between α-synuclein and EGFR and GDNF, as well as with three GF receptors, EGFR, CSF1R and PDGFRB.


Assuntos
Astrócitos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , alfa-Sinucleína/metabolismo , Forma Celular , Células Cultivadas , Humanos , Espaço Intracelular/metabolismo , Mapas de Interação de Proteínas
17.
Int J Mol Cell Med ; 9(1): 1-32, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32832482

RESUMO

Neurodegeneration is a gradual mechanism of neuronal loss arising from numerous cellular and molecular events such as mitochondrial dysfunction, oxidative stress, inflammation, and apoptosis, and the consequence of these processes is neuroplasticity impairment, cognitive diseases, mood-related diseases, and normal cellular activity. Over the last year, major advances have been made in the field of the introduction of herbal compounds with neuroprotective efficacy, one of which is curcumin. Curcumin (diferuloylmethane) is the most abundant turmeric component extracted from the Curcuma longa plant rhizomes. Accumulating evidence indicates that curcumin may induce mitochondrial biogenesis and can function as an antioxidant, anti-inflammatory, and anti-apoptotic agent, which may be used effectively to treat chronic neurodegenerative diseases and any situation in which the neurodegeneration process takes place. Curcumin has been shown to play a critical role in activating two essential signaling pathways phosphatidylinositol-3(PI3)/ protein kinase B(Akt)/ glycogen synthase kinase-3 (GSK3) and PI3/Akt/cAMP response element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF) and preventing the incidence of neurodegeneration via these two pathways. Curcumin's protective functions against neural cell degeneration due to mitochondrial dysfunction and consequent events such as oxidative stress, inflammation, and apoptosis in neural cells have been documented and clinical data have increased to suggest that curcumin may be a standard candidate as a neuroprotective agent. Therefore, in this review, we summarized the clinical and experimental studies and interpreted the key contributory mechanisms of neuroprotective properties of curcumin in neurodegenerative diseases and disorders. We also tried to understand the function of PI3/Akt/GSK3 and PI3/Akt/CREB/BDNF signaling pathways in the neuroprotective properties of curcumin and tried to evaluate their association with antioxidant, anti-inflammatory, anti-apoptosis and biogenesis effects of mitochondria.

18.
Viruses ; 12(6)2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575590

RESUMO

HIV-1 is a global health crisis that has infected more than 37 million people. Latent reservoirs throughout the body are a major hurdle when it comes to eradicating the virus. In our previous study, we found that exosomes, a type of extracellular vesicle (EV), from uninfected cells activate the transcription of HIV-1 in latent infected cells, regardless of combination antiretroviral therapy (cART). In this study, we investigated the specific mechanism behind the EV activation of latent HIV-1. We found that phosphorylated c-Src is present in EVs of various cell lines and has the ability to activate downstream proteins such as EGFR, initiating a signal cascade. EGFR is then able to activate the PI3K/AKT/mTOR pathway, resulting in the activation of STAT3 and SRC-1, culminating in the reversal of HIV-1 latency. This was verified by examining levels of HIV-1 TAR, genomic RNA and HIV-1 Gag p24 protein in cell lines and primary cells. We found that EVs containing c-Src rescued HIV-1 despite the presence of inhibitors, validating the importance of EV-associated c-Src in latent HIV-1 activation. Lastly, we discovered an increased recruitment of p300 and NF-κB in the nucleus of EV-treated infected cells. Collectively, our data suggest that EV-associated c-Src is able to activate latent HIV-1 via the PI3K/AKT/mTOR pathway and SRC-1/p300-driven chromatin remodeling. These findings could aid in designing new strategies to prevent the reactivation of latent HIV-1 in patients under cART.


Assuntos
Exossomos/metabolismo , HIV-1/crescimento & desenvolvimento , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Ativação Viral/fisiologia , Latência Viral/fisiologia , Linhagem Celular Tumoral , Proteína p300 Associada a E1A/metabolismo , Receptores ErbB/metabolismo , Vesículas Extracelulares/metabolismo , Proteína do Núcleo p24 do HIV/metabolismo , Infecções por HIV , Humanos , Células Jurkat , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fator de Transcrição STAT3/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transcrição Gênica/genética , Ativação Transcricional/genética , Células U937
19.
Food Chem Toxicol ; 135: 110925, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31676349

RESUMO

Manganese (Mn), an essential micronutrient, has the potential to induce apoptosis. The NT3/TrkC ligand/receptor pair known as part of the classic neurotrophic theory plays a critical role in neuronal survival. However, whether the NT3/TrkC-mediated signaling pathways are involved in Mn-induced apoptosis of cortical neurons remains unknown. The present study was designed to investigate the interactions between NT3/TrkC-mediated signaling pathways and Mn-induced apoptosis in cortical neurons. This study showed that subacute Mn exposure significantly increased the levels of pro-apoptotic Bax while decreasing the levels of anti-apoptotic Bcl 2 in the cortex compared with the corresponding control. Markedly reduced NT3 and TrkC levels along with decreased Ras/MAPK and PI3/Akt signaling in the cortex were observed following subacute Mn exposure. We further found increased levels of Bax, cleaved caspase-3, and the total apoptosis rate, and decreased levels of Bcl 2, NT3, TrkC, and Ras/MAPK and PI3/Akt signaling in Mn-treated primary cortical neurons. Pretreatment with hNT3 or Z-VAD-FAM ameliorated Mn-induced apoptosis by increasing the levels of NT3 and TrkC and its Ras/MAPK and PI3/Akt signaling pathways. Taken together, our findings clearly indicate that NT3/TrkC and mediated Ras/MAPK and PI3/Akt signaling pathways play a crucial role in Mn-induced neurotoxicity.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Manganês/toxicidade , Neurônios/efeitos dos fármacos , Neurotrofina 3/metabolismo , Receptor trkC/metabolismo , Animais , Apoptose/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteínas ras/metabolismo
20.
Cancer Cell Int ; 19: 283, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31719796

RESUMO

BACKGROUND: Tripartite motif­containing 27 (TRIM27) belongs to the TRIM protein family, which is closely related to the progression of some certain human cancers. Nevertheless, the biological function of TRIM27 in esophageal squamous cell carcinoma (ESCC) is still not clear. The aim of present research is to examine the function of TRIM27 in ESCC cells. METHODS: In the present study, RNA interference (RNAi) and lentiviral vector were used to knockdown and overexpression of TRIM27 in ESCC cells respectively. qRT-PCR and western blot were used to examine the expression of TRIM27 in ESCC cells. Cell counting kit-8 (CCK-8) assay was performed to determine the proliferation of cells. RESULTS: Our analyses indicated that TRIM27 was a pro-proliferation factor in ESCC cells. Moreover, overexpression of TRIM27 deeply suppressed the apoptosis of ESCC cells and accelerated its glucose uptake. In addition, an AKT inhibitor LY294002 was used to determine the connection between TRIM27 and AKT in ESCC cells. Our results demonstrated that TRIM27 has involved in the PI3/AKT signaling pathway. Moreover, TRIM27 interacted with PTEN and mediated its poly-ubiquitination in ESCC cells. Importantly, the glycolysis inhibitor 3-BrPA also inhibited the effect of TRIM27 on ESCC cells. Hence, TRIM27 also participated in the regulation of energy metabolism in ESCC cells. CONCLUSIONS: This research not only gained a deep insight into the biological function of TRIM27 but also elucidated its potential target and signaling pathway in human ESCC cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA