Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Virus Res ; 327: 199052, 2023 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-36775023

RESUMO

African swine fever (ASF) is a severe infectious disease that has a high global prevalence. The fatality rate of pigs infected with ASF virus (ASFV) is close to 100%; in the absence of a safe and reliable commercial vaccine, this poses a threat to the global pig industry and public health. To better understand the interaction of ASFV with its host, isobaric tags for relative and absolute quantitation combined with liquid chromatography-mass spectrometry was used to conduct quantitative proteomic analysis of bone marrow-derived macrophage cells infected with ASFV. Overall, 4579 proteins were identified; 286 of these were significantly upregulated and 69 were significantly downregulated after ASFV infection. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and protein-protein interaction network analyses were used to obtain insights into the dynamics and complexity of the ASFV-host interaction. In addition, immunoblotting revealed that the expression of PIK3AP1, RNF114, and FABP5 was upregulated and that of TRAM1 was downregulated after ASFV infection. Overexpression of PIK3AP1 and RNF114 significantly inhibited ASFV replication in vitro, but the suppressive effect of PIK3AP1 on ASFV replication was independent of the PI3K-Akt pathway. Further studies confirmed that ASFV MGF360-9L interacts with PIK3AP1 to reduce its protein expression level. Moreover, LY294002, an inhibitor of the PI3K-Akt pathway, inhibited ASFV replication, indicating the importance of the PI3K-Akt pathway in ASFV infection. This study identified the network of interactions between ASFV and host cells and provides a reference for the development of anti-ASFV strategies and for studying the potential mechanisms and pathogenesis of ASFV infection.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Proteômica , Replicação Viral
2.
Viruses ; 14(11)2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36366450

RESUMO

Mucoepidermoid Carcinomas (MEC) represent the most common malignancies of salivary glands. Approximately 50% of all MEC cases are known to harbor CRTC1/3-MAML2 gene fusions, but the additional molecular drivers remain largely uncharacterized. Here, we sought to resolve controversy around the role of human papillomavirus (HPV) as a potential driver of mucoepidermoid carcinoma. Bioinformatics analysis was performed on 48 MEC transcriptomes. Subsequent targeted capture DNA sequencing was used to annotate HPV content and integration status in the host genome. HPV of any type was only identified in 1/48 (2%) of the MEC transcriptomes analyzed. Importantly, the one HPV16+ tumor expressed high levels of p16, had high expression of HPV16 oncogenes E6 and E7, and displayed a complex integration pattern that included breakpoints into 13 host genes including PIK3AP1, HIPI, OLFM4,SIRT1, ARAP2, TMEM161B-AS1, and EPS15L1 as well as 9 non-genic regions. In this cohort, HPV is a rare driver of MEC but may have a substantial etiologic role in cases that harbor the virus. Genetic mechanisms of host genome integration are similar to those observed in other head and neck cancers.


Assuntos
Alphapapillomavirus , Carcinoma Mucoepidermoide , Infecções por Papillomavirus , Humanos , Carcinoma Mucoepidermoide/genética , Carcinoma Mucoepidermoide/metabolismo , Carcinoma Mucoepidermoide/patologia , Proteínas de Ligação a DNA/genética , Papillomaviridae/genética , Transativadores/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética
3.
Mol Cell Biochem ; 477(3): 649-661, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34870753

RESUMO

One of the most prevalent forms of endocrine malignancies is thyroid cancer. Herein, we explored the mechanisms whereby miR-1246 is involved in thyroid cancer. Phosphoinositide 3-kinase adapter protein 1 (PIK3AP1) was identified as a potential miR-1246 target, with the online Gene Expression Omnibus (GEO) database. The binding between miR-1246 and PIK3AP1 and the dynamic role of these two molecules in downstream PI3K/AKT signaling were evaluated. Analysis of GEO data demonstrated significant miR-1246 downregulation in thyroid cancer, and we confirmed that overexpression of miR-1246 can inhibit migratory, invasive, and proliferative activity in vitro and tumor growth in vivo. Subsequent studies indicated that miR-1246 overexpression decreased the protein level of PIK3AP1 and the phosphorylation of PI3K and AKT, which were reversed by PIK3AP1 overexpression. At the same time, overexpression of PIK3AP1 also reversed the miR-1246 mimics-induced inhibition proliferative, migratory, and invasive activity, while promoting increases in apoptotic death, confirming that miR-1246 function was negatively correlated with that of PIK3AP1. Subsequently, we found that the miR-1246 mimics-induced inhibition of PI3K/AKT phosphorylation was reversed by the PI3K/AKT activator IGF-1. miR-1246 mimics inhibited proliferative, migratory, and invasive activity while promoting increases in apoptotic death, which were reversed by IGF-1. Furthermore, miR-1246 agomir can inhibit tumor growth in vivo. We confirmed that miR-1246 affects the signaling pathway of PI3K/AKT via targeting PIK3AP1 and inhibits the development of thyroid cancer. Thus, miR-1246 is a new therapeutic target for thyroid cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proliferação de Células/genética , MicroRNAs , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , RNA Neoplásico , Transdução de Sinais/genética , Neoplasias da Glândula Tireoide , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo
4.
Cancers (Basel) ; 13(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209611

RESUMO

Diffuse gliomas are a heterogeneous group of tumors with aggressive biological behavior and a lack of effective treatment methods. Despite new molecular findings, the differences between pathohistological types still require better understanding. In this in silico analysis, we investigated AKT1, AKT2, AKT3, CHUK, GSK3ß, EGFR, PTEN, and PIK3AP1 as participants of EGFR-PI3K-AKT-mTOR signaling using data from the publicly available cBioPortal platform. Integrative large-scale analyses investigated changes in copy number aberrations (CNA), methylation, mRNA transcription and protein expression within 751 samples of diffuse astrocytomas, anaplastic astrocytomas and glioblastomas. The study showed a significant percentage of CNA in PTEN (76%), PIK3AP1 and CHUK (75% each), EGFR (74%), AKT2 (39%), AKT1 (32%), AKT3 (19%) and GSK3ß (18%) in the total sample. Comprehensive statistical analyses show how genomics and epigenomics affect the expression of examined genes differently across various pathohistological types and grades, suggesting that genes AKT3, CHUK and PTEN behave like tumor suppressors, while AKT1, AKT2, EGFR, and PIK3AP1 show oncogenic behavior and are involved in enhanced activity of the EGFR-PI3K-AKT-mTOR signaling pathway. Our findings contribute to the knowledge of the molecular differences between pathohistological types and ultimately offer the possibility of new treatment targets and personalized therapies in patients with diffuse gliomas.

5.
Proc Natl Acad Sci U S A ; 117(48): 30628-30638, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33199625

RESUMO

Macrophages respond to microbial ligands and various noxious cues by initiating an inflammatory response aimed at eliminating the original pathogenic insult. Transition of macrophages from a proinflammatory state to a reparative state, however, is vital for resolution of inflammation and return to homeostasis. The molecular players governing this transition remain poorly defined. Here, we find that the reparative macrophage transition is dictated by B-cell adapter for PI3K (BCAP). Mice harboring a macrophage-specific deletion of BCAP fail to recover from and succumb to dextran sulfate sodium-induced colitis due to prolonged intestinal inflammation and impaired tissue repair. Following microbial stimulation, gene expression in WT macrophages switches from an early inflammatory signature to a late reparative signature, a process that is hampered in BCAP-deficient macrophages. We find that absence of BCAP hinders inactivation of FOXO1 and GSK3ß, which contributes to their enhanced inflammatory state. BCAP deficiency also results in defective aerobic glycolysis and reduced lactate production. This translates into reduced histone lactylation and decreased expression of reparative macrophage genes. Thus, our results reveal BCAP to be a critical cell-intrinsic switch that regulates transition of inflammatory macrophages to reparative macrophages by imprinting epigenetic changes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Histonas/metabolismo , Macrófagos/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo , Animais , Camundongos , Processamento de Proteína Pós-Traducional
6.
Front Immunol ; 11: 1322, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793186

RESUMO

Periodic fever, aphthous stomatitis, pharyngitis, and adenitis (PFAPA) syndrome is the most common autoinflammatory disease in children and is often grouped together with hereditary periodic fever syndromes, although its cause and hereditary nature remain unexplained. We investigated whether differential DNA methylation was present in DNA from peripheral blood mononuclear cells (PBMC) in patients with PFAPA vs. healthy controls. A whole-epigenome analysis (MeDIP and MBD) was performed using pooled DNA libraries enriched for methylated genomic regions and identified candidate genes, two of which were further evaluated with methylation-specific restriction enzymes coupled with qPCR (MSRE-qPCR). The analysis showed that the PIK3AP1 and SPON2 gene regions are differentially methylated in patients with PFAPA. MSRE-qPCR proved to be a quick, reliable, and cost-effective method of confirming results from MeDIP and MBD. Our findings indicate that a B-cell adapter protein (PIK3AP1), as the PI3K binding inhibitor of inflammation, and spondin-2 (SPON2), as a pattern recognition molecule and integrin ligand, could play a role in the etiology of PFAPA. Their role and the impact of changed DNA methylation in PFAPA etiology and autoinflammation need further investigation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas da Matriz Extracelular/genética , Doenças Hereditárias Autoinflamatórias/genética , Linfadenite/genética , Proteínas de Neoplasias/genética , Faringite/genética , Estomatite Aftosa/genética , Criança , Pré-Escolar , Metilação de DNA , Feminino , Humanos , Masculino
7.
Biochem Biophys Res Commun ; 524(1): 36-42, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-31980170

RESUMO

Gastric epithelial cells (GES-1) stimulated by Helicobacter pylori (H. pylori) would affect the expression of related genes and induce the immune response of the cells. Abnormal methylation of DNA was one of the main causes. The aim of this study was to investigate phosphoinositol-3-kinase adaptor protein 1(PIK3AP1), which was screened from the chip data as an immune gene candidate to against the inflammatory response of cells caused by H. pylori infection. PIK3AP1 plays a key role in PI3K/AKT signaling pathway. The gene chip analysis and experimental results confirmed that PIK3AP1 expression was downregulated and PIK3AP1 promoter was hypermethylated after H. pylori stimulation in GES-1 cells. Meanwhile, the expression level of PIK3AP1 was significantly upregulated after 5-aza-dc treatment, and its expression was higher after 5-aza-dc and H. pylori co-treatment than that of H. pylori treatment but lower than that of 5-aza-dc treatment. Therefore, hypermethylation was the main reason for the down-regulation of PIK3AP1 after H. pylori stimulation. In addition, the intervention of PIK3AP1 inhibited the expression of downstream gene AKT, and suppressing the expression of the immunoinflammatory gene IL-6 in GES-1 cells. Furthermore, the intervention of PIK3AP1 would promote cell proliferation. In summary, hypermethylation of the PIK3AP1 promoter was accompanied by reduction of the expression level of PIK3AP1 in GES-1 cells by H. pylori stimulation. The expression of PIK3AP1, AKT, and IL-6 genes was positively correlated, Meanwhile, the PIK3AP1 can affect the proliferation of GES-1 cells. These results would be helpful to understand the innate immune response function of PIK3AP1 to pathogenic bacterial infection in the stomach.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Decitabina/química , Células Epiteliais/metabolismo , Mucosa Gástrica/citologia , Infecções por Helicobacter/metabolismo , Helicobacter pylori/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proliferação de Células , Metilação de DNA , Decitabina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-6/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
8.
J Clin Exp Hepatol ; 9(5): 652-656, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31695254

RESUMO

Familial cirrhosis is a condition that is associated with the presence of liver disease with genetic linkage among multiple family members in a generation or in multiple generations. With cirrhosis, most of these disease pathogeneses are related to a defect of an enzyme/transport protein leading to a deranged metabolic pathway with variable prevalence. Many studies and high-quality metanalyses have shed light on genetic linkage associated with nonalcoholic fatty liver disease and steatohepatitis such as the PNPLA3, MBOAT7, and TM6SF2 variants. In this report, we shed light on a novel missense mutation associated with cirrhosis in a family of brothers associated with phosphoinositide-3-kinase adapter protein 1 gene through high-output whole exosome gene sequencing methodology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA