RESUMO
Cancer involves the uncontrolled, abnormal growth of cells and affects other tissues. Kinase has an impact on proliferating the cells and causing cancer. For the purpose of treating cancer, PIM kinase is a potential target. The pro-viral Integration site for moloney murine leukaemia virus (PIM) kinases is responsible for the tumorigenesis, by phosphorylating the proteins that control the cell cycle and cell proliferation. PIM-1, PIM-2, and PIM-3 are the three distinct isoforms of PIM kinases. The JAK/STAT pathway is essential for controlling how PIM genes are expressed. PIM kinase is also linked withPI3K/AKT/mTOR pathway in various types of cancers. The overexpression of PIM kinase will cause cancer. Currently, there are significant efforts being made in medication design and development to target its inhibition. A few small chemical inhibitors (E.g., SGI-1776, AZD1208, LGH447) that specifically target the PIM proteins' adenosine triphosphate (ATP)-binding domain have been identified. PIM kinase antagonists have a remarkable effect on different types of cancer. Despite conducting clinical trials on SGI-1776, the first PIM inhibitory agent, was prematurely withdrawn, making it unable to generate concept evidence. On the other hand, in recent years, it has aided in hastening the identification of multiple new PIM inhibitors. Cyanopyridines and Pyrazolo[1,5-a]pyrimidinecan act as potent PIM kinase inhibitors for cancer therapy. We explore the involvement of oncogenic transcription factor c-Mycandmi-RNA in relation to PIM kinase. In this article, we highlight the oncogenic effects, and structural insights into PIM kinase inhibitors for the treatment of cancer.
RESUMO
A key step in platelet production is the migration of megakaryocytes to the vascular sinusoids within the bone marrow. This homing is mediated by the chemokine CXCL12 and its receptor CXCR4. CXCR4 is also a positive regulator of platelet activation and thrombosis. Pim-1 kinase has been shown to regulate CXCR4 signalling in other cell types, and we have previously described how Pim kinase inhibitors attenuate platelet aggregation to CXCL12. However, the mechanism by which Pim-1 regulates CXCR4 signalling in platelets and megakaryocytes has yet to be elucidated. Using human platelets, murine bone marrow-derived megakaryocytes, and the megakaryocyte cell line MEG-01, we demonstrate that pharmacological Pim kinase inhibition leads to reduced megakaryocyte and platelet function responses to CXCL12, including reduced megakaryocyte migration and platelet granule secretion. Attenuation of CXCL12 signalling was found to be attributed to the reduced surface expression of CXCR4. The decrease in CXCR4 surface levels was found to be mediated by rapid receptor internalisation, in the absence of agonist stimulation. We demonstrate that pharmacological Pim kinase inhibition disrupts megakaryocyte and platelet function by reducing constitutive CXCR4 surface expression, decreasing the number of receptors available for agonist stimulation and signalling. These findings have implications for the development and use of Pim kinase inhibitors for the treatment of conditions associated with elevated circulating levels of CXCL12/SDF1α and increased thrombotic risk.
Assuntos
Plaquetas , Quimiocina CXCL12 , Megacariócitos , Proteínas Proto-Oncogênicas c-pim-1 , Receptores CXCR4 , Transdução de Sinais , Receptores CXCR4/metabolismo , Plaquetas/metabolismo , Plaquetas/efeitos dos fármacos , Megacariócitos/metabolismo , Megacariócitos/efeitos dos fármacos , Megacariócitos/citologia , Humanos , Transdução de Sinais/efeitos dos fármacos , Animais , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Quimiocina CXCL12/metabolismo , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Movimento Celular/efeitos dos fármacos , Linhagem CelularRESUMO
INTRODUCTION: PIM Kinases (PIM-1, PIM-2, and PIM-3) have been reported to play crucial role in signaling cascades that govern cell survival, proliferation, and differentiation. Over-expression of these kinases leads to hematological malignancies such as diffuse large B cell lymphomas (DLBCL), multiple myeloma, leukemia, lymphoma and prostate cancer etc. PIM kinases as biomarkers and potential therapeutic targets have shown promise toward precision cancer therapy. The selective PIM-1, PIM-2, and/or PIM-3 isoform inhibitors have shown significant results in patients with advanced stages of cancer including relapsed/refractory cancer. AREAS COVERED: A comprehensive literature review of PIM Kinases (PIM-1, PIM-2, and PIM-3) in oncogenesis, the patented PIM kinase inhibitors (2016-Present), and their pharmacological and structural insights have been highlighted. EXPERT OPINION: Recently, PIM kinases viz. PIM-1, PIM-2, and PIM-3 (members of the serine/threonine protein kinase family) as therapeutic targets have attracted considerable interest in oncology especially in hematological malignancies. The patented PIM kinase inhibitors comprised of heterocyclic (fused)ring structure(s) like indole, pyridine, pyrazine, pyrazole, pyridazine, piperazine, thiazole, oxadiazole, quinoline, triazolo-pyridine, pyrazolo-pyridine, imidazo-pyridazine, oxadiazole-thione, pyrazolo-pyrimidine, triazolo-pyridazine, imidazo-pyridazine, pyrazolo-quinazoline and pyrazolo-pyridine etc. showed promising results in cancer chemotherapy.
Assuntos
Antineoplásicos , Neoplasias , Patentes como Assunto , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-pim-1 , Humanos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Antineoplásicos/farmacologia , Animais , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/enzimologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/patologia , Terapia de Alvo Molecular , Desenvolvimento de Medicamentos , Desenho de Fármacos , Proteínas Serina-Treonina QuinasesRESUMO
Alzheimer's disease (AD), a neurodegenerative disorder, is the most prevalent form of senile dementia, causing progressive deterioration of cognition, behavior, and rational skills. Neuropathologically, AD is characterized by two hallmark proteinaceous aggregates: amyloid beta (Aß) plaques and neurofibrillary tangles (NFTs) formed of hyperphosphorylated tau. A significant study has been done to understand how Aß and/or tau accumulation can alter signaling pathways that affect neuronal function. A conserved protein kinase known as the mammalian target of rapamycin (mTOR) is essential for maintaining the proper balance between protein synthesis and degradation. Overwhelming evidence shows mTOR signaling's primary role in age-dependent cognitive decline and the pathogenesis of AD. Postmortem human AD brains consistently show an upregulation of mTOR signaling. Confocal microscopy findings demonstrated a direct connection between mTOR and intraneuronal Aß42 through molecular processes of PRAS40 phosphorylation. By attaching to the mTORC1 complex, PRAS40 inhibits the activity of mTOR. Furthermore, inhibiting PRAS40 phosphorylation can stop the Aß-mediated increase in mTOR activity, indicating that the accumulation of Aß may aid in PRAS40 phosphorylation. Physiologically, PRAS40 is phosphorylated by PIM1 which is a serine/threonine kinase of proto-oncogene PIM kinase family. Pharmacological inhibition of PIM1 activity prevents the Aß-induced mTOR hyperactivity in vivo by blocking PRAS40 phosphorylation and restores cognitive impairments by enhancing proteasome function. Recently identified small-molecule PIM1 inhibitors have been developed as potential therapeutic to reduce AD-neuropathology. This comprehensive study aims to address the activity of PIM1 inhibitor that has been tested for the treatment of AD, in addition to the pharmacological and structural aspects of PIM1.
RESUMO
BACKGROUND: Chemoresistance contributes to relapse in high-risk neuroblastoma. Cancer cells acquire resistance through multiple mechanisms, including drug efflux pumps. In neuroblastoma, multidrug resistance-associated protein-1 (MRP1/ABCC1) efflux pump expression correlates with worse outcomes. These pumps are regulated by PIM kinases, a family of serine-threonine kinases, overexpressed in neuroblastoma. We hypothesized PIM kinase inhibition would sensitize neuroblastoma cells by modulating MRP1. METHODS: Kocak database query evaluated ABCC1, PIM1, PIM2, and PIM3 expression in neuroblastoma patients. SK-N-AS and SK-N-BE(2) cells were treated with doxorubicin or the pan-PIM kinase inhibitor, AZD1208. Flow cytometry assessed intracellular doxorubicin accumulation. AlamarBlue assay measured viability. The lethal dose 50% (LD50) of each drug and combination indices (CI) were calculated and isobolograms constructed to determine synergy. RESULTS: Kocak database query demonstrated positive correlation between PIM genes and ABCC1. PIM kinase inhibition increased intracellular doxorubicin accumulation in both cell lines, suggesting PIM kinase regulation of MRP1. Isobolograms showed synergy between AZD1208 and doxorubicin. CONCLUSIONS: The correlation between PIM and ABCC1 gene expression suggests PIM kinases may contribute to neuroblastoma chemotherapeutic resistance. PIM kinase inhibition increased intracellular doxorubicin accumulation. Combination treatment with AZD1208 and doxorubicin decreased neuroblastoma cell viability in a synergistic fashion. These findings support further investigations of PIM kinase inhibition in neuroblastoma. TYPE OF STUDY: Basic Science Research. LEVEL OF EVIDENCE: NA.
Assuntos
Doxorrubicina , Resistencia a Medicamentos Antineoplásicos , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Neuroblastoma , Proteínas Proto-Oncogênicas c-pim-1 , Humanos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Neuroblastoma/genética , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Linhagem Celular Tumoral , Antibióticos Antineoplásicos/uso terapêutico , Antibióticos Antineoplásicos/farmacologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Sinergismo Farmacológico , Compostos de Bifenilo , TiazolidinasRESUMO
PIM3 (provirus-integrating Moloney site 3) is a serine/threonine kinase and belongs to the PIM family (PIM1, PIM2, and PIM3). PIM3 is a proto-oncogene that is frequently overexpressed in cancers originating from endoderm-derived tissues, such as the liver, pancreas, colon, stomach, prostate, and breast cancer. PIM3 plays a critical role in activating multiple oncogenic signaling pathways promoting cancer cell proliferation, survival, invasion, tumor growth, metastasis, and progression, as well as chemo- and radiation therapy resistance and immunosuppressive microenvironment. Genetic inhibition of PIM3 expression suppresses in vitro cell proliferation and in vivo tumor growth and metastasis in mice with solid cancers, indicating that PIM3 is a potential therapeutic target. Although several pan-PIM inhibitors entered phase I clinical trials in hematological cancers, there are currently no FDA-approved inhibitors for the treatment of patients. This review provides an overview of recent developments and insights into the role of PIM3 in various cancers and its potential as a novel molecular target for cancer therapy. We also discuss the current status of PIM-targeted therapies in clinical trials.
RESUMO
PIM kinases are over-expressed by a number of solid malignancies including breast cancer, and are thought to regulate proliferation, survival, and resistance to treatment, making them attractive therapeutic targets. Because PIM kinases sit at the nexus of multiple oncodriver pathways, PIM antagonist drugs are being tested alone and in conjunction with other therapies to optimize outcomes. We therefore sought to test the combination of pharmacological PIM antagonism and Th1-associated immunotherapy. We show that the pan PIM antagonist, AZD1208, when combined in vitro with Th1 cytokines IFN-γ and TNF-α, potentiates metabolic suppression, overall cell death, and expression of apoptotic markers in human breast cancer cell lines of diverse phenotypes (HER-2pos/ERneg, HER-2pos/ERpos and triple-negative). Interestingly, AZD1208 was shown to moderately inhibit IFN-γ secretion by stimulated T lymphocytes of both human and murine origin, suggesting some inherent immunosuppressive activity of the drug. Nonetheless, when multiplexed therapies were tested in a murine model of HER-2pos breast cancer, combinations of HER-2 peptide-pulsed DCs and AZD1208, as well as recombinant IFN-γ plus AZD1208 significantly suppressed tumor outgrowth compared with single-treatment and control groups. These studies suggest that PIM antagonism may combine productively with certain immunotherapies to improve responsiveness.
Assuntos
Antineoplásicos , Compostos de Bifenilo , Neoplasias , Proteínas Proto-Oncogênicas c-pim-1 , Tiazolidinas , Humanos , Animais , Camundongos , Citocinas , Antineoplásicos/farmacologia , Imunoterapia , Proliferação de Células , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologiaRESUMO
Smooth muscle contraction by Pim kinases and ZIPK has been suggested, but evidence for lower urinary tract organs or using Pim-selective inhibitor concentrations is not yet available. Here, we assessed effects of the Pim inhibitors AZD1208 and TCS PIM-1 and the dual ZIPK/Pim inhibitor HS38 on contractions of human prostate and bladder tissues and of porcine interlobar arteries. Human tissues were obtained from radical prostatectomy and radical cystectomy and renal interlobar arteries from pigs. Contractions were studied in an organ bath. Noradrenaline-, phenylephrine- and methoxamine-induced contractions were reduced (up to > 50%) with 500-nM AZD1208 in prostate tissues and to lesser degree and not consistently with all agonists in interlobar arteries. A total of 100-nM AZD1208 or 500-nM TCS PIM-1 did not affect agonist-induced contractions in prostate tissues. Decreases in agonist-induced contractions with 3-µM HS38 in prostate tissues and interlobar arteries were of small extent and did not occur with each agonist. Carbachol-induced contractions in detrusor tissues were unchanged with AZD1208 (500 nM) or HS38. Electric field stimulation-induced contractions were not affected with AZD1208 or HS38 in any tissue, but slightly reduced with 500-nM TCS PIM-1 in prostate tissues. Concentration-dependent effects of Pim inhibitors suggest lacking Pim-driven smooth muscle contraction in the prostate, bladder, and interlobar arteries but point to organ-specific functions of off-targets. Procontractile functions of ZIPK in the prostate and interlobar arteries may be limited and are lacking in the detrusor.
Assuntos
Compostos de Bifenilo , Músculo Liso Vascular , Próstata , Proteínas Proto-Oncogênicas c-pim-1 , Tiazolidinas , Masculino , Humanos , Animais , Suínos , Bexiga Urinária , Proteínas Quinases Associadas com Morte Celular/farmacologia , Contração MuscularRESUMO
PIM kinases, a serine/threonine kinase family with three isoforms, has been well-known to participate in multiple physiological processes by phosphorylating various downstream targets. Accumulating evidence has recently unveiled that aberrant upregulation of PIM kinases (PIM1, PIM2, and PIM3) are closely associated with tumor cell proliferation, migration, survival, and even resistance. Inhibiting or silencing of PIM kinases has been reported have remarkable antitumor effects, such as anti-proliferation, pro-apoptosis and resensitivity, indicating the therapeutic potential of PIM kinases as potential druggable targets in many types of human cancers. More recently, several pharmacological small-molecule inhibitors have been preclinically and clinically evaluated and showed their therapeutic potential; however, none of them has been approved for clinical application so far. Thus, in this perspective, we focus on summarizing the oncogenic roles of PIM kinases, key signaling network, and pharmacological small-molecule inhibitors, which will provide a new clue on discovering more candidate antitumor drugs targeting PIM kinases in the future.
Assuntos
Neoplasias , Proteínas Proto-Oncogênicas c-pim-1 , Humanos , Proteínas Serina-Treonina Quinases , Neoplasias/tratamento farmacológico , Transdução de Sinais , Proliferação de Células , Inibidores de Proteínas Quinases/farmacologiaRESUMO
Pim Kinases; Pim-1, Pim-2, and Pim-3, are a family of constitutively active serine/threonine kinases, widely associated with cell survival, proliferation, and migration. Historically considered to be functionally redundant, independent roles for the individual isoforms have been described. Whilst most established for their role in cancer progression, there is increasing evidence for wider pathological roles of Pim kinases within the context of cardiovascular disease, including inflammation, thrombosis, and cardiac injury. The Pim kinase isoforms have widespread expression in cardiovascular tissues, including the heart, coronary artery, aorta, and blood, and have been demonstrated to be upregulated in several co-morbidities/risk factors for cardiovascular disease. Pim kinase inhibition may thus be a desirable therapeutic for a multi-targeted approach to treat cardiovascular disease and some of the associated risk factors. In this review, we discuss what is known about Pim kinase expression and activity in cells of the cardiovascular system, identify areas where the role of Pim kinase has yet to be fully explored and characterised and review the suitability of targeting Pim kinase for the prevention and treatment of cardiovascular events in high-risk individuals.
Assuntos
Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/tratamento farmacológico , Proteínas Proto-Oncogênicas c-pim-1 , Proteínas Serina-Treonina Quinases/metabolismo , Isoformas de Proteínas , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêuticoRESUMO
Multiple myeloma (MM) is the second common hematologic malignancy manifesting as a clonal proliferation of plasma cells in the bone marrow. In recent years, high expression and activity of pim kinase have been found to be associated with both the progression and prognosis of a significant proportion of malignant diseases. Therefore, pim kinase has become a potential therapeutic target in the treatment of MM and some pim kinase inhibitors have demonstrated good efficacy in clinical trials. Based on nearly the entire literature searched from PubMed in the field of pim kinase in MM, the paper concluded how pim kinase got involved in the proliferation of myeloma cells, the progression of bone disease infiltration, and even in the regulation of the immune microenvironment. Next as a very promising drug, the effectiveness of pim kinase inhibitors as single agents or in combination with other drugs in the treatment of MM was also summarized. Our analysis will guide the clinical use of pim kinase inhibitors for managing tumor load and bone disease in MM patients.
Assuntos
Antineoplásicos , Doenças Ósseas , Neoplasias Hematológicas , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteínas Proto-Oncogênicas c-pim-1 , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Microambiente TumoralRESUMO
The present application reports a series of novel Arcyriaflavin-A derivatives as PIM kinase inhibitors for the effective treatment of cancer. The application also describes the synthesis of compounds in detail, use, pharmaceutical composition, pharmaceutically acceptable salts, and treatment.
Assuntos
Neoplasias , Proteínas Proto-Oncogênicas c-pim-1 , Humanos , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular TumoralRESUMO
BACKGROUND: Neuroblastoma arises from aberrancies in neural stem cell differentiation. PIM kinases contribute to cancer formation, but their precise role in neuroblastoma tumorigenesis is poorly understood. In the current study, we evaluated the effects of PIM kinase inhibition on neuroblastoma differentiation. METHODS: Versteeg database query assessed the correlation between PIM gene expression and the expression of neuronal stemness markers and relapse free survival. PIM kinases were inhibited with AZD1208. Viability, proliferation, motility were measured in established neuroblastoma cells lines and high-risk neuroblastoma patient-derived xenografts (PDXs). qPCR and flow cytometry detected changes in neuronal stemness marker expression after AZD1208 treatment. RESULTS: Database query showed increased levels of PIM1, PIM2, or PIM3 gene expression were associated with higher risk of recurrent or progressive neuroblastoma. Increased levels of PIM1 were associated with lower relapse free survival rates. Higher levels of PIM1 correlated with lower levels of neuronal stemness markers OCT4, NANOG, and SOX2. Treatment with AZD1208 resulted in increased expression of neuronal stemness markers. CONCLUSIONS: Inhibition of PIM kinases differentiated neuroblastoma cancer cells toward a neuronal phenotype. Differentiation is a key component of preventing neuroblastoma relapse or recurrence and PIM kinase inhibition provides a potential new therapeutic strategy for this disease.
Assuntos
Recidiva Local de Neoplasia , Neuroblastoma , Humanos , Proliferação de Células , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Diferenciação Celular , Fenótipo , Neuroblastoma/tratamento farmacológico , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologiaRESUMO
Introduction: PIM kinases are targets for therapeutic intervention since they are associated with a number of malignancies by boosting cell survival and proliferation. Over the past years, the rate of new PIM inhibitors discovery has increased significantly, however, new generation of potent molecules with the right pharmacologic profiles were in demand that can probably lead to the development of Pim kinase inhibitors that are effective against human cancer. Method: In the current study, a machine learning and structure based approaches were used to generate novel and effective chemical therapeutics for PIM-1 kinase. Four different machine learning methods, namely, support vector machine, random forest, k-nearest neighbour and XGBoost have been used for the development of models. Total, 54 Descriptors have been selected using the Boruta method. Results: SVM, Random Forest and XGBoost shows better performance as compared to k-NN. An ensemble approach was implemented and, finally, four potential molecules (CHEMBL303779, CHEMBL690270, MHC07198, and CHEMBL748285) were found to be effective for the modulation of PIM-1 activity. Molecular docking and molecular dynamic simulation corroborated the potentiality of the selected molecules. The molecular dynamics (MD) simulation study indicated the stability between protein and ligands. Discussion: Our findings suggest that the selected models are robust and can be potentially useful for facilitating the discovery against PIM kinase.
RESUMO
Hepatoblastoma is the most common primary pediatric liver tumor. Children with pulmonary metastases at diagnosis experience survival rates as low as 25%. We have shown PIM kinases play a role in hepatoblastoma tumorigenesis. In this study, we assessed the role of PIM kinases in metastatic hepatoblastoma. We employed the metastatic hepatoblastoma cell line, HLM_2. PIM kinase inhibition was attained using PIM3 siRNA and the pan-PIM inhibitor, AZD1208. Effects of PIM inhibition on proliferation were evaluated via growth curve. Flow cytometry determined changes in cell cycle. AlamarBlue assay assessed effects of PIM kinase inhibition and cisplatin treatment on viability. The lethal dose 50% (LD50) of each drug and combination indices (CI) were calculated and isobolograms constructed to determine synergy. PIM kinase inhibition resulted in decreased HLM_2 proliferation, likely through cell cycle arrest mediated by p21. Combination therapy with AZD1208 and cisplatin resulted in synergy, potentially through downregulation of the ataxia-telangiectasia mutated (ATM) kinase DNA damage response pathway. When assessing the combined effects of pharmacologic PIM kinase inhibition with cisplatin on HLM_2 cells, we found the agents to be synergistic, potentially through inhibition of the ATM pathway. These findings support further exploration of PIM kinase inhibition as a therapeutic strategy for metastatic hepatoblastoma.
Assuntos
Ataxia Telangiectasia , Compostos de Bifenilo , Hepatoblastoma , Neoplasias Hepáticas , Proteínas Proto-Oncogênicas c-pim-1 , Tiazolidinas , Criança , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Hepatoblastoma/tratamento farmacológico , Hepatoblastoma/genética , Neoplasias Hepáticas/tratamento farmacológicoRESUMO
The Proviral Integration site for Moloney murine leukemia virus (PIM) kinases is a family of serine/threonine kinases that regulates numerous signaling networks that promote cell growth, proliferation, and survival. PIM kinases are commonly upregulated in both solid tumors and hematological malignancies. Recent studies have demonstrated that PIM facilitates immune evasion in cancer by promoting an immunosuppressive tumor microenvironment that suppresses the innate anti-tumor response. The role of PIM in immune evasion has sparked interest in examining the effect of PIM inhibition in combination with immunotherapy. This review focuses on the role of PIM kinases in regulating immune cell populations, how PIM modulates the immune tumor microenvironment to promote immune evasion, and how PIM inhibitors may be used to enhance the efficacy of immunotherapy.
Assuntos
Neoplasias , Proteínas Proto-Oncogênicas c-pim-1 , Camundongos , Animais , Neoplasias/terapia , Fatores Imunológicos , Imunoterapia , Microambiente TumoralRESUMO
Compound VBT-5445 was identified as an inhibitor to block the association of Pim and the protein Enhancer of Decapping 3 (EDC3), a Pim substrate, which normally functions to enhance the decapping of messenger RNA (mRNA). It was also shown to inhibit both the Pim and mTORC protein kinases. The activity of this compound class can be fine-tuned by structural modification. A series of VBT analogs were designed, synthesized, and evaluated. These compounds decrease the growth of multiple cancer types, including pancreas, prostate, breast, lung, and leukemia. Notably, 6-methyl (GRG-1-31, 6d), 4-Bromo (GRG-1-34, 6e), 4-Chloro (GRG-1-35, 6f), and phenylthio substituted (GRG-1-104, 6n) derivatives are highly potent at inhibiting tumor growth. The ability of these compounds to block cancer growth in vitro is highly correlated with their activity as mTORC inhibitors. The toxicity of GRG 1-34 is low in mice treated with twice-daily gavage for 30 days and did not induce weight loss. Pharmacokinetics of a single oral dose demonstrated a peak concentration at 0.5 hours after gavage. In summary, further development of this compound class has the potential to inhibit important signaling pathways and impact cancer treatment.
RESUMO
Cellular senescence is emerging as a driver of idiopathic pulmonary fibrosis (IPF), a progressive and fatal disease with limited effective therapies. The senescence-associated secretory phenotype (SASP), involving the release of inflammatory cytokines and profibrotic growth factors by senescent cells, is thought to be a product of multiple cell types in IPF, including lung fibroblasts. NF-κB is a master regulator of the SASP, and its activity depends on the phosphorylation of p65/RelA. The purpose of this study was to assess the role of Pim-1 kinase as a driver of NF-κB-induced production of inflammatory cytokines from low-passage IPF fibroblast cultures displaying markers of senescence. Our results demonstrate that Pim-1 kinase phosphorylates p65/RelA, activating NF-κB activity and enhancing IL-6 production, which in turn amplifies the expression of PIM1, generating a positive feedback loop. In addition, targeting Pim-1 kinase with a small molecule inhibitor dramatically inhibited the expression of a broad array of cytokines and chemokines in IPF-derived fibroblasts. Furthermore, we provide evidence that Pim-1 overexpression in low-passage human lung fibroblasts is sufficient to drive premature senescence, in vitro. These findings highlight the therapeutic potential of targeting Pim-1 kinase to reprogram the secretome of senescent fibroblasts and halt IPF progression.
Assuntos
Fibrose Pulmonar Idiopática , Pneumonia , Humanos , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/farmacologia , NF-kappa B/metabolismo , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Senescência Celular , Pulmão/metabolismo , Pneumonia/metabolismo , Citocinas/metabolismoRESUMO
Although a plethora of targeted anticancer small molecule drugs became available, the low response rate and drug resistance imply the continuous need for expanding the anticancer chemical space. In this study, a novel series of nicotinonitrile derivatives was designed, synthesized and evaluated for cytotoxic activities in HepG2 and MCF-7 cells. All derivatives showed high to moderate cytotoxic activity against both cell lines, with cell-type and chemotype-dependent cytotoxic potential. The normal HEK-293 T cells were ca. 50-fold less susceptible to the cytotoxic effect of the inhibitors. The in vitro enzyme inhibitory activity of selected active cytotoxic derivatives 8c, 8e, 9a, 9e and 12 showed that they have sub- to one digit micromolar 50 % inhibitory concentration (IC50) against the three Pim kinase isoforms, with 8e being the most potent (IC50 ≤ 0.28 µM against three Pim kinases), comparable to the pan kinase inhibitor, Staurosporine. In HepG2, 8e induced cell cycle arrest at the G2/M phase. Apoptotic mechanistic studies with 8c and 8e in HepG2 cells, indicated a significant upregulation in both P53 and caspase-3 relative gene expression, as well as increased Bax/Bcl-2 protein expression level. Further, docking studies combined with molecular dynamic simulation showed a stable complex with high binding affinity of 8e to Pim-1 kinase; exploiting a negative electrostatic potential surface interaction with the added dimethyl amino group in the new compounds. Moreover, in silico ADME profile prediction indicated that all compounds are orally bioavailable and most of them can penetrate the blood-brain barrier. This study presents novel nicotinonitrile derivatives as auspicious hits for further optimization as antiproliferative agents against liver cancer cells and promising pan Pim kinase inhibitors at submicromolar concentrations.
Assuntos
Antineoplásicos , Proteínas Proto-Oncogênicas c-pim-1 , Humanos , Ensaios de Seleção de Medicamentos Antitumorais , Raios X , Células HEK293 , Apoptose , Relação Estrutura-Atividade , Estrutura Molecular , Inibidores de Proteínas Quinases , Antineoplásicos/química , Proliferação de Células , Desenho de FármacosRESUMO
We synthesized new analogues of the anti-AML agent VS-II-173. We studied the effect of the substitution at the 1- and 5-positions of the pyrazolo[4,3-a]phenanthridine scaffold on Pim-1 kinase inhibition and cytotoxicity against AML MOLM-13 cells. We found that compounds 20 and 21, substituted at the 1-position exhibited stronger Pim-1 inhibition together with a high potency toward MOLM-13 cells, associated with apoptosis induction and selectivity over non-cancerous NRK cells.