Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Trends Mol Med ; 30(5): 459-470, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582621

RESUMO

Pelizaeus-Merzbacher disease (PMD) is caused by mutations in the proteolipid protein 1 (PLP1) gene encoding proteolipid protein (PLP). As a major component of myelin, mutated PLP causes progressive neurodegeneration and eventually death due to severe white matter deficits. Medical care has long been limited to symptomatic treatments, but first-in-class PMD therapies with novel mechanisms now stand poised to enter clinical trials. Here, we review PMD disease mechanisms and outline rationale for therapeutic interventions, including PLP1 suppression, cell transplantation, iron chelation, and intracellular stress modulation. We discuss available preclinical data and their implications on clinical development. With several novel treatments on the horizon, PMD is on the precipice of a new era in the diagnosis and treatment of patients suffering from this debilitating disease.


Assuntos
Proteína Proteolipídica de Mielina , Bainha de Mielina , Doença de Pelizaeus-Merzbacher , Doença de Pelizaeus-Merzbacher/genética , Doença de Pelizaeus-Merzbacher/terapia , Doença de Pelizaeus-Merzbacher/diagnóstico , Doença de Pelizaeus-Merzbacher/patologia , Humanos , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Animais , Proteína Proteolipídica de Mielina/genética , Proteína Proteolipídica de Mielina/metabolismo , Mutação
2.
Biomolecules ; 14(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38540765

RESUMO

Phosphatase and tensin homolog (Pten) is a key regulator of cell proliferation and a potential target to stimulate postnatal enteric neuro- and/or gliogenesis. To investigate this, we generated two tamoxifen-inducible Cre recombinase murine models in which Pten was conditionally ablated, (1) in glia (Plp1-expressing cells) and (2) in neurons (Calb2-expressing cells). Tamoxifen-treated adult (7-12 weeks of age; n = 4-15) mice were given DSS to induce colitis, EdU to monitor cell proliferation, and were evaluated at two timepoints: (1) early (3-4 days post-DSS) and (2) late (3-4 weeks post-DSS). We investigated gut motility and evaluated the enteric nervous system. Pten inhibition in Plp1-expressing cells elicited gliogenesis at baseline and post-DSS (early and late) in the colon, and neurogenesis post-DSS late in the proximal colon. They also exhibited an increased frequency of colonic migrating motor complexes (CMMC) and slower whole gut transit times. Pten inhibition in Calb2-expressing cells did not induce enteric neuro- or gliogenesis, and no alterations were detected in CMMC or whole gut transit times when compared to the control at baseline or post-DSS (early and late). Our results merit further research into Pten modulation where increased glia and/or slower intestinal transit times are desired (e.g., short-bowel syndrome and rapid-transit disorders).


Assuntos
Sistema Nervoso Entérico , Animais , Camundongos , Sistema Nervoso Entérico/metabolismo , Neurogênese/fisiologia , Proteolipídeos/metabolismo , Tamoxifeno/farmacologia , Tensinas/metabolismo
3.
Front Genet ; 14: 1173426, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37560384

RESUMO

Pathogenic genetic variants represent a challenge in prenatal counseling, especially when clinical presentation in familial carriers is atypical. We describe a prenatal case involving a microarray-detected duplication of PLP1 which causes X-linked Pelizaeus-Merzbacher disease, a progressive hypomyelinating leukodystrophy. Because of atypical clinical presentation in an older male child, the duplication was examined using a novel technology, optical genome mapping, and was found to be an inverted duplication, which has not been previously described. Simultaneously, segregation analysis identified another healthy adult male carrier of this unique structural rearrangement. The novel PLP1 structural variant was reclassified, and a healthy boy was delivered. In conclusion, we suggest that examining structural variants with novel methods is warranted especially in cases with atypical clinical presentation and may in these cases lead to improved prenatal and postnatal genetic counseling.

4.
Front Cell Neurosci ; 17: 1175614, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293625

RESUMO

Recently, the myelin proteolipid protein gene (Plp1) was shown to be expressed in the glia of the enteric nervous system (ENS) in mouse. However, beyond this, not much is known about its expression in the intestine. To address this matter, we investigated Plp1 expression at the mRNA and protein levels in the intestine of mice at different ages (postnatal days 2, 9, 21, and 88). In this study, we show that Plp1 expression preferentially occurs during early postnatal development, primarily as the DM20 isoform. Western blot analysis indicated that DM20 migrated according to its formula weight when isolated from the intestine. However, mobilities of both PLP and DM20 were faster than expected when procured from the brain. The 6.2hPLP(+)Z/FL transgene, which uses the first half of the human PLP1 gene to drive expression of a lacZ reporter gene, recapitulated the developmental pattern observed with the native gene in the intestine, indicating that it can be used as a proxy for Plp1 gene expression. As such, the relative levels of ß-galactosidase (ß-gal) activity emanating from the 6.2hPLP(+)Z/FL transgene suggest that Plp1 expression is highest in the duodenum, and decreases successively along the segments, toward the colon. Moreover, removal of the wmN1 enhancer region from the transgene (located within Plp1 intron 1) resulted in a dramatic reduction in both transgene mRNA levels and ß-gal activity in the intestine, throughout development, suggesting that this region contains a regulatory element crucial for Plp1 expression. This is consistent with earlier studies in both the central and peripheral nervous systems, indicating that it may be a common (if not universal) means by which Plp1 gene expression is governed.

5.
Eur J Paediatr Neurol ; 41: 71-79, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36368233

RESUMO

BACKGROUND: The clinical spectrum of Pelizaeus-Merzbacher disease (PMD), a common hypomyelinating leukodystrophy, ranges between severe neonatal onset and a relatively stable presentation with later onset and mainly lower limb spasticity. In view of emerging treatment options and in order to grade severity and progression, we developed a PMD myelination score. METHODS: Myelination was scored in 15 anatomic sites (items) on conventional T2-and T1w images in controls (n = 328) and 28 PMD patients (53 MRI; n = 5 connatal, n = 3 transitional, n = 10 classic, n = 3 intermediate, n = 2 PLP0, n = 3 SPG2, n = 2 female). Items included in the score were selected based on interrater variability, practicability of scoring and importance of scoring items for discrimination between patients and controls and between patient subgroups. Bicaudate ratio, maximal sagittal pons diameter, and visual assessment of midsagittal corpus callosum were separately recorded. RESULTS: The resulting myelination score consisting of 8 T2-and 5 T1-items differentiates patients and controls as well as patient subgroups at first MRI. There was very little myelin and early loss in severely affected connatal and transitional patients, more, though still severely deficient myelin in classic PMD, ongoing myelination during childhood in classic and intermediate PMD. Atrophy, present in 50% of patients, increased with age at imaging. CONCLUSIONS: The proposed myelination score allows stratification of PMD patients and standardized assessment of follow-up. Loss of myelin in severely affected and PLP0 patients and progressing myelination in classic and intermediate PMD must be considered when evaluating treatment efficacy.


Assuntos
Doença de Pelizaeus-Merzbacher , Recém-Nascido , Humanos , Feminino , Proteína Proteolipídica de Mielina/genética , Mutação , Imageamento por Ressonância Magnética , Corpo Caloso/diagnóstico por imagem
6.
Front Genet ; 13: 1045395, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386836

RESUMO

Objective: We aim to identify the crucial genes or potential biomarkers associated with uterine fibroids (UFs), which may provide clinicians with evidence about the diagnostic biomarker of UFs and reveal the mechanism of its progression. Methods: The gene expression and genome-wide DNA methylation profiles were obtained from Gene Expression Omnibus database (GEO). GSE45189, GSE31699, and GSE593 datasets were included. GEO2R and Venn diagrams were used to analyze the differentially expressed genes (DEGs) and extract the hub genes. Gene Ontology (GO) analysis was performed by the online tool Database for Annotation, Visualization, and Integrated Discovery (DAVID). The mRNA and protein expression of hub genes were validated by RT-qPCR, western blot, and immunohistochemistry. The receiver operating characteristic (ROC) curve was used to evaluate the diagnostic value. Results: We detected 22 DEGs between UFs and normal myometrium, which were enriched in cell maturation, apoptotic process, hypoxia, protein binding, and cytoplasm for cell composition. By finding the intersection of the data between differentially expressed mRNA and DNA methylation profiles, 3 hub genes were identified, including transmembrane 4 L six family member 1 (TM4SF1), TNF superfamily member 10 (TNFSF10), and proteolipid protein 1 (PLP1). PLP1 was validated to be up-regulated significantly in UFs both at mRNA and protein levels. The area under the ROC curve (AUC) of PLP1 was 0.956, with a sensitivity of 79.2% and a specificity of 100%. Conclusion: Overall, our results indicate that PLP1 may be a potential diagnostic biomarker for uterine fibroids.

7.
Int J Mol Sci ; 23(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36142746

RESUMO

Our laboratory reported the derivation of neural crest stem cell (NCSC)-like cells from the interfollicular epidermis of the neonatal and adult epidermis. These keratinocyte (KC)-derived Neural Crest (NC)-like cells (KC-NC) could differentiate into functional neurons, Schwann cells (SC), melanocytes, and smooth muscle cells in vitro. Most notably, KC-NC migrated along stereotypical pathways and gave rise to multiple NC derivatives upon transplantation into chicken embryos, corroborating their NC phenotype. Here, we present an innovative design concept for developing anisotropically aligned scaffolds with chemically immobilized biological cues to promote differentiation of the KC-NC towards the SC. Specifically, we designed electrospun nanofibers and examined the effect of bioactive cues in guiding KC-NC differentiation into SC. KC-NC attached to nanofibers and adopted a spindle-like morphology, similar to the native extracellular matrix (ECM) microarchitecture of the peripheral nerves. Immobilization of biological cues, especially Neuregulin1 (NRG1) promoted the differentiation of KC-NC into the SC lineage. This study suggests that poly-ε-caprolactone (PCL) nanofibers decorated with topographical and cell-instructive cues may be a potential platform for enhancing KC-NC differentiation toward SC.


Assuntos
Nanofibras , Células-Tronco Neurais , Animais , Biomimética , Diferenciação Celular , Embrião de Galinha , Sinais (Psicologia) , Crista Neural/metabolismo , Células-Tronco Neurais/metabolismo , Células de Schwann/metabolismo
8.
ASN Neuro ; 14: 17590914221083203, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35593118

RESUMO

Enteric glia regulate gut functions in health and disease through diverse interactions with neurons and immune cells. Intracellular localization of traditional markers of enteric glia such as GFAP, s100b, and Sox10 makes them incompatible for studies that require antigen localization at the cell surface. Thus, new tools are needed for probing the heterogeneous roles of enteric glia at the protein, cell, and functional levels. Here we selected several cell surface antigens including Astrocyte Cell Surface Marker 2 (ACSA2), Cluster of differentiation 9 (CD9), lysophosphatidic acid receptor 1 (LPAR1), and Proteolipid protein 1 (PLP1) as potential markers of enteric glia. We tested their specificity for enteric glia using published single-cell/-nuclei and glia-specific translating mRNA enriched transcriptome datasets, immunolabeling, and flow cytometry. The data show that ACSA2 is a specific marker of mucosal and myenteric glia while other markers are suitable for identifying all subpopulations of enteric glia (LPAR1), glia and immune cells (CD9), or are not suitable for cell-surface labeling (PLP1). These new tools will be useful for future work focused on understanding specific glial functions in health and disease.Summary StatementThis study identifies astrocyte cell surface antigen 2 as a novel marker of myenteric glia in the intestine. This, in combination with other markers identified in this study, could be used for selective targeting of enteric glia.


Assuntos
Antígenos de Superfície , Astrócitos , Animais , Antígenos de Superfície/metabolismo , Colo , Camundongos , Neuroglia/metabolismo , Neurônios/metabolismo
9.
Front Cell Neurosci ; 16: 1087145, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713780

RESUMO

Much of what is known about the mechanisms that control the developmental expression of the myelin proteolipid protein gene (PLP1) has been attained through use of transgenic animal models. In this study, we analyzed expression of related transgenes which utilize PLP1 genomic DNA from either human or mouse to drive expression of a lacZ reporter. Human PLP1 (hPLP1) sequence span either the proximal 6.2 or 2.7 kb of 5'-flanking DNA to an internal site in Exon 2, while those from mouse comprise the proximal 2.3 kb of 5'-flanking DNA to an analogous site in Exon 2. Transgenes with hPLP1 sequence were named, in part, to the amount of upstream sequence they have [6.2hPLP(+)Z/FL and 2.7hPLP(+)Z]. The transgene containing mouse sequence is referred to here as mPLP(+)Z, to denote the species origin of PLP1 DNA. Mice which harbor the 6.2hPLP(+)Z/FL transgene were used as a model system to investigate the developmental expression of splice variants that incorporate supplementary exons from what is classically defined as PLP1 intron 1. While expression of the splice variants were detected in brain through RT-PCR analysis, they are present at much lower levels relative to the archetypal (classic) transcript. Additionally, we show that mice which harbor the 6.2hPLP(+)Z/FL transgene demonstrate wide-ranging expression throughout brain at P2, whereas expression of mPLP(+)Z is quite limited at this age. Therefore, we generated new transgenic mouse lines with the 2.7hPLP(+)Z transgene, which contains hPLP1 sequence orthologous to just that in mPLP(+)Z. Of the seven lines analyzed, six showed higher levels of 2.7hPLP(+)Z expression in brain at P21 compared to P2; the other line expressed the transgene, only weakly, at either age. This trend, coupled with the robust expression observed for 6.2hPLP(+)Z/FL at P2, suggests that the distal 3.5 kb of 5'-flanking PLP1 DNA specific to 6.2hPLP(+)Z/FL contains regulatory element(s) important for promoting early postnatal expression in brain.

10.
Brain Behav Immun Health ; 16: 100306, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34589798

RESUMO

Gangliosides are glycosphingolipids, which are abundant in brain, are known to modulate ion channels and cell-to-cell communication. Deficiencies can result in aberrant myelination and altered immune responses, which can give rise to neurodevelopmental psychiatric disorders. However, to date, little mechanistic data is available on how ganglioside deficiencies contribute to the behavioural disorders. In humans, the loss of lactosylceramide-alpha-2,3-sialyltransferase (ST3Gal5) leads to a severe neuropathology, but in ST3Gal5 knock-out (St3gal5-/-) mice the absence of GM3 and associated a-, b- and c-series gangliosides is partially compensated by 0-series gangliosides and there is no overt behavioural phenotype. Here, we sought to examine the behavioural and molecular consequences of GM3 loss more closely. Mutants of both sexes exhibited impaired conditioned taste aversion in an inhibitory learning task and anxiety-like behaviours in the open field, moderate motor deficits, abnormal social interactions, excessive grooming and rearing behaviours. Taken together, the aberrant behaviours are suggestive of an autism spectrum disorder (ASD)-like syndrome. Molecular analysis showed decreased gene and protein expression of proteolipid protein-1 (Plp1) and over expression of proinflammatory cytokines, which has been associated with ASD-like syndromes. The inflammatory and behavioural responses to lipopolysaccharide (LPS) were also altered in the St3gal5-/- mice compared to wild-type, which is indicative of the importance of GM3 gangliosides in regulating immune responses. Together, the St3gal5-/- mice display ASD-like behavioural features, altered response to systemic inflammation, signs of hypomyelination and neuroinflammation, which suggests that deficiency in a- and b-series gangliosides could contribute to the development of an ASD-like pathology in humans.

11.
Neuroscience ; 476: 60-71, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34506833

RESUMO

Among the hypomyelinating leukodystrophies, Pelizaeus-Merzbacher disease (PMD) is a representative disorder. The disease is caused by different types of PLP1 mutations, among which PLP1 duplication accounts for ∼70% of the mutations. Previous studies have shown that PLP1 duplications lead to PLP1 retention in the endoplasmic reticulum (ER); in parallel, recent studies have demonstrated that PLP1 duplication can also lead to mitochondrial dysfunction. As such, the respective roles and interactions of the ER and mitochondria in the pathogenesis of PLP1 duplication are not clear. In both PLP1 patients' and healthy fibroblasts, we measured mitochondrial respiration with a Seahorse XF Extracellular Analyzer and examined the interactions between the ER and mitochondria with super-resolution microscopy (spinning-disc pinhole-based structured illumination microscopy, SD-SIM). For the first time, we demonstrated that PLP1 duplication mutants had closer ER-mitochondrion interfaces mediated through structural and morphological changes in both the ER and mitochondria-associated membranes (MAMs). These changes in both the ER and mitochondria then led to mitochondrial dysfunction, as reported previously. This work highlights the roles of MAMs in bridging PLP1 expression in the ER and pathogenic dysfunction in mitochondria, providing novel insight into the pathogenicity of mitochondrial dysfunction resulting from PLP1 duplication. These findings suggest that interactions between the ER and mitochondria may underlie pathogenic mechanisms of hypomyelinating leukodystrophies diseases at the organelle level.


Assuntos
Proteína Proteolipídica de Mielina , Doença de Pelizaeus-Merzbacher , Retículo Endoplasmático , Humanos , Mitocôndrias , Mutação , Proteína Proteolipídica de Mielina/genética , Doença de Pelizaeus-Merzbacher/genética , Virulência
12.
Brain Sci ; 11(1)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450882

RESUMO

The PLP1 gene, located on chromosome Xq22, encodes the proteolipid protein 1 and its isoform DM20. Mutations in PLP1 cause a spectrum of white matter disorders of variable severity. Here we report on four additional HEMS patients from three families harboring three novel PLP1 mutations in exon 3B detected by targeted next-generation sequencing. Patients experienced psychomotor delay or nystagmus in the first year of age and then developed ataxic-spastic or ataxic syndrome, compatible with a phenotype of intermediate severity in the spectrum of PLP1-related disorders. Regression occurred at the beginning of the third decade of the eldest patient. Extrapyramidal involvement was rarely observed. Brain MRI confirmed the involvement of structures that physiologically myelinate early, although the pattern of abnormalities may differ depending on the age at which the study is performed. These new cases contribute to expanding the phenotypic and genotypic spectrum of HEMS. Additional studies, especially enriched by systematic functional evaluations and long-term follow-up, are welcome to better delineate the natural history of this rare hypomyelinating leukodystrophy.

13.
Aging (Albany NY) ; 13(1): 1488-1497, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33429367

RESUMO

A family with a history of Pelizaeus-Merzbacher disease (PMD) received prenatal diagnosis of PLP1 gene duplication in a fetus using a single nucleotide polymorphism (SNP) array. A 27-year-old pregnant woman was referred for genetic counseling due to her four-year-old son being diagnosed with a suspected classic type of PMD. Amniocentesis was performed at 18 and 3/7 weeks of gestation, and the SNP array was carried out on DNA from the mother, her affected son, and fetus, then further confirmed by multiplex ligation-dependent probe amplification (MLPA). Cytogenetic analysis of the fetus showed 46,XY. SNP array analysis revealed that the male fetus did not carry PLP1 gene duplication but the affected boy did, and the mother was a carrier for the duplication of the PLP1 gene. All SNP array results were further confirmed by MLPA. SNP array and MLPA analyses of peripheral blood verified the nonduplication of the PLP1 gene in the infant after birth. At present, the child (without PLP1 duplication) is developing normally. This study preliminarily suggests that SNP array is a sensitive and accurate technology for identifying PLP1 duplication and is feasible for reliable diagnosis, including for the prenatal diagnosis of PMD resulting from PLP1 duplication.


Assuntos
Amniocentese , Técnicas Genéticas , Proteína Proteolipídica de Mielina/genética , Doença de Pelizaeus-Merzbacher/diagnóstico , Doença de Pelizaeus-Merzbacher/genética , Adulto , Feminino , Duplicação Gênica , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Gravidez
14.
Pigment Cell Melanoma Res ; 34(3): 648-654, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33089656

RESUMO

For a long time, melanocytes were believed to be exclusively derived from neural crest cells migrating from the neural tube toward the developing skin. This notion was then challenged by studies suggesting that melanocytes could also be made from neural crest-derived Schwann cell precursors (SCPs) on peripheral nerves. A SCP origin was inferred from lineage tracing studies in mice using a Plp1 promoter-controlled Cre driver transgene (Plp1-CreERT2) and a fluorescent Rosa26 locus-controlled Cre reporter allele (Rosa26FloxSTOP-YFP ). However, doubts were raised in part because another SCP-directed Cre driver controlled by the Dhh promoter (Dhh-Cre) was apparently unable to label melanocytes when used with a non-fluorescent Rosa26 locus-controlled Cre reporter (Rosa26FloxSTOP-LacZ ). Here, we report that the same Dhh-Cre driver line can efficiently label melanocytes when used in a pure FVB/N background together with the fluorescent instead of the non-fluorescent Rosa26 locus-controlled Cre reporter. Our data further suggest that the vast majority of skin melanocytes are SCP-derived. Interestingly, we also discovered that SCPs contribute inner ear melanocytes in a region-specific manner, extensively contributing to the cochlea but not to the vestibule.


Assuntos
Diferenciação Celular , Cóclea/citologia , Proteínas Hedgehog/metabolismo , Melanócitos/citologia , Células de Schwann/citologia , Pele/citologia , Células-Tronco/citologia , Sistema Vestibular/citologia , Animais , Cóclea/metabolismo , Proteínas Hedgehog/genética , Melanócitos/metabolismo , Camundongos , Camundongos Transgênicos , Células de Schwann/metabolismo , Pele/metabolismo , Células-Tronco/metabolismo , Sistema Vestibular/metabolismo
15.
J Neurosci Res ; 99(3): 731-749, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33197966

RESUMO

The cornea is the most innervated tissue in the human body. Myelinated axons upon inserting into the peripheral corneal stroma lose their myelin sheaths and continue into the central cornea wrapped by only nonmyelinating corneal Schwann cells (nm-cSCs). This anatomical organization is believed to be important for central vision. Here we employed single-cell RNA sequencing (scRNA-seq), microscopy, and transgenics to characterize these nm-cSCs of the central cornea. Using principal component analysis, uniform manifold approximation and projection, and unsupervised hierarchal cell clustering of scRNA-seq data derived from central corneal cells of male rabbits, we successfully identified several clusters representing different corneal cell types, including a unique cell cluster representing nm-cSCs. To confirm protein expression of cSC genes, we performed cross-species validation, employing corneal whole-mount immunostaining with confocal microscopy in mouse corneas. The expression of several representative proteins of nm-cSCs were validated. As the proteolipid protein 1 (PLP1) gene was also expressed in nm-cSCs, we explored the Plp1-eGFP transgenic reporter mouse line to visualize cSCs. Specific and efficient eGFP expression was observed in cSCs in adult mice of different ages. Of several putative cornea-specific SC genes identified, Dickkopf-related protein 1 was shown to be present in nm-cSCs. Taken together, our findings, for the first time, identify important insights and tools toward the study nm-cSCs in isolated tissue and adult animals. We expect that our results will advance the future study of nm-cSCs in applications of nerve repair, and provide a resource for the study of corneal sensory function.


Assuntos
Córnea/metabolismo , Expressão Gênica/genética , Células de Schwann/metabolismo , Animais , Biomarcadores , Feminino , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Proteolipídica de Mielina/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Coelhos , Fatores de Transcrição SOXE/metabolismo , Análise de Célula Única , Sindecana-3/metabolismo , Transcriptoma , Canais de Sódio Disparados por Voltagem/metabolismo
16.
Brain Dev ; 42(8): 603-606, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32595021

RESUMO

INTRODUCTION: Hypomyelinating leukodystrophies (HLDs) are genetically heterogeneous syndromes, presenting abnormalities in myelin development in the central nervous system. Recently, a recurrent de novo mutation in TMEM106B was identified to be responsible for five cases of HLD. We report the first Japanese case of TMEM106B gene mutation. CASE STUDY: A 3-year-old patient presented with nystagmus and muscle hypotonia in his neonatal period, followed by delayed psychomotor development. Brain magnetic resonance images showed delayed myelination. Wave III and subsequent components were not presented by his auditory brainstem response. These features were similar to those observed in Pelizaeus-Merzbacher disease (PMD). METHODS: Proteolipid protein 1 (PLP1) gene screening, Mendelian disease panel exome, and whole-exome sequencing (WES) were sequentially performed. RESULTS: After excluding mutations in either PLP1 or other known HLD genes, WES identified a mutation c.754G > A, p.(Asp252Asn) in TMEM106B, which appeared to occur de novo, as shown by Sanger sequencing and SalI restriction enzyme digestion of PCR products. DISCUSSION: This is the sixth case of HLD with a TMEM106B mutation. All six cases harbored the same variant. This specific TMEM106B mutation should be investigated when a patient shows PMD-like features without PLP1 mutation. Our PCR-SalI digestion assay may serve as a tool for rapid HLD diagnosis.


Assuntos
Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/diagnóstico , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Fragmento de Restrição , Pré-Escolar , Desoxirribonucleases de Sítio Específico do Tipo II , Humanos , Imageamento por Ressonância Magnética , Masculino , Hipotonia Muscular/diagnóstico , Hipotonia Muscular/genética , Mutação , Nistagmo Patológico/diagnóstico , Nistagmo Patológico/genética
17.
Neurol Neurochir Pol ; 54(2): 176-184, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32242913

RESUMO

OBJECTIVES: Hereditary spastic paraplegias (HSPs) are a heterogenous group of rare neurodegenerative disorders that present with lower limb spasticity. It is known as complicated HSP if spasticity is accompanied by additional features such as cognitive impairment, cerebellar syndrome, thin corpus callosum, or neuropathy. Most HSP families show autosomal dominant (AD) inheritance. On the other hand, autosomal recessive (AR) cases are also common because of the high frequency of consanguineous marriages in our country. This study aimed to investigate the clinical and genetic aetiology in a group of HSP patients. PATIENTS AND METHODS: We studied 21 patients from 17 families. Six of them presented with recessive inheritance. All index patients were screened for ATL1 and SPAST gene mutations to determine the prevalence of the most frequent types of HSP in our cohort. Whole exome sequencing was performed for an AD-HSP family, in combination with homozygosity mapping for five selected AR-HSP families. RESULTS: Two novel causative variants were identified in PLP1 and SPG11 genes, respectively. Distribution of HSP mutations in our AD patients was found to be similar to European populations. CONCLUSION: Our genetic studies confirmed that clinical analysis can be misleading when defining HSP subtypes. Genetic testing is an important tool for diagnosis and genetic counselling. However, in the majority of AR HSP cases, a genetic diagnosis is not possible.


Assuntos
Paraplegia Espástica Hereditária , Estudos de Coortes , Proteínas de Ligação ao GTP , Testes Genéticos , Humanos , Proteínas de Membrana , Mutação , Proteínas , Espastina , Turquia
18.
Mol Genet Genomic Med ; 8(3): e1078, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31951325

RESUMO

BACKGROUND: The Xq22.2 q23 is a complex genomic region which includes the genes MID2 and PLP1 associated with FG syndrome 5 and Pelizaeus-Merzbacher disease, respectively. There is limited information regarding the clinical outcomes observed in patients with deletions within this region. METHODS: We report on a male infant with intrauterine growth retardation (IUGR) who developed head titubation and spasticity during his postnatal hospital course. RESULTS: Chromosome microarray revealed a 6.7 Mb interstitial duplication of Xq22.2q22.3. Fluorescence in situ hybridization showed that the patient's mother also possessed the identical duplication in the Xq22.3q22.3 region. Among the 34 OMIM genes in this interval, the duplication of the PLP1 (OMIM# 300401) and MID2 (OMIM# 300204) appears to be the most significant contributors to the patient's clinical features. Mutations and duplications of PLP1 are associated with X-linked recessive Pelizaeus-Merzbacher disease (PMD). A single case of a Xq22.3 duplication including the MID2 has been reported in boy with features of FG syndrome. However, our patient's clinical features are not consistent with the FG syndrome phenotype. CONCLUSION: Our patient's clinical features appear to be influenced by the PLP1 duplication but the clinical effect of other dosage sensitive genes influencing brain development cannot be ruled out.


Assuntos
Duplicação Cromossômica , Anormalidades Craniofaciais/genética , Retardo do Crescimento Fetal/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Proteínas Associadas aos Microtúbulos/genética , Proteína Proteolipídica de Mielina/genética , Fatores de Transcrição/genética , Cromossomos Humanos X/genética , Anormalidades Craniofaciais/patologia , Retardo do Crescimento Fetal/patologia , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Lactente , Masculino , Síndrome
19.
Neurochem Res ; 45(3): 663-671, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31782102

RESUMO

The myelin proteolipid protein gene (PLP1) encodes the most abundant protein in CNS myelin. Expression of the gene must be strictly regulated, as evidenced by human X-linked leukodystrophies resulting from variations in PLP1 copy number, including elevated dosages as well as deletions. Recently, we showed that the wmN1 region in human PLP1 (hPLP1) intron 1 is required to promote high levels of an hPLP1-lacZ transgene in mice, using a Cre-lox approach. The current study tests whether loss of the wmN1 region from a related transgene containing mouse Plp1 (mPlp1) DNA produces similar results. In addition, we investigated the effects of loss of another region (ASE) in mPlp1 intron 1. Previous studies have shown that the ASE is required to promote high levels of mPlp1-lacZ expression by transfection analysis, but had no effect when removed from the native gene in mouse. Whether this is due to compensation by another regulatory element in mPlp1 that was not included in the mPlp1-lacZ constructs, or to differences in methodology, is unclear. Two transgenic mouse lines were generated that harbor mPLP(+)Z/FL. The parental transgene utilizes mPlp1 sequences (proximal 2.3 kb of 5'-flanking DNA to the first 37 bp of exon 2) to drive expression of a lacZ reporter cassette. Here we demonstrate that mPLP(+)Z/FL is expressed in oligodendrocytes, oligodendrocyte precursor cells, olfactory ensheathing cells and neurons in brain, and Schwann cells in sciatic nerve. Loss of the wmN1 region from the parental transgene abolished expression, whereas removal of the ASE had no effect.


Assuntos
Sistema Nervoso Central/metabolismo , Elementos Facilitadores Genéticos , Óperon Lac , Proteína Proteolipídica de Mielina/metabolismo , Sistema Nervoso Periférico/metabolismo , Transgenes/fisiologia , Animais , Camundongos , Camundongos Transgênicos , Proteína Proteolipídica de Mielina/genética
20.
Pigment Cell Melanoma Res ; 33(1): 96-111, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31680437

RESUMO

Primary leptomeningeal melanocytic neoplasms represent a spectrum of rare tumors originating from melanocytes of the leptomeninges, which are the inner two membranes that protect the central nervous system. Like other non-epithelial melanocytic lesions, they bear frequent oncogenic mutations in the heterotrimeric G protein alpha subunits, GNAQ or GNA11. In this study, we used Plp1-creERT to force the expression of oncogenic GNAQQ209L in the multipotent neural crest cells of the ventro-medial developmental pathway, beginning prior to melanocyte cell differentiation. We found that this produces leptomeningeal melanocytic neoplasms, including cranial melanocytomas, spinal melanocytomas, and spinal melanomas, in addition to blue nevus-like lesions in the dermis. GNAQQ209L drove different phenotypes depending upon when during embryogenesis (E9.5, E10.5, or E11.5) it was induced by tamoxifen and which Cre driver (Plp1-creERT, Tyr-creERT2 , or Mitf-cre) was used. Given these differences, we propose that melanocytes go through temporary phases where they become sensitive to the oncogenic effects of GNAQQ209L . R26-fs-GNAQQ209L ; Plp1-creERT mice will be useful for defining biomarkers for potentially aggressive leptomeningeal melanocytomas and for developing new therapeutics for advanced disease.


Assuntos
Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/patologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Melanoma/genética , Melanoma/patologia , Células-Tronco Multipotentes/metabolismo , Mutação/genética , Crista Neural/metabolismo , Envelhecimento/patologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Desenvolvimento Embrionário , Feminino , Masculino , Melanócitos/patologia , Neoplasias Meníngeas/patologia , Camundongos Transgênicos , Invasividade Neoplásica , Nevo/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Neoplasias Uveais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA