Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.257
Filtrar
1.
J Pediatr Genet ; 13(3): 190-199, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39086443

RESUMO

Although many genetic etiologies, such as Fanconi anemia, Shwachman-Diamond syndrome, dyskeratosis congenita, and Diamond-Blackfan anemia, from hereditary bone marrow failure are known today, the responsible gene remains unknown in a significant part of these patients. A 6-year-old girl, whose parents were first-cousin consanguineous, was referred to the pediatric hematology department due to growth retardation, thrombocytopenia, neutropenia, and anemia. The patient had low-set ears, pectus excavatum inferiorly, and cafe-au-lait spots. In whole-exome analysis, p.K385T (c.1154A > C) variant in the RASA3 gene was detected as homozygous. The amino acid position of the alteration is located in the conserved and ordered region, corresponding to the Ras GTPase activation domain (Ras-GAP) in the center of the protein. Importantly, most of in silico prediction tools of pathogenicity predicts the variant as damaging. RASopathies, which are characterized by many common clinical findings, such as atypical facial features, growth delays, and heart defects, are a group of rare genetic diseases caused by mutations in the genes involved in the Ras-MAPK pathway. The findings in this patient were consistent with the RASopathy-like phenotype and bone marrow failure. Interestingly, enrichment of RASopathy genes was observed in the RASA3 protein-protein interaction network. Furthermore, the subsequent topological clustering revealed a putative function module, which further implicates RASA3 in this disease as a novel potential causative gene. In this context, the detected RASA3 mutation could be manifesting itself clinically as the observed phenotype by disrupting the functional cooperation between the RASA3 protein and its interaction partners. Relatedly, current literature also supports the obtained findings. Overall, this study provides new insights into RASopathy and put forward the RASA3 gene as a novel candidate gene for this disease group.

2.
Comput Biol Med ; 180: 108876, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39089112

RESUMO

Pharmacokinetic/Pharmacodynamic (PK/PD) modeling is crucial in the development of new drugs. However, traditional population-based PK/PD models encounter challenges when modeling for individual patients. We aim to explore the potential of constructing a pharmacodynamic model for individual breast cancer pharmacodynamics leveraging only limited data from early clinical trial phases. While previous studies on Neural Ordinary Differential Equations (ODEs) suggest promising results in clinical trial practices, they primarily focused on theoretical applications or independent PK/PD modeling. PD modeling from complex and irregular clinical trial data, especially when interacting with PK parameters, is still unclear. To achieve that, we introduce a Data-driven Neural Ordinary Differential Equation (DN-ODE) modeling for breast cancer tumor dynamics and progression-free survival data. To validate this approach, experiments are conducted with early-phase clinical trial data from the Amcenestrant (an oral treatment for breast cancer) dataset (AMEERA 1-2), aiming to predict pharmacodynamics in the later phase (AMEERA 3). DN-ODE model achieves RMSE scores of 8.78 and 0.21 in tumor size and progression-free survival, respectively, with R2 scores over 0.9 for each task. Compared to PK/PD methodologies, DN-ODE is able to predict robust individual tumor dynamics with only limited cycle data. We also introduce Principal Component Analysis visualizations for encoder results, demonstrating the DN-ODE's capability to discern individual distributions and diverse tumor growth patterns. Therefore, DN-ODE facilitates comprehensive drug efficacy assessments, pinpoints potential responders, and aids in trial design.

3.
J Clin Pharmacol ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39092894

RESUMO

Dosing vancomycin for critically ill neonates is challenging owing to substantial alterations in pharmacokinetics (PKs) caused by variability in physiology, disease, and clinical interventions. Therefore, an adequate PK model is needed to characterize these pathophysiological changes. The intent of this study was to develop a physiologically based pharmacokinetic (PBPK) model that reflects vancomycin PK and pathophysiological changes in neonates under intensive care. PK-sim software was used for PBPK modeling. An adult model (model 0) was established and verified using PK profiles from previous studies. A neonatal model (model 1) was then extrapolated from model 0 by scaling age-dependent parameters. Another neonatal model (model 2) was developed based not only on scaled age-dependent parameters but also on quantitative information on pathophysiological changes obtained via a comprehensive literature search. The predictive performances of models 1 and 2 were evaluated using a retrospectively collected dataset from neonates under intensive care (chictr.org.cn, ChiCTR1900027919), comprising 65 neonates and 92 vancomycin serum concentrations. Integrating literature-based parameter changes related to hypoalbuminemia, small-for-gestational-age, and co-medication, model 2 offered more optimized precision than model 1, as shown by a decrease in the overall mean absolute percentage error (50.6% for model 1; 37.8% for model 2). In conclusion, incorporating literature-based pathophysiological changes effectively improved PBPK modeling for critically ill neonates. Furthermore, this model allows for dosing optimization before serum concentration measurements can be obtained in clinical practice.

4.
J Food Sci ; 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39098811

RESUMO

Citrinin (CIT), a mycotoxin produced by Monascus, Penicillium, and other fungies, can contaminate red yeast rice and other foods, thus constraining their application and development. Exploring efficient degradation methods of citrinin is becoming as one of the hot research topics. In this study, the degradation of citrinin, irradiated by visible (Vis) light, ultraviolet (UV) light, and simulated sunlight alone, as well as in combination with hydrogen peroxide (light/H2O2), was investigated. The research demonstrates UV, Vis, and simulated sunlight all have a degree of degradation on citrinin, and the degradation efficiency correlates with light source and light intensity. Interestingly, when combined with 100 W Vis and 0.01 M H2O2, the citrinin degradation rate increases to 32%, compared to 1% and 5% achieved by Vis and H2O2 alone. Hydroxyl radicals, arising from the uniform cracking of H2O2 under Vis, were experimentally validated by electron spin resonance measurement and could accelerate the dissociation of citrinin by nucleophilic attacking. Employing the density functional theory, we deduced nucleophilic •OH mainly attack onto C8 and C5 site by comparing the electrophilic Parr functions (Pk+) value of main C atom of citrinin. This research presents a rapid and efficient degradation of citrinin by combining visible light with H2O2. PRACTICAL APPLICATION: This research presents a rapid and efficient method for the degradation of citrnin in red yeast rice and other citrnin containing products by combining visible light with H2O2.

5.
Bioanalysis ; 16(11): 535-544, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-39088034

RESUMO

Aim: A new, selective and simple UPLC-MS/MS method was developed and validated for the determination of lifitegrast in human plasma and tear in order to obtain PK data. Materials & methods: Lifitegrast-d4 solutions were added in the samples, and then were extracted and transferred to a UPLC vial. Results: The respective working ranges were 25.00-2000.00 pg/ml in plasma and 4.00-1000.00 µg/ml in tear. The fully validated method complied with existing regulatory criteria for accuracy and precision, recovery, etc. It was applied to plasma and tear samples, which were from a clinical study, successfully. Conclusion: This method is useful in the evaluation of lifitegrast in plasma and tear.


[Box: see text].


Assuntos
Espectrometria de Massas em Tandem , Lágrimas , Humanos , Espectrometria de Massas em Tandem/métodos , Lágrimas/química , Cromatografia Líquida/métodos , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massa com Cromatografia Líquida
6.
Vet Microbiol ; 297: 110211, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39096790

RESUMO

Porcine deltacoronavirus (PDCoV), a cross-species transmissible enterovirus, frequently induces severe diarrhea and vomiting symptoms in piglets, which not only pose a significant menace to the global pig industry but also a potential public safety risk. In a previous study, we isolated a vaccine candidate, PDCoV CZ2020-P100, by passaging a parental PDCoV strain in vitro, exhibiting attenuated virulence and enhanced replication. However, the factors underlying these differences between primary and passaged strains remain unknown. In this study, we present the transcriptional landscapes of porcine kidney epithelial cells (LLC-PK1) cells infected with PDCoV CZ2020-P1 strain and P100 strain using the RNA-sequencing. We identified 105 differentially expressed genes (DEGs) in P1-infected cells and 295 DEGs in P100-infected cells. Enrichment analyses indicated that many DEGs showed enrichment in immune and inflammatory responses, with a more and higher upregulation of DEGs enriched in the P100-infected group. Notably, the DEGs were concentrated in the MAPK pathway within the P100-infected group, with significant upregulation in EphA2 and c-Fos. Knockdown of EphA2 and c-Fos reduced PDCoV infection and significantly impaired P100 replication compared to P1, suggesting a novel mechanism in which EphA2 and c-Fos are highly involved in passaged virus replication. Our findings illuminate the resemblances and distinctions in the gene expression patterns of host cells infected with P1 and P100, confirming that EphA2 and c-Fos play key roles in high-passage PDCoV replication. These results enhance our understanding of the changes in virulence and replication capacity during the process of passaging.

7.
J Biopharm Stat ; : 1-15, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39127994

RESUMO

Dose optimization is a critical challenge in drug development. Historically, dose determination in oncology has followed a divergent path from other non-oncology therapeutic areas due to the unique characteristics and requirements in Oncology. However, with the emergence of new drug modalities and mechanisms of drugs in oncology, such as immune therapies, radiopharmaceuticals, targeted therapies, cytostatic agents, and others, the dose-response relationship for efficacy and toxicity could be vastly varied compared to the cytotoxic chemotherapies. The doses below the MTD may demonstrate similar efficacy to the MTD with an improved tolerability profile, resembling what is commonly observed in non-oncology treatments. Hence, alternate strategies for dose optimization are required for new modalities in oncology drug development. This paper delves into the historical evolution of dose finding methods from non-oncology to oncology, highlighting examples and summarizing the underlying drivers of change. Subsequently, a practical framework and guidance are provided to illustrate how dose optimization can be incorporated into various stages of the development program. We provide the following general recommendations: 1) The objective for phase I is to identify a dose range rather than a single MTD dose for subsequent development to better characterize the safety and tolerability profile within the dose range. 2) At least two doses separable by PK are recommended for dose optimization in phase II. 3) Ideally, dose optimization should be performed before launching the confirmatory study. Nevertheless, innovative designs such as seamless II/III design can be implemented for dose selection and may accelerate the drug development program.

8.
Cell Rep ; 43(8): 114622, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39146182

RESUMO

Microsatellite instability-high (MSI-H) tumors are malignant tumors that, despite harboring a high mutational burden, often have intact TP53. One of the most frequent mutations in MSI-H tumors is a frameshift mutation in RPL22, a ribosomal protein. Here, we identified RPL22 as a modulator of MDM4 splicing through an alternative splicing switch in exon 6. RPL22 loss increases MDM4 exon 6 inclusion and cell proliferation and augments resistance to the MDM inhibitor Nutlin-3a. RPL22 represses the expression of its paralog, RPL22L1, by mediating the splicing of a cryptic exon corresponding to a truncated transcript. Therefore, damaging mutations in RPL22 drive oncogenic MDM4 induction and reveal a common splicing circuit in MSI-H tumors that may inform therapeutic targeting of the MDM4-p53 axis and oncogenic RPL22L1 induction.

9.
Biochem Biophys Res Commun ; 738: 150517, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39146620

RESUMO

Here we report that simultaneous inhibition of the three primary DNA damage recognition PI3 kinase-like kinases (PIKKs) -ATM, ATR, and DNA-PK- induces severe combinatorial synthetic lethality in mammalian cells. Utilizing Chinese hamster cell lines CHO and V79 and their respective PIKK mutants, we evaluated effects of inhibiting these three kinases on cell viability, DNA damage response, and chromosomal integrity. Our results demonstrate that while single or dual kinase inhibition increased cytotoxicity, inhibition of all three PIKKs results in significantly higher synergistic lethality, chromosomal aberrations, and DNA double-strand break (DSB) induction as calculated by their synergy scores. These findings suggest that the overlapping redundancy of ATM, ATR, and DNA-PK functions is critical for cell survival, and their combined inhibition greatly disrupts DNA damage signaling and repair processes, leading to cell death. This study provides insights into the potential of multi-targeted DDR kinase inhibition as an effective anticancer strategy, necessitating further research to elucidate underlying mechanisms and therapeutic applications.

10.
Zool Res ; 45(5): 1001-1012, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39147715

RESUMO

Thrombosis and inflammation are primary contributors to the onset and progression of ischemic stroke. The contact-kinin pathway, initiated by plasma kallikrein (PK) and activated factor XII (FXIIa), functions bidirectionally with the coagulation and inflammation cascades, providing a novel target for therapeutic drug development in ischemic stroke. In this study, we identified a bat-derived oligopeptide from Myotis myotis (Borkhausen, 1797), designated LE6 (Leu-Ser-Glu-Glu-Pro-Glu, 702 Da), with considerable potential in stroke therapy due to its effects on the contact kinin pathway. Notably, LE6 demonstrated significant inhibitory effects on PK and FXIIa, with inhibition constants of 43.97 µmol/L and 6.37 µmol/L, respectively. In vitro analyses revealed that LE6 prolonged plasma recalcification time and activated partial thromboplastin time. In murine models, LE6 effectively inhibited carrageenan-induced mouse tail thrombosis, FeCl 3-induced carotid artery thrombosis, and photochemically induced intracerebral thrombosis. Furthermore, LE6 significantly decreased inflammation and stroke injury in transient middle cerebral artery occlusion models. Notably, the low toxicity, hemolytic activity, and bleeding risk of LE6, along with its synthetic simplicity, underscore its clinical applicability. In conclusion, as an inhibitor of FXIIa and PK, LE6 offers potential therapeutic benefits in stroke treatment by mitigating inflammation and preventing thrombus formation.


Assuntos
Oligopeptídeos , Acidente Vascular Cerebral , Animais , Camundongos , Oligopeptídeos/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Quirópteros , Trombose , Inflamação , Masculino , Anti-Inflamatórios/farmacologia
11.
Eur J Clin Pharmacol ; 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39153087

RESUMO

PURPOSE: We aimed to develop and evaluate a population PK model of mycophenolic acid (MPA) in pediatric kidney transplant patients to aid MPA dose optimization. METHODS: Data were collected from pediatric kidney transplant recipients from a Dutch academic hospital (Radboudumc, the Netherlands). Pharmacokinetic model-building and model-validation analyses were performed using NONMEM. Subsequently, we externally evaluated the final model using data from another academic hospital. The final model was used to develop an optimized dosing regimen. RESULTS: Thirty pediatric patients were included of whom 266 measured MPA plasma concentrations, including 20 full pharmacokinetic (PK) curves and 24 limited sampling curves, were available. A two-compartment model with a transition compartment for Erlang-type absorption best described the data. The final population PK parameter estimates were Ktr (1.48 h-1; 95% CI, 1.15-1.84), CL/F (16.0 L h-1; 95% CI, 10.3-20.4), Vc/F (24.9 L; 95% CI, 93.0-6.71E25), Vp/F (1590 L; 95% CI, 651-2994), and Q/F (36.2 L h-1; 95% CI, 9.63-74.7). The performance of the PK model in the external population was adequate. An optimized initial dose scheme based on bodyweight was developed. With the licensed initial dose, 35% of patients were predicted to achieve the target AUC, compared to 42% using the optimized scheme. CONCLUSION: We have successfully developed a pharmacokinetic model for MPA in pediatric renal transplant patients. The optimized dosing regimen is expected to result in better target attainment early in treatment. It can be used in combination with model-informed follow-up dosing to further individualize the dose when PK samples become available.

12.
DNA Repair (Amst) ; 142: 103737, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39128395

RESUMO

The DNA dependent protein kinase (DNA-PK) initiates non-homologous recombination (NHEJ), the predominate DNA double-strand break (DSBR) pathway in higher vertebrates. It has been known for decades that the enzymatic activity of DNA-PK [that requires its three component polypeptides, Ku70, Ku80 (that comprise the DNA-end binding Ku heterodimer), and the catalytic subunit (DNA-PKcs)] is present in humans at 10-50 times the level observed in other mammals. Here, we show that the high level of DNA-PKcs protein expression appears evolutionarily in mammals between prosimians and higher primates. Moreover, the RNAs encoding the three component polypeptides of DNA-PK are present at similarly high levels in hominids, new-, and old-world monkeys, but expression of these RNAs in prosimians is ∼5-50 fold less, analogous to the levels observed in other non-primate species. This is reminiscent of the appearance of Alu repeats in primate genomes -- abundant in higher primates, but present at much lower density in prosimians. Alu repeats are well-known for their capacity to promote non-allelic homologous recombination (NAHR) a process known to be inhibited by DNA-PK. Nanopore sequence analyses of cultured cells proficient or deficient in DNA-PK revealed an increase of inter-chromosomal translocations caused by NAHR. Although the high levels of DNA-PK in primates may have many functions, we posit that high levels of DNA-PK may function to restrain deleterious NAHR events between Alu elements.

13.
Mol Pharm ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39132855

RESUMO

We present a novel computational approach for predicting human pharmacokinetics (PK) that addresses the challenges of early stage drug design. Our study introduces and describes a large-scale data set of 11 clinical PK end points, encompassing over 2700 unique chemical structures to train machine learning models. To that end multiple advanced training strategies are compared, including the integration of in vitro data and a novel self-supervised pretraining task. In addition to the predictions, our final model provides meaningful epistemic uncertainties for every data point. This allows us to successfully identify regions of exceptional predictive performance, with an absolute average fold error (AAFE/geometric mean fold error) of less than 2.5 across multiple end points. Together, these advancements represent a significant leap toward actionable PK predictions, which can be utilized early on in the drug design process to expedite development and reduce reliance on nonclinical studies.

14.
Biomarkers ; : 1-20, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141663

RESUMO

BACKGROUND: Necrotizing enterocolitis (NEC) is an inflammatory and necrotizing intestinal emergency that occurs in preterm infants and low birth weight newborns, however no specific serum markers for the diagnosis of NEC has been identified so far. Prokineticin 2 (PK2) is a newly identified immunomodulator in a variety of inflammatory diseases. METHODS: Serum samples were collected from healthy neonatal controls and patients with NEC newly admitted to the Children's Hospital of Chongqing Medical University from January 1, 2021 to January 1, 2022 (before clinical intervention and after surgical treatment). ELISA was used to measure serum PK2 levels, and values, including white blood cell count (WBC), neutrophil-lymphocyte ratio (NLR), procalcitonin (PCT), C-reactive protein (CRP) and platelet (PLT), were analysed; the efficiency of PK2 combined with the above biomarkers in the differential diagnosis of NEC was compared using receiver operating characteristic (ROC) curve analysis. RESULTS: Serum PK2 levels in the NEC group (n = 53) were significantly lower than those in the control group (n = 18), but increased to near-normal levels after the postoperative recovery period. The NLR value of NEC group was higher than that of control group (P < 0.05). There was no significant difference in WBC and PLT count between NEC group and control group (P > 0.05). Serum CRP and PCT levels in NEC group were significantly higher than those in control group (P < 0.001 for CRP and P < 0.05 for PCT, respectively). After surgery, serum CRP, NLR and PCT levels were lower than before surgery, while serum PK2 levels were higher than before surgery (P < 0.05). The areas under the ROC curve (AUC) of PK2, PCT and CRP for the diagnosis of NEC were 0.837, 0.662 and 0.552, respectively. The AUC of PK2 combined with PCT, PK2 combined with CRP, and PK2 combined with PCT and CRP were 0.908, 0.854, and 0.981, respectively. PK2 exhibited the highest diagnostic efficacy for NEC. CONCLUSION: PK2 has higher diagnostic efficacy than PCT and CRP in the diagnosis of NEC, the combination of PK2 and PCT or CRP can significantly improve its diagnostic efficiency, especially when the three are combined at the same time.

15.
Cell Rep ; 43(8): 114538, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39058590

RESUMO

Repair of DNA double-strand breaks by the non-homologous end-joining pathway is initiated by the binding of Ku to DNA ends. Multiple Ku proteins load onto linear DNAs in vitro. However, in cells, Ku loading is limited to ∼1-2 molecules per DNA end. The mechanisms enforcing this limit are currently unclear. Here, we show that the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), but not its protein kinase activity, is required to prevent excessive Ku entry into chromatin. Ku accumulation is further restricted by two mechanisms: a neddylation/FBXL12-dependent process that actively removes loaded Ku molecules throughout the cell cycle and a CtIP/ATM-dependent mechanism that operates in S phase. Finally, we demonstrate that the misregulation of Ku loading leads to impaired transcription in the vicinity of DNA ends. Together, our data shed light on the multiple mechanisms operating to prevent Ku from invading chromatin and interfering with other DNA transactions.

16.
Expert Opin Drug Metab Toxicol ; : 1-18, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39078238

RESUMO

INTRODUCTION: ß-Lactams are the most widely used antibiotics in children. Their optimal dosing is essential to maximize their efficacy, while minimizing the risk for toxicity and the further emergence of antimicrobial resistance. However, most ß-lactams were developed and licensed long before regulatory changes mandated pharmacokinetic studies in children. As a result, pediatric dosing practices are poorly harmonized and off-label use remains common today. AREAS COVERED: ß-Lactam pharmacokinetics and dose optimization strategies in pediatrics, including fixed dose regimens, therapeutic drug monitoring, and model-informed precision dosing are reviewed. EXPERT OPINION/COMMENTARY: Standard pediatric doses can result in subtherapeutic exposure and non-target attainment for specific patient subpopulations (neonates, critically ill children, e.g.). Such patients could benefit greatly from more individualized approaches to dose optimization, beyond a relatively simple dose adaptation based on weight, age, or renal function. In this context, Therapeutic Drug Monitoring (TDM) and Model-Informed Precision Dosing (MIPD) emerge as particularly promising avenues. Obstacles to their implementation include the lack of strong evidence of clinical benefit due to the paucity of randomized clinical trials, of standardized assays for monitoring concentrations, or of adequate markers for renal function. The development of precision medicine tools is urgently needed to individualize therapy in vulnerable pediatric subpopulations.

17.
Br J Clin Pharmacol ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039779

RESUMO

AIMS: Intraoperative hypotension is a risk factor for kidney, heart and cognitive postoperative complications. Literature suggests that the use of low-dose peripheral norepinephrine (NOR) reduces organ dysfunction, yet its administration remains unstandardized. In this work we develop a pharmacokinetic (PK)/pharmacodynamic (PD) model of NOR and its effect on mean arterial pressure (MAP). METHODS: From June 2018 to December 2021, we included patients scheduled for elective neurosurgery and requiring vasopressors for intraoperative hypotension management at Lariboisière Hospital, Paris. Low doses of NOR were administered peripherally, and successive arterial blood samples were collected to track its plasmatic concentration. We used a compartmental modelling approach for NOR PK. We developed and compared 2 models for NOR PD on MAP. Model comparison was done using Bayes information criteria. The resulting PK/PD model parameters were fitted over the entire population and linked to age, weight, height and sex. RESULTS: We included 29 patients (age 52 [46-64] years, 69% female). NOR median time to peak effect on MAP was 74 [53-94] s. After bolus administration, MAP increased by 24% (15-31%). A 2-comparment model with depot best captured NOR PK. NOR PD effect on MAP was well represented by both Emax and Windkessel models, with better results for the former. We found that age, height and weight as well as history of smoking and hypertension were correlated with model parameters. CONCLUSION: We have developed a PK/PD model to accurately track norepinephrine plasma concentration and its effect on MAP over time, which could serve for target-controlled infusion.

18.
Ther Deliv ; : 1-9, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023301

RESUMO

Aim: Rose Bengal photodynamic antimicrobial therapy (RB-PDAT) has poor corneal penetration, limiting its efficacy against acanthamoeba keratitis (AK). Iontophoresis enhances corneal permeation of charged molecules, piquing interest in its effects on RB in ex vivo human corneas. Methods: Five donor whole globes each underwent iontophoresis with RB, soaking in RB, or were soaked in normal saline (controls). RB penetration and corneal thickness was assessed using confocal microscopy. Results: Iontophoresis increased RB penetration compared with soaking (177 ± 9.5 µm vs. 100 ± 5.7 µm, p < 0.001), with no significant differences in corneal thickness between groups (460 ± 87 µm vs. 407 ± 69 µm, p = 0.432). Conclusion: Iontophoresis significantly improves RB penetration and its use in PDAT could offer a novel therapy for acanthamoeba keratitis. Further studies are needed to validate clinical efficacy.


The study aimed to improve a new treatment for eye infections known as photodynamic antimicrobial therapy. It investigated whether the use of electricity through a technique called iontophoresis could help a chemical called Rose Bengal go deeper into the eye in order to target more severe infections. The iontophoresis machine was custom built, with patient-contacting components 3D printed. The experiments were performed using donated human eye tissue and found that iontophoresis significantly improved the penetration depth of Rose Bengal as compared with the current technique of only soaking the eye in Rose Bengal.

19.
Adv Ther ; 41(8): 3328-3341, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38963587

RESUMO

INTRODUCTION: Trofinetide is the first drug to be approved for the treatment of Rett syndrome. Hepatic impairment is not expected to affect the pharmacokinetic (PK) profile of trofinetide because of predominant renal excretion. This study was conducted to help understand the potential impact of any hepatic impairment on trofinetide PK. METHODS: This study used physiologically based PK modeling to estimate trofinetide exposure (maximum drug concentration and area under the concentration-time curve from time zero to infinity) in virtual patients with mild, moderate, and severe hepatic impairment (per Child-Pugh classification) compared with virtual healthy subjects following a 12 g oral trofinetide dose. RESULTS: In individual deterministic simulations for matched individuals and stochastic simulations at the population level (100 virtual individuals simulated per population), as anticipated, predicted plasma exposures were similar for healthy subjects and for patients with mild, moderate, and severe hepatic impairment. However, predicted blood concentration exposures slightly increased with increasing severity of hepatic impairment because of change in hematocrit levels. CONCLUSION: This study indicates that hepatic impairment is not expected to have a clinically relevant effect on exposure to trofinetide.


Trofinetide is the first approved treatment for Rett syndrome, a rare genetic condition that affects brain development. When a person takes trofinetide, most is removed from the body via the urine in its unchanged form (no chemical alteration). Regulatory requirements mean researchers must confirm the safety of any pharmaceutical drug and evaluate whether changes in liver function lead to harmful levels of drug exposure. Researchers used a computer model to predict how much trofinetide would be present in the blood and plasma (the liquid portion of blood) over time in virtual healthy subjects and virtual patients with varying degrees of liver disease (mild, moderate, or severe). Computer simulations showed that predicted trofinetide levels in plasma were similar in virtual healthy subjects and each virtual patient group with liver disease. Predicted levels of trofinetide in blood were slightly elevated with increasing severity of liver disease. This is because people with liver disease have fewer red blood cells, so the cell portion of blood becomes smaller relative to the liquid portion (plasma), which leads to higher trofinetide concentrations in whole blood (trofinetide minimally enters the red blood cell). The small increase in trofinetide levels in blood and the absence of any change in trofinetide levels in plasma means that people with Rett syndrome and liver disease are unlikely to be exposed to harmful levels of trofinetide after a 12 g oral dose.


Assuntos
Simulação por Computador , Humanos , Modelos Biológicos , Hepatopatias/metabolismo , Masculino , Feminino , Adulto
20.
Ther Deliv ; : 1-13, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39072401

RESUMO

Aim: Insulin therapy require self-administration of subcutaneous injection leading to painful and inconvenient drug therapy. The aim is to fabricate nanoemulsion (NE) based insulin loaded microneedles with improved bioavailability and patient compliance. Materials & methods: Different ratios of polyvinyl alcohol and polyvinylpyrrolidone as polymers were prepared through micro-molding technique for microneedles. Characterization of were performed using scanning electron microscope, differential scanning calorimetry, Fourier-transform infrared spectroscopy and circular dichroism. Mechanical strength, hygroscopicity and pain perception of these microneedles were also evaluated. In vitro release, permeation and in vivo PK/PD study of NE-based microneedles were conducted. Results: NE-based microneedles of insulin have improved bioavailability and quick response. Conclusion: Microneedles loaded with insulin can be effectively delivered insulin transdermally to treat diabetes with increased convenience and patient compliance.


[Box: see text].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA