Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Toxicol Rep ; 10: 357-366, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923444

RESUMO

Mucopolysaccharidosis Type IIIB (MPS IIIB) is an ultrarare, fatal pediatric disease with no approved therapy. It is caused by mutations in the gene encoding for lysosomal enzyme alpha-N-acetylglucosaminidase (NAGLU). Tralesinidase alfa (TA) is a fusion protein comprised of recombinant NAGLU and a modified human insulin-like growth factor 2 that is being developed as an enzyme replacement therapy for MPS IIIB. Since MPS IIIB is a pediatric disease the safety/toxicity, pharmacokinetics and biodistribution of TA were evaluated in juvenile non-human primates that were administered up to 5 weekly intracerebroventricular (ICV) or single intravenous (IV) infusions of TA. TA administered by ICV slow-, ICV isovolumetric bolus- or IV-infusion was well-tolerated, and no effects were observed on clinical observations, electrocardiographic or ophthalmologic parameters, or respiratory rates. The drug-related changes observed were limited to increased cell infiltrates in the CSF and along the ICV catheter track after ICV administration. These findings were not associated with functional changes and are associated with the use of ICV catheters. The CSF PK profiles were consistent across all conditions tested and TA distributed widely in the CNS after ICV administration. Anti-drug antibodies were observed but did not appear to significantly affect the exposure to TA. Correlations between TA concentrations in plasma and brain regions in direct contact with the cisterna magna suggest glymphatic drainage may be responsible for clearance of TA from the CNS. The data support the administration of TA by isovolumetric bolus ICV infusion to pediatric patients with MPS IIIB.

2.
Acta Pharm Sin B ; 12(4): 1928-1942, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35847491

RESUMO

T cell engaging bispecific antibody (TCB) is an effective immunotherapy for cancer treatment. Through co-targeting CD3 and tumor-associated antigen (TAA), TCB can redirect CD3+ T cells to eliminate tumor cells regardless of the specificity of T cell receptor. Tissue factor (TF) is a TAA that involved in tumor progression. Here, we designed and characterized a novel TCB targeting TF (TF-TCB) for the treatment of TF-positive tumors. In vitro, robust T cell activation, tumor cell lysis and T cell proliferation were induced by TF-TCB. The tumor cell lysis activity was dependent upon both CD3 and TF binding moieties of the TF-TCB, and was related to TF expression level of tumor cells. In vivo, in both tumor cell/human peripheral blood mononuclear cells (PBMC) co-grafting model and established tumor models with poor T cell infiltration, tumor growth was strongly inhibited by TF-TCB. T cell infiltration into tumors was induced during the treatment. Furthermore, efficacy of TF-TCB was further improved by combination with immune checkpoint inhibitors. For the first time, our results validated the feasibility of using TF as a target for TCB and highlighted the potential for TF-TCB to demonstrate efficacy in solid tumor treatment.

3.
Mol Genet Metab Rep ; 31: 100862, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35782623

RESUMO

The use of available treatments for Fabry disease (FD) (including enzyme replacement therapy [ERT]) may be restricted by their limited symptom improvement and mode of administration. Lucerastat is currently being investigated in the MODIFY study as oral substrate reduction therapy for the treatment of FD. By reducing the net globotriaosylceramide (Gb3) load in tissues, lucerastat has disease-modifying potential to improve symptoms and delay disease progression. MODIFY is a multicenter, double-blind, randomized, placebo-controlled, parallel-group Phase 3 study (ClinicalTrial.gov: NCT03425539); here we present the rationale and design of this study. Eligible adults with a genetically confirmed diagnosis of FD and FD-specific neuropathic pain entered screening. Patients were randomized (2:1) to receive either oral lucerastat twice daily or placebo for 6 months; treatment allocation was stratified according to sex and ERT treatment status. The main objectives of MODIFY are to assess the effects of lucerastat on neuropathic pain, gastrointestinal (GI) symptoms, FD biomarkers, and determine its safety and tolerability. Neuropathic pain and GI symptoms are key features of FD that have a significant impact on quality of life. Despite various tools available to assess pain and GI symptoms, there are currently limited tools available to assess neuropathic and GI symptoms in FD, validated according to health authority guidelines. Based on FDA recommendations, we undertook a patient-reported outcome (PRO) validation study, using a novel eDiary-based PRO tool to assess the validity of evaluating neuropathic pain as a primary efficacy endpoint in MODIFY. Results from the PRO validation study are included. To date, MODIFY is the largest Phase 3 clinical study conducted in patients with FD. Enrollment to MODIFY is now complete, with 118 patients randomized. Results will be presented in a separate publication. Long-term effects of lucerastat are being assessed in the ongoing open-label extension study (NCT03737214).

4.
J Mass Spectrom Adv Clin Lab ; 25: 27-35, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35721272

RESUMO

Introduction: Remdesivir (GS-5734) is a nucleoside analog prodrug with antiviral activity against several single-stranded RNA viruses, including the novel severe respiratory distress syndrome virus 2 (SARS-CoV-2). It is currently the only FDA-approved antiviral agent for the treatment of individuals with COVID-19 caused by SARS-CoV-2. However, remdesivir pharmacokinetics/pharmacodynamics (PK/PD) and toxicity data in humans are extremely limited. It is imperative that precise analytical methods for the quantification of remdesivir and its active metabolite, GS-441524, are developed for use in further studies. We report, herein, the first validated anti-viral paper spray-mass spectrometry (PS-MS/MS) assay for the quantification of remdesivir and GS-441524 in human plasma. We seek to highlight the utility of PS-MS/MS technology and automation advancements for its potential future use in clinical research and the clinical laboratory setting. Methods: Calibration curves for remdesivir and GS-441524 were created utilizing seven plasma-based calibrants of varying concentrations and two isotopic internal standards of set concentrations. Four plasma-based quality controls were prepared in a similar fashion to the calibrants and utilized for validation. No sample preparation was needed. Briefly, plasma samples were spotted on a paper substrate contained within pre-manufactured plastic cassette plates, and the spots were dried for 1 h. The samples were then analyzed directly for 1.2 min utilizing PS-MS/MS. All experiments were performed on a Thermo Scientific Altis triple quadrupole mass spectrometer utilizing automated technology. Results: The calibration ranges were 20 - 5000 and 100 - 25000 ng/mL for remdesivir and GS-441524, respectively. The calibration curves for the two antiviral agents showed excellent linearity (average R2 = 0.99-1.00). The inter- and intra-day precision (%CV) across validation runs at four QC levels for both analytes was less than 11.2% and accuracy (%bias) was within ± 15%. Plasma calibrant stability was assessed and degradation for the 4 °C and room temperature samples were seen beginning at Day 7. The plasma calibrants were stable at -20 °C. No interference, matrix effects, or carryover was discovered during the validation process. Conclusions: PS-MS/MS represents a useful methodology for rapidly quantifying remdesivir and GS-441524, which may be useful for clinical PK/PD, therapeutic drug monitoring (TDM), and toxicity assessment, particularly during the current COVID-19 pandemic and future viral outbreaks.

5.
Phytomedicine ; 103: 154247, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35716539

RESUMO

BACKGROUND: The concurrent use of conventional drugs and herbal medicines is becoming popular among patients with cancer. However, the potential risk of herb-drug interactions (HDI) remains under-addressed in the literature. Previous reviews have mainly focused on the prevalence of interactions, with less attention paid to the methods used by pharmacoepidemiological studies on evaluating HDI. This scoping review aims to summarize the existing pharmacoepidemiological studies that evaluate HDI using real-world data and to identify gaps to be addressed in future research. METHODS: A comprehensive search was performed in nine English- and Chinese-language databases from their inception to May 2021. Gray literature and manual searches were conducted to identify additional studies. The recommended components of the pharmacoepidemiological studies and key findings related to HDI were summarized. The proportion (%) of patients with cancer at risk of HDI was estimated by combining data from eligible studies. RESULTS: Twenty-eight studies were included in the review. More than half of these studies were cross-sectional studies (n = 18, 64.3%), followed by retrospective cohort studies (n = 5, 17.9%) and prospective cohort studies (n = 2, 7.1%). The three cancer drugs most commonly studied for their interaction potential with herbs were tamoxifen (n = 11, 39.3%), cyclophosphamide (n = 6, 21.4%), and paclitaxel (n = 6, 21.4%). Most cross-sectional studies identified potential HDI using tertiary databases and primary literature searches. Conversely, prospective and retrospective studies mainly investigated actual clinical outcomes, such as adverse events and secondary cancer occurrences. Most interaction outcomes identified using real-world data did not lead to negative clinical consequences. Collectively, 45.4% of herbal medicine users of the included studies were found to be at risk of HDI. We infer from this review that the common limitations of these studies were limited sample size, lack of data on herbal medicine use and details of HDI, and lack of evidence of HDI. Based on the study limitations, several recommendations to enrich the data sources and optimize the study designs were proposed. CONCLUSIONS: There is a high demand for pharmacoepidemiological research on HDI, considering the increasing popularity of herbal medicine among patients with cancer. It is anticipated that emerging real-world data in this field can guide the development of safe and effective approaches to integrative oncology.


Assuntos
Interações Ervas-Drogas , Plantas Medicinais , Humanos , Fitoterapia , Estudos Prospectivos , Estudos Retrospectivos
6.
Eur J Pharm Sci ; 174: 106198, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35504449

RESUMO

AIMS: The aims of this work are (i) to characterize the absorption properties of orally administered formulations at different dose levels, and (ii) to evaluate the impact of entero-hepatic circulation on the time-course of amiodarone (AM) in rats in order to optimize the development of new oral (OR) formulations. METHODS: Intravenous (IV) formulation consisted on a solution of a commercial injectable of AM chlorhydrate. OR formulations included the IV commercial formulation (Trangorex®) (Solution I), an aqueous supramicellar solution of AM chlorhydrate with Polysorbate at 5% (Solution II) and a suspension from Trangorex® tablets (Tablet). Data from 96 male Wistar rats, including 985 AM observations, were analyzed using NONMEM v7.4. RESULTS: The population pharmacokinetic (PK) model assumes linear absorption processes, showing ka of AM from Solution II (Polysorbate 80, 5%) and Solution I increased by 2.5- and 1.62-fold compared to Tablet formulation. OR bioavailability of AM from Tablet, Solution I and Solution II was 37%, 40%, and 50%, respectively. The structural model of AM disposition was adapted from a previously population PK model and expanded by incorporating entero-hepatic reabsorption (EHR) processes, which estimated a 12.3% biliary excretion of AM and complete re-absorption from lumen. CONCLUSIONS: The current population PK model of AM demonstrated the absorption rate enhancement when AM is formulated with supramicellar concentrations of Polysorbate 80. The study design allowed to characterize the EHR of AM and its contribution in the overall AM disposition.


Assuntos
Amiodarona , Administração Oral , Animais , Disponibilidade Biológica , Estudos Cross-Over , Circulação Êntero-Hepática , Cinética , Masculino , Polissorbatos , Ratos , Ratos Wistar , Comprimidos
7.
Contracept X ; 4: 100072, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35243326

RESUMO

Developing new long-acting products of well-characterized contraceptive drugs is one way to address some of the reasons for unmet need for modern methods of family planning among women in low- and middle-income countries. Development and approval of such products traditionally follow a conventional paradigm that includes large Phase 3 clinical trials to evaluate efficacy (pregnancy prevention) and safety of the investigational product. Exposure-bracketing is a concept that applies known pharmacokinetics and pharmacodynamics of a drug substance to inform its safe and efficacious use in humans. Several therapeutic areas have applied this concept by leveraging established drug concentration-response relationships for approved products to expedite development and shorten the timeline for the approval of an investigational product containing the same drug substance. Based on discussions at a workshop hosted by the Bill & Melinda Gates Foundation in December 2020, it appears feasible to apply exposure-bracketing to develop novel contraceptive products using well-characterized drugs.

8.
JAAD Int ; 6: 13-19, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34870246

RESUMO

BACKGROUND: The effects of halobetasol propionate (HBP) lotion 0.05% on the hypothalamic-pituitary-adrenal (HPA) axis have not been previously evaluated in adolescents. OBJECTIVE: To examine the effect of HBP on HPA axis suppression in patients aged <17 years with plaque psoriasis. METHODS: In this phase 4, open-label, multicenter study, patients aged 12 to 16 years 11 months with stable plaque psoriasis covering ≥10% of their body surface area were enrolled. The patients applied an HBP lotion twice daily for up to 2 weeks. The cosyntropin stimulation test was used to determine cortisol levels at the time of screening and at the end of the study to evaluate HPA axis response. The additional endpoints included adverse events, disease severity (measured using Investigator Global Assessment score), and percent body surface area affected. RESULTS: Sixteen patients were enrolled and included in the safety population; 14 were included in the evaluable population. One patient exhibited an abnormal HPA axis response (16.2 µg/dL) at the end of the study; the response returned to normal at the 6-month follow-up visit. By the end of the study, the Investigator Global Assessment score improved by ≥1 point in most patients; moreover, the percent body surface area affected decreased from 11.5% to 2.8%. One mild adverse event was possibly related to the HBP lotion; however, it resolved and did not cause study discontinuation. LIMITATIONS: Small sample size. CONCLUSION: The HBP lotion 0.05% appeared efficacious and well tolerated in patients as young as 12 years old.

9.
Int J Pharm X ; 3: 100097, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34704013

RESUMO

Oral delivery of peptides and proteins is hindered by their rapid proteolysis in the gastrointestinal tract and their inability to permeate biological membranes. Various drug delivery approaches are being investigated and implemented to overcome these obstacles. In the discussed study conducted in pigs, an investigation was undertaken to assess the effect of combination of a permeation enhancer - salcaprozate sodium, and a proteolysis inhibitor - soybean trypsin inhibitor, on the systemic exposure of the peptide teriparatide, following intraduodenal administration. Results demonstrate that this combination achieves significantly higher Cmax and AUC (~10- and ~20-fold respectively) compared to each of these methodologies on their own. It was thus concluded that an appropriate combination of different technological approaches may considerably contribute to an efficient oral delivery of biological macromolecules.

10.
Acta Pharm Sin B ; 11(8): 2565-2584, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34522598

RESUMO

Pulmonary administration route has been extensively exploited for the treatment of local lung diseases such as asthma, chronic obstructive pulmonary diseases and respiratory infections, and systemic diseases such as diabetes. Most inhaled medicines could be cleared rapidly from the lungs and their therapeutic effects are transit. The inhaled medicines with extended pulmonary exposure may not only improve the patient compliance by reducing the frequency of drug administration, but also enhance the clinical benefits to the patients with improved therapeutic outcomes. This article systematically reviews the physical and chemical strategies to extend the pulmonary exposure of the inhaled medicines. It starts with an introduction of various physiological and pathophysiological barriers for designing inhaled medicines with extended lung exposure, which is followed by recent advances in various strategies to overcome these barriers. Finally, the applications of the inhaled medicines with extended lung exposure for the treatment of various diseases and the safety concerns associated to various strategies to extend the pulmonary exposure of the inhaled medicines are summarized.

11.
Mol Genet Metab Rep ; 29: 100799, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34522617

RESUMO

Urea cycle disorders (UCDs), inborn errors of hepatocyte metabolism, cause hyperammonemia and lead to neurocognitive deficits, coma, and even death. Sodium 4-phenylbutyrate (NaPB), a standard adjunctive therapy for UCDs, generates an alternative pathway of nitrogen deposition through glutamine consumption. Administration during or immediately after a meal is the approved usage of NaPB. However, we previously found that preprandial oral administration enhanced its potency in healthy adults and pediatric patients with intrahepatic cholestasis. The present study evaluated the effect of food on the pharmacokinetics and pharmacodynamics of NaPB in five patients with UCDs. Following an overnight fast, NaPB was administered orally at 75 mg/kg/dose (high dose, HD) or 25 mg/kg/dose (low dose, LD) either 15 min before or immediately after breakfast. Each patient was treated with these four treatment regimens with NaPB. With either dose, pre-breakfast administration rather than post-breakfast administration significantly increased plasma PB levels and decreased plasma glutamine availability. Pre-breakfast LD administration resulted in a greater attenuation in plasma glutamine availability than post-breakfast HD administration. Plasma levels of branched-chain amino acids decreased to the same extent in all tested regimens. No severe adverse events occurred during this study. In conclusion, preprandial oral administration of NaPB maximized systemic exposure of PB and thereby its efficacy on glutamine consumption in patients with UCDs.

12.
Contemp Clin Trials Commun ; 23: 100830, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34401600

RESUMO

BLZ-100 (tozuleristide) is an intraoperative fluorescent imaging agent that selectively detects malignant tissue and can be used in real time to guide tumor resection. The purpose of this study was to assess the safety, tolerability, and pharmacokinetics of BLZ-100 and to explore the pharmacodynamics of fluorescence imaging of skin tumors. In this first-in-human study, BLZ-100 was administered intravenously to 21 adult patients 2 days before excising known or suspected skin cancers. Doses were 1, 3, 6, 12, and 18 mg, with 3-6 patients/cohort. Fluorescence imaging was conducted before and up to 48 h after dosing. BLZ-100 was well tolerated. There were no serious adverse events, deaths, or discontinuations due to adverse events, and no maximum tolerated dose (MTD) was identified. Headache (n = 2) and nausea (n = 2) were the only BLZ-100 treatment-related adverse events reported for >1 patient. Median time to maximal serum concentration was <0.5 h. Exposure based on maximal serum concentrations increased in a greater than dose-proportional manner. For intermediate dose-levels (3-12 mg), 4 of 5 basal cell carcinomas and 4 of 4 melanomas were considered positive for BLZ-100 fluorescence. BLZ-100 was well tolerated at all dose levels tested and these results support further clinical testing of this imaging agent in surgical oncology settings. Clinicaltrials.gov: NCT02097875.

13.
Acta Pharm Sin B ; 11(6): 1526-1540, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34221866

RESUMO

Acute myeloid leukaemia (AML) is the most common form of acute leukaemia in adults, with increasing incidence with age and a generally poor prognosis. Almost 20% of AML patients express mutant isocitrate dehydrogenase 2 (mIDH2), which leads to the accumulation of the carcinogenic metabolite 2-hydroxyglutarate (2-HG), resulting in poor prognosis. Thus, global institutions have been working to develop mIDH2 inhibitors. SH1573 is a novel mIDH2 inhibitor that we independently designed and synthesised. We have conducted a comprehensive study on its pharmacodynamics, pharmacokinetics and safety. First, SH1573 exhibited a strong selective inhibition of mIDH2 R140Q protein, which could effectively reduce the production of 2-HG in cell lines, serum and tumors of an animal model. It could also promote the differentiation of mutant AML cell lines and granulocytes in PDX models. Then, it was confirmed that SH1573 possessed characteristics of high bioavailability, good metabolic stability and wide tissue distribution. Finally, toxicological data showed that SH1573 had no effects on the respiratory system, cardiovascular system and nervous system, and was genetically safe. This research successfully promoted the approval of SH1573 for clinical trials (CTR20200247). All experiments demonstrated that, as a potential drug against mIDH2 R140Q acute myeloid leukaemia, SH1573 was effective and safe.

14.
Acta Pharm Sin B ; 11(3): 781-794, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33777682

RESUMO

Fibroblast growth factor receptors (FGFRs) have emerged as promising targets for anticancer therapy. In this study, we synthesized and evaluated the biological activity of 66 pyrazolo[3,4-d]pyridazinone derivatives. Kinase inhibition, cell proliferation, and whole blood stability assays were used to evaluate their activity on FGFR, allowing us to explore structure-activity relationships and thus to gain understanding of the structural requirements to modulate covalent inhibitors' selectivity and reactivity. Among them, compound 10h exhibited potent enzymatic activity against FGFR and remarkably inhibited proliferation of various cancer cells associated with FGFR dysregulation, and suppressed FGFR signaling pathway in cancer cells by the immunoblot analysis. Moreover, 10h displayed highly potent antitumor efficacy (TGI = 91.6%, at a dose of 50 mg/kg) in the FGFR1-amplified NCI-H1581 xenograft model.

15.
Acta Pharm Sin B ; 11(1): 156-180, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33532187

RESUMO

This study was aimed to design the first dual-target small-molecule inhibitor co-targeting poly (ADP-ribose) polymerase-1 (PARP1) and bromodomain containing protein 4 (BRD4), which had important cross relation in the global network of breast cancer, reflecting the synthetic lethal effect. A series of new BRD4 and PARP1 dual-target inhibitors were discovered and synthesized by fragment-based combinatorial screening and activity assays that together led to the chemical optimization. Among these compounds, 19d was selected and exhibited micromole enzymatic potencies against BRD4 and PARP1, respectively. Compound 19d was further shown to efficiently modulate the expression of BRD4 and PARP1. Subsequently, compound 19d was found to induce breast cancer cell apoptosis and stimulate cell cycle arrest at G1 phase. Following pharmacokinetic studies, compound 19d showed its antitumor activity in breast cancer susceptibility gene 1/2 (BRCA1/2) wild-type MDA-MB-468 and MCF-7 xenograft models without apparent toxicity and loss of body weight. These results together demonstrated that a highly potent dual-targeted inhibitor was successfully synthesized and indicated that co-targeting of BRD4 and PARP1 based on the concept of synthetic lethality would be a promising therapeutic strategy for breast cancer.

16.
Med Drug Discov ; 9: 100078, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33398258

RESUMO

This review covers some of the recent progress in the field of peptide antibiotics with a focus on compounds with novel or established mode of action and with demonstrated efficacy in animal infection models. Novel drug discovery approaches, linear and macrocyclic peptide antibiotics, lipopeptides like the polymyxins as well as peptides addressing targets located in the plasma membrane or in the outer membrane of bacterial cells are discussed.

17.
Comput Struct Biotechnol J ; 19: 315-329, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33425259

RESUMO

Biotherapeutics, and antimicrobial proteins in particular, are of increasing interest for human medicine. An important challenge in the development of such therapeutics is their potential immunogenicity, which can induce production of anti-drug-antibodies, resulting in altered pharmacokinetics, reduced efficacy, and potentially severe anaphylactic or hypersensitivity reactions. For this reason, the development and application of effective deimmunization methods for protein drugs is of utmost importance. Deimmunization may be achieved by unspecific shielding approaches, which include PEGylation, fusion to polypeptides (e.g., XTEN or PAS), reductive methylation, glycosylation, and polysialylation. Alternatively, the identification of epitopes for T cells or B cells and their subsequent deletion through site-directed mutagenesis represent promising deimmunization strategies and can be accomplished through either experimental or computational approaches. This review highlights the most recent advances and current challenges in the deimmunization of protein therapeutics, with a special focus on computational epitope prediction and deletion tools.

18.
Acta Pharm Sin B ; 11(12): 3869-3878, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35024313

RESUMO

Disease-mediated alterations to drug disposition constitute a significant source of adverse drug reactions. Cisplatin (CDDP) elicits nephrotoxicity due to exposure in proximal tubule cells during renal secretion. Alterations to renal drug transporter expression have been discovered during nonalcoholic steatohepatitis (NASH), however, associated changes to substrate toxicity is unknown. To test this, a methionine- and choline-deficient diet-induced rat model was used to evaluate NASH-associated changes to CDDP pharmacokinetics, transporter expression, and toxicity. NASH rats administered CDDP (6 mg/kg, i.p.) displayed 20% less nephrotoxicity than healthy rats. Likewise, CDDP renal clearance decreased in NASH rats from 7.39 to 3.83 mL/min, renal secretion decreased from 6.23 to 2.80 mL/min, and renal CDDP accumulation decreased by 15%, relative to healthy rats. Renal copper transporter-1 expression decreased, and organic cation transporter-2 and ATPase copper transporting protein-7b increased slightly, reducing CDDP secretion. Hepatic CDDP accumulation increased 250% in NASH rats relative to healthy rats. Hepatic organic cation transporter-1 induction and multidrug and toxin extrusion protein-1 and multidrug resistance-associated protein-4 reduction may contribute to hepatic CDDP sequestration in NASH rats, although no drug-related toxicity was observed. These data provide a link between NASH-induced hepatic and renal transporter expression changes and CDDP renal clearance, which may alter nephrotoxicity.

19.
Acta Pharm Sin B ; 10(8): 1453-1475, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32963943

RESUMO

Angiokinases, such as vascular endothelial-, fibroblast- and platelet-derived growth factor receptors (VEGFRs, FGFRs and PDGFRs) play crucial roles in tumor angiogenesis. Anti-angiogenesis therapy using multi-angiokinase inhibitor has achieved great success in recent years. In this study, we presented the design, synthesis, target identification, molecular mechanism, pharmacodynamics (PD) and pharmacokinetics (PK) research of a novel triple-angiokinase inhibitor WXFL-152. WXFL-152, identified from a series of 4-oxyquinoline derivatives based on a structure-activity relationship study, inhibited the proliferation of vascular endothelial cells (ECs) and pericytes by blocking the angiokinase signals VEGF/VEGFR2, FGF/FGFRs and PDGF/PDGFRß simultaneously in vitro. Significant anticancer effects of WXFL-152 were confirmed in multiple preclinical tumor xenograft models, including a patient-derived tumor xenograft (PDX) model. Pharmacokinetic studies of WXFL-152 demonstrated high favourable bioavailability with single-dose and continuous multi-dose by oral administration in rats and beagles. In conclusion, WXFL-152, which is currently in phase Ib clinical trials, is a novel and effective triple-angiokinase inhibitor with clear PD and PK in tumor therapy.

20.
Acta Pharm Sin B ; 10(2): 344-357, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32082978

RESUMO

In order to improve the positional adaptability of our previously reported naphthyl diaryltriazines (NP-DATAs), synthesis of a series of novel biphenyl-substituted diaryltriazines (BP-DATAs) with a flexible side chain attached at the C-6 position is presented. These compounds exhibited excellent potency against wild-type (WT) HIV-1 with EC50 values ranging from 2.6 to 39 nmol/L and most of them showed low nanomolar anti-viral potency against a panel of HIV-1 mutant strains. Compounds 5j and 6k had the best activity against WT, single and double HIV-1 mutants and reverse transcriptase (RT) enzyme comparable to two reference drugs (EFV and ETR) and our lead compound NP-DATA (1). Molecular modeling disclosed that the side chain at the C-6 position of DATAs occupied the entrance channel of the HIV-1 reverse transcriptase non-nucleoside binding pocket (NNIBP) attributing to the improved activity. The preliminary structure-activity relationship and PK profiles were also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA