Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
ACS Biomater Sci Eng ; 10(8): 4985-5000, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39079030

RESUMO

AIM: Colorectal cancer is an extremely aggressive form of cancer that often leads to death. Lactoferrin shows potential for targeting and treating colorectal cancer; however, oral delivery faces hurdles hampering clinical applications. We engineered dual-responsive lactoferrin nanostructured microbeads to overcome delivery hurdles and enhance drug targeting. METHODS: The hydrophobic drug mesalazine (MSZ) was coupled to lactoferrin to form amphiphilic conjugate nanoparticles, dispersed in water. The lipid-soluble polyphenolic drug resveratrol (RSV) was then encapsulated into the hydrophobic core of LF-MSZ nanoparticles. To impart thermoresponsive properties, the dual-payload NPs were coupled with a PNIPAAm shell; finally, to further endow the nanoparticles with gastrointestinal resistance and pH responsiveness, the nanoparticles were microencapsulated into ionically cross-linked pectin-alginate beads. RESULTS: The nanoparticles showed enhanced internalization and cytotoxicity against HCT colon cancer cells via LF-receptor-mediated endocytosis. Thermal triggering and tuned release were conferred by the temperature-sensitive polymer. The coatings protected the drugs from degradation. Orally delivered microbeads significantly reduced tumor burden in a mouse colon cancer model, lowering carcinoembryonic antigen and elevating antioxidant enzymes. Apoptotic pathways were stimulated, indicated by heightened Bax/Bcl2 ratio and caspase-3/9 expression. CONCLUSION: Overall, we propose the innovative lactoferrin nanostructured microbeads as a paradigm shift in oral colorectal cancer therapeutics.


Assuntos
Neoplasias Colorretais , Lactoferrina , Lactoferrina/química , Lactoferrina/farmacologia , Lactoferrina/administração & dosagem , Animais , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Administração Oral , Humanos , Camundongos , Concentração de Íons de Hidrogênio , Microesferas , Nanoestruturas/química , Mesalamina/farmacologia , Mesalamina/química , Mesalamina/administração & dosagem , Mesalamina/uso terapêutico , Resveratrol/farmacologia , Resveratrol/química , Resveratrol/administração & dosagem , Nanopartículas/química , Temperatura , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos/química
2.
Anal Chim Acta ; 1283: 341961, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37977785

RESUMO

Temperature-responsive liquid chromatography (TRLC) offers an alternative for retention and selectivity optimisation in HPLC. This approach thereby exploits temperature gradients on stimuli-responsive stationary phases and forfeits the necessity for solvent gradients, allowing analyses to be performed using aqueous mobile phases. Consequently, it can be employed as a green alternative to reversed-phase separations. However, current production to obtain temperature-responsive columns inherently require dedicated column packing processes with polymer-modified particles. To facilitate the development of temperature-responsive phases, a flow-through modification procedure was developed allowing on-column modification of aminopropyl silica columns. Three columns were manufactured using this novel flow-through approach, which achieved identical column efficiencies compared to existing TRLC column. Demonstrating the possibility of bypassing the dedicated packing processes without losing efficiency. Additionally, it was observed that flow-through produced columns yielded higher retention at elevated temperatures despite their reduced carbon load. Further investigation of the carbon load revealed the presence of stationary phase gradients, whose influence was studied via novel developed retention experiments, which revealed a negligible change reduction in retention upon a change of polymer modification from 19.8% to 14.5%. However, further decrease from 14.5% to 12.3% resulted in a larger change. Interestingly, a further enhancement in apparent plate numbers was observed when operating the column under a reversed flow, yielding an increasing stationary phase gradient. This on-column modification procedure demonstrates the potential for modification of existing (commercial) packed columns to achieve temperature-responsive phases without loss of efficiency or retention. Thus, not only facilitating accessibility to temperature-responsive phases, but also aiding with development of further generations of temperature-responsive phases by removing the need for packing optimisation. Additionally, a novel experiment was set up to easily investigate the effect of inhomogeneous stationary phases retention.

3.
Heliyon ; 9(11): e21794, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027677

RESUMO

In this investigation, a polymeric fusion of chitosan (CS) and thermosensitive poly (N-isopropyl acrylamide) - PNIPAAm - encapsulated a magnetotocosome, biocompatible nanocarrier. This encapsulation strategy demonstrated improved drug entrapment efficiency, achieving up to 98.8 %. Additionally, it exhibited extended stability, optimal particle dimensions, and the potential for industrial scaling, thus facilitating controlled drug delivery of sorafenib tosylate to cancerous tissue. Reversible Addition-Fragmentation Chain Transfer (RAFT) techniques were employed to synthesize PNIPAAm. The effects of polymer molecular weight and polydispersity index on the lower critical solution temperature (LCST) were evaluated. The resulting polymeric amalgamation, involving the thermosensitive PNIPAAm synthesized using RAFT techniques and CS that coated the magnetotocosome (CS-Raft PNIPAAm-magnetotocosome) with an LCST approximately at 45 °C, holds the potential to enhance drug bioavailability and enable applications in hyperthermia treatment, controlled release, and targeted drug delivery.

4.
IEEE Sens J ; 23(17): 19021-19027, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37664783

RESUMO

Localized temperature sensing and control on a micron-scale have diverse applications in biological systems. We present a micron-sized hydrogel pillar array as potential temperature probes and actuators by exploiting sensitive temperature dependence of their volume change. Soft lithography-based molding processes were presented to fabricate poly N-isopropyl acrylamide (p-NIPAAm)-based hydrogel pillar array on a glass substrate. Au nanorods as light-induced heating elements were embedded within the hydrogel pillars, and near-infrared (NIR) light was used to modulate temperature in a local area. First, static responses of the micro-pillar array were characterized as a function of its temperature. It was shown that the hydrogel had a sensitive volume transition near its low critical solution temperature (LCST). Furthermore, we showed that LCST could be readily adjusted by utilizing copolymerizing with acrylamide (AAM). To demonstrate the feasibility of spatiotemporal temperature mapping and modulation using the presented pillar array, pulsed NIR light was illuminated on a local area of the hydrogel pillar array, and its responses were recorded. Dynamic temperature change in water was mapped based on the abrupt volume change characteristics of the hydrogel pillar, and its potential actuation using NIR light was successfully demonstrated. Considering that the structure can be arrayed in a two-dimensional pixel format with high spatial resolution and high sensitive temperature characteristics, the presented method and the device structure can have diverse applications to change and sense local temperatures in liquid. This is particularly useful in biological systems, where their physiological temperature can be modulated and mapped with high spatial resolution.

5.
Biomater Transl ; 4(1): 27-40, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37206307

RESUMO

Cell sheet-based scaffold-free technology holds promise for tissue engineering applications and has been extensively explored during the past decades. However, efficient harvest and handling of cell sheets remain challenging, including insufficient extracellular matrix content and poor mechanical strength. Mechanical loading has been widely used to enhance extracellular matrix production in a variety of cell types. However, currently, there are no effective ways to apply mechanical loading to cell sheets. In this study, we prepared thermo-responsive elastomer substrates by grafting poly(N-isopropyl acrylamide) (PNIPAAm) to poly(dimethylsiloxane) (PDMS) surfaces. The effect of PNIPAAm grafting yields on cell behaviours was investigated to optimize surfaces suitable for cell sheet culturing and harvesting. Subsequently, MC3T3-E1 cells were cultured on the PDMS-g-PNIPAAm substrates under mechanical stimulation by cyclically stretching the substrates. Upon maturation, the cell sheets were harvested by lowering the temperature. We found that the extracellular matrix content and thickness of cell sheet were markedly elevated upon appropriate mechanical conditioning. Reverse transcription quantitative polymerase chain reaction and Western blot analyses further confirmed that the expression of osteogenic-specific genes and major matrix components were up-regulated. After implantation into the critical-sized calvarial defects of mice, the mechanically conditioned cell sheets significantly promoted new bone formation. Findings from this study reveal that thermo-responsive elastomer, together with mechanical conditioning, can potentially be applied to prepare high-quality cell sheets for bone tissue engineering.

6.
Gels ; 9(2)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36826244

RESUMO

Poly(N-isopropylacrylamide) PNIPAAm hydrogels were modified with a new azobenzene-containing co-monomer. In this work, light responsiveness as an additional functionality, is conceptualized to induce two phase transitions in the same material, which can be controlled by light. For a hydrogel with merely 2.5 mol% of this co-monomer, the lower critical solution transition temperature (LCST) was lowered by 12 °C (to 20 °C) compared to PNIPAAm (LCST at 32 °C), as analyzed by differential scanning calorimetry (DSC). The untreated unimodal endotherm split into a bimodal peak upon irradiation with UV-light, giving a second onset due to the switched (Z) isomer-rich regions, LCST*H2.5%-(Z) = 26 °C. On irradiation with 450 nm, leading to the reverse (Z) to (E) isomerization, the endotherm was also reversible. Thus, a photo-switchable hydrogel whose LCST and structure are tunable with the hydrophobicity-hydrophilicity of the (E) and (Z) isomeric state of azobenzene was obtained. The influence of the increase in the mol% of azoacrylate on the LCST was evaluated via DSC, in combination with NMR studies, UV-vis spectroscopy and control experiments with linear polymers. The large light-driven modulation of the LCST adds bistability in thermoresponsive hydrogels, which may open diverse applications in the field of soft robotics actuators.

7.
Regen Ther ; 22: 39-49, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36618488

RESUMO

Vascular smooth muscle cells (VSMCs), which provides structural integrity and regulates the diameter of vasculature, are of great potential for modeling vascular-associated diseases and tissue engineering. Here, we presented a detailed comparison of differentiating human pluripotent stem cells (hPSCs) into VSMCs (hPSCs-VSMCs) in four different culture methods, including 2-dimensional (2D) culture, 3-dimensional (3D) PNIPAAm-PEG hydrogel culture, 3-dimensional (3D) alginate hydrogel culture, and transferring 3-dimensional alginate hydrogel culture to 2-dimensional (2D) culture. Both hydrogel-based culture methods could mimic in vivo microenvironment to protect cells from shear force, and avoid cells agglomeration, resulting in the extremely high culture efficiency (e.g., high viability, high purity and high yield) compared with 2D culture. We demonstrated hPSC-VSMCs produced from hydrogel-based culture methods had better contractile phenotypes and the potential of vasculature formation. The transcriptome analysis showed the hPSC-VSMCs derived from hydrogel-based culture methods displayed more upregulated genes in vasculature development, angiogenesis and blood vessel development, extracellular matrix compared with 2D culture. Taken together, hPSC-VSMCs produced from hydrogel-based culture system could be applied in various biomedical fields, and further indicated the suitable development of alginate hydrogel for industrial production by taking all aspects into consideration.

8.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36674883

RESUMO

Colorectal cancer is the fourth most common cancer worldwide and the third most frequently diagnosed form of cancer associated with high mortality rates. Recently, targeted drug delivery systems have been under increasing attention owing to advantages such as high therapeutic effectiveness with a significant depletion in adverse events. In this report, we describe the biocompatible and thermoresponsive FA-conjugated PHEA-b-PNIPAAm copolymers as nanocarriers for the delivery of 5-FU. The block copolymers were obtained using RAFT (Reversible Addition-Fragmentation chain Transfer) polymerization and were characterized by methods such as SEC (Size Exclusion Chromatography), NMR (Nuclear Magnetic Resonance), UV-Vis (Ultraviolet-Visible), FT-IR (Fourier Transform Infrared) spectroscopy, and TGA (Thermogravimetric Analysis). Nanoparticles were formed from polymers with and without the drug-5-fluorouracil, which was confirmed using DLS (Dynamic Light Scattering), zeta potential measurements, and TEM (Transmission Electron Microscopy) imaging. The cloud points of the polymers were found to be close to the temperature of the human body. Eventually, polymeric carriers were tested as drug delivery systems for the safety, compatibility, and targeting of colorectal cancer cells (CRC). The biological evaluation indicated high compatibility with the representative host cells. Furthermore, it showed that proposed nanosystems might have therapeutic potential as mitigators for 5-FU-induced monocytopenia, cardiotoxicity, and other chemotherapy-associated disorders. Moreover, results show increased cytotoxicity against cancer cells compared to the drug, including a line with a drug resistance phenotype. Additionally, the ability of synthesized carriers to induce apoptosis and necrosis in treated CRC cells has been confirmed. Undoubtedly, the presented aspects of colorectal cancer therapy promise future solutions to overcome the conventional limitations of current treatment regimens for this type of cancer and to improve the quality of life of the patients.


Assuntos
Neoplasias Colorretais , Nanopartículas , Humanos , Fluoruracila/farmacologia , Fluoruracila/química , Portadores de Fármacos/química , Ácido Fólico/química , Espectroscopia de Infravermelho com Transformada de Fourier , Qualidade de Vida , Polímeros/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Neoplasias Colorretais/tratamento farmacológico
9.
Int J Biol Macromol ; 225: 310-317, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36356876

RESUMO

Polymer based protein engineering provides an attractive strategy to endow novel properties to protein and overcome the inherent limitations of both counterparts. The exquisite control of site and density of attached polymers on the proteins is crucial for the bioactivities and properties of the protein-polymer bioconjugates, but is still a challenge. Collagen is the major structural protein in extracellular matrix of animals. Based on the advancements of polymer-based protein engineering, collagen bioconjugates has been widely fabricated and applied as biomaterials. However, the site-specific synthesis of well-defined collagen-polymer bioconjugates is still not achieved. Herein, a versatile strategy for the specific modification of N-terminal α-amino groups in collagen was developed. Firstly, all reactive amino groups of tropocollagen (collagen with telopeptides) were protected by succinic anhydride. Then, the telopeptides were digested to give the active N-terminal α-amino groups, which were subsequently attached with poly(N-isopropylacrylamide) (PNIPAAm) via "grafting from" method based on the atom transfer radical polymerization (ATRP). The site-specific N-terminal PNIPAAm modified succinylated collagen was prepared and its structure, thermal responsive behaviour, and properties was explored.


Assuntos
Colágeno , Polímeros , Animais , Polímeros/química
10.
Gels ; 8(9)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36135308

RESUMO

Chitosan-based hydrogels possess numerous advantages, such as biocompatibility and non-toxicity, and it is considered a proper material to be used in biomedical and pharmaceutical applications. Vaginal administration of progesterone represents a viable alternative for maintaining pregnancy and reducing the risk of miscarriage and in supporting the corpus luteum during fertilization cycles. This study aimed to develop new formulations for vaginal administration of progesterone (PGT). A previously synthesized responsive chitosan-grafted-poly (N-isopropylacrylamide) (CS-g-PNIPAAm) was formulated in various compositions with polyvinyl alcohol (PVA) as external crosslinking agent to obtain pH- and temperature-dependent hydrogels; the hydrogels had the capacity to withstand shear forces encountered in the vagina due to its mechanism of swelling once in contact with vaginal fluids. Three different hydrogels based on grafted chitosan were analyzed via Fourier-transform infrared spectroscopy (FTIR), swelling tests, in vitro drug release, and bioadhesion properties by TA.XTplus texture analysis. A higher amount of PVA decreased the swelling and the bioadhesion capacities of the hydrogel. All hydrogels showed sensitivity to temperature and pH in terms of swelling and in vitro delivery characteristics. By loading progesterone, the studied hydrogels seemed to possess even higher sensitivity than drug-free matrices. The release profile of the active substance and the bioadhesion characteristics recommended the CS-g-PNIPAAm/PVA 80/20 +PGT (P1) hydrogel as a proper constituent for the vaginal formulation for progesterone administration.

11.
Polymers (Basel) ; 14(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36015632

RESUMO

Poly(N-isopropylacrylamide) (PNIPAAm) was introduced into a polyethylene terephthalate (PET) nonwoven fabric to develop novel support for polyamide (PA) thin-film composite (TFC) membranes without using a microporous support layer. First, temperature-responsive PNIPAAm hydrogel was prepared by reactive pore-filling to adjust the pore size of non-woven fabric, creating hydrophilic support. The developed PET-based support was then used to fabricate PA TFC membranes via interfacial polymerization. SEM-EDX and AFM results confirmed the successful fabrication of hydrogel-integrated non-woven fabric and PA TFC membranes. The newly developed PA TFC membrane demonstrated an average water permeability of 1 L/m2 h bar, and an NaCl rejection of 47.0% at a low operating pressure of 1 bar. The thermo-responsive property of the prepared membrane was studied by measuring the water contact angle (WCA) below and above the lower critical solution temperature (LCST) of the PNIPAAm hydrogel. Results proved the thermo-responsive behavior of the prepared hydrogel-filled PET-supported PA TFC membrane and the ability to tune the membrane flux by changing the operating temperature was confirmed. Overall, this study provides a novel method to fabricate TFC membranes and helps to better understand the influence of the support layer on the separation performance of TFC membranes.

12.
ACS Appl Mater Interfaces ; 14(35): 40322-40330, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-35994422

RESUMO

Developing a smart responsive surface for on-demand delivery of organic, inorganic, and biological cargo in vitro cellular uptake is always in constant demand. Herein, we present carbon quantum dot (CQD)-loaded (poly(N-isopropylacrylamide) (PNIPAAm)/poly(methyl methacrylate (PMMA)) blend nanofiber sheets having a thermoresponsive nature. As a model cargo, fluorescent CQDs are used for the demonstration of the on-demand delivery mechanism. In addition, a thermoresponsive nature is produced by the PNIPAAm polymer in the nanofiber matrix while the PMMA polymer provides extra stability and firmness to the nanofibers against the sudden dissolution of the nanofibers in aqueous media. The synthesis of CQDs and their loading into a blend nanofiber matrix are confirmed using fluorescence spectrophotometry, transmission electron microscopy, and fluorescence microscopy. The morphologies and diameters of the nanofibers are analyzed by scanning electron microscopy. Burst effect analysis proves that 30% (w/w) PNIPAAm-containing nanofibers possess the highest stability with the least dissolution in aqueous media. Thermoresponsiveness of the nanofibers is further confirmed through water contact angle measurements. Quantitative fluorescence results show that more than 80% of loaded CQDs can be released upon thermal stimulation. The fluorescence micrographs reveal that the blend nanofiber sheets can effectively improve the cellular uptake of CQDs by simply increasing the local concentrations via applying thermal stimulation as the released mechanism.


Assuntos
Nanofibras , Pontos Quânticos , Carbono , Polímeros , Polimetil Metacrilato
13.
Polymers (Basel) ; 14(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35746028

RESUMO

Past studies have shown that the hot spring effect can promote wound healing. Mild thermal stimulation and metal ions can promote angiogenesis. In this study, the hot spring effect was simulated by thermosensitive PNIPAAm hydrogel loaded with copper sulfide nanoparticles. Heat stimulation could be generated through near-infrared irradiation, and copper ions solution could be pulsed. On the other hand, the CS/PVA nanofiber membrane was attached to the bottom of the hydrogel to simulate the extracellular matrix structure, thus improving the wound healing ability. The CS/PVA nanofiber membrane was prepared by electrospinning, and the appropriate prescription and process parameters were determined. The nanofiber membrane has uniform pore size, good water absorption and permeability. The poor mechanical properties of PNIPAAm hydrogel were improved by adding inorganic clay. The temperature of the hydrogel loaded with CuS nanoparticles reached 40 °C under near-infrared light irradiation for 20 min, and the release rate of Cu2+ reached 26.89%. The wound-healing rate of the rats in the combined application group reached 79.17% at 13 days, demonstrating superior results over the other control groups. Histological analyses show improved inflammatory response at the healed wound area. These results indicate that this combined application approach represents a promising wound treatment strategy.

14.
Adv Pharm Bull ; 12(2): 356-365, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35620328

RESUMO

Purpose: Stem cells can exhibit restorative effects with the commitment to functional cells.Cell-imprinted topographies provide adaptable templates and certain dimensions for thedifferentiation and bioactivity of stem cells. Cell sheet technology using the thermo-responsivepolymers detaches the "cell sheets" easier with less destructive effects on the extracellularmatrix (ECM). Here, we aim to dictate keratinocyte-like differentiation of mesenchymal stemcells (MSCs) by using combined cell imprinting and sheet technology. Methods: We developed the poly dimethyl siloxane (PDMS) substrate having keratinocytecell-imprinted topography grafted with the PNIPAAm polymer. Adipose tissue-derived MSCs(AT-MSCs) were cultured on PDMS substrate for 14 days and keratinocyte-like differentiationmonitored via the expression of involucrin, P63, and cytokeratin 14. Results: Data showed the efficiency of the current protocol in the fabrication of PDMSmolds. The culture of AT-MSCs induced typical keratinocyte morphology and up-regulatedthe expression of cytokeratin-14, Involucrin, and P63 compared to AT-MSCs cultured on theplastic surface (P < 0.05). Besides, KLC sheets were generated once slight changes occur in theenvironment temperature. Conclusion: These data showed the hypothesis that keratinocyte cell imprinted substrate canorient AT-MSCs toward KLCs by providing a specific niche and topography.

15.
Biotechnol Bioeng ; 119(9): 2345-2358, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35586933

RESUMO

In this study, polycaprolactone (PCL) macrobeads were prepared by an oil-in-water (o/w) emulsion solvent evaporation method with poly(vinyl alcohol) (PVA) as an emulsifier and conjugated to poly(N-isopropylacrylamide) (PNIPAAm) to be used as cell carriers with noninvasive cell detachment properties (thermo-response). Following previous studies with PCL-PNIPAAm carriers, our objectives were to confirm the successful conjugation on homemade macrobeads and to show the advantages of homemade production over commercial beads to control morphological, biological, and fluidization properties. The effects of PCL concentration on the droplet formation and of flow rate and PVA concentration on the size of the beads were demonstrated. The size of the beads, all spherical, ranged from 0.5 to 3.7 mm with four bead categories based on production parameters. The morphology and size of the beads were observed by scanning electron microscopy to show surface roughness enhancing cell attachment and proliferation compared to commercial beads. The functionalization steps with PNIPAAm were then characterized and confirmed by Fourier transform infrared spectroscopy, scanning electron microscopy, and energy dispersion spectroscopy. PNIPAAm-grafted macrobeads allowed mesenchymal stem cells (MSCs) to spread and grow for up to 21 days. By reducing the temperature to 25°C, the MSCs were successfully detached from the PCL-PNIPAAm beads as observed with fluorescence microscopy. Furthermore, we validated the scalability potential of both macrobeads production and conjugation with PCL, to produce easily kilograms of thermo-responsive macrocarriers in a lab environment. This could help moving such approaches towards clinically and industrially relevant processes were cell expansion is needed at very large scale.


Assuntos
Resinas Acrílicas , Células-Tronco Mesenquimais , Resinas Acrílicas/química , Proliferação de Células , Poliésteres , Temperatura
16.
Mater Today Bio ; 15: 100266, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35517579

RESUMO

Several studies have focused on using cell carriers to solve the problem of mesenchymal stem cell expansion on regenerative medicine. However, the disadvantages of using prolonged enzymatic treatment and low cell harvest efficiency still trouble researchers. In this study, PNIPAAm-immobilized gelatin microspheres (abbreviated as GNMS) were synthesized using a simple power-driven flow-focusing microinjection system. The developed thermosensitive GNMS can allow easier harvesting of cells from the microspheres, requiring only 10 â€‹min of low-temperature treatment and 5 â€‹min of trypsin treatment. The developed GNMS was characterized by Fourier-transform infrared spectroscopy, optical microscopy, and scanning electron microscopy. Further, live/dead staining, F-actin staining, and PrestoBlue cell viability assays were used to evaluate cytotoxicity, cell morphology, cell proliferation, and harvest efficiency. The gene expression of stem cell markers was determined by real-time quantitative PCR (Q-PCR) analysis to investigate the stemness and phenotypic changes in Wharton's jelly-derived mesenchymal stem cells. The results showed that the engineered cell-laden thermosensitive GNMS could significantly increase the cell harvest rate with over 99% cell survival rate and no change in the cell phenotype. Thus, the described strategy GNMS could be the suitable 3D cell carriers in the therapeutic application and opens new avenues for regenerative medicine.

17.
J Hazard Mater ; 433: 128808, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35381514

RESUMO

The use of aerogels to selectively recover oil from oily wastewater is effective but challenging. In this study, a new carboxylated carbon nanotube/chitosan aerogel (CCNT/CA) with switchable wettability was developed as a smart adsorbent for fast oil absorption and oil recovery. Vinyltrimethoxysilane and thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) was grafted onto the surface of the CCNT/CA skeleton, and the resulting smart aerogel (PNI-Si@CCNT/CA) exhibited temperature responsiveness. PNI-Si@CCNT/CA exhibited an excellent reversible conversion between hydrophilicity and hydrophobicity when the temperature was changed to below or above the lower critical solution temperature (LCST) of PNIPAAm (~32 °C). Most importantly, CCNT significantly increased the oil absorption capacity, improved the mechanical properties, accelerated phonon conduction, enhanced thermal conductivity (80.57 mW m-1 K-1), improved the temperature response rate, shortened the oil desorption time (15 min), and improved the oil/water separation efficiency of PNI-Si@CCNT/CA because a strong interface interaction occurred between CCNT and chitosan. Moreover, PNI-Si@CCNT/CA absorbed oil at 45 °C and released the absorbed oil at 25 °C. It maintained its good adsorption performance after 15 cycles, and this was ascribed to its excellent mechanical properties and stable structure.

18.
Int J Mol Sci ; 23(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35457209

RESUMO

Polymer microgels, including those based on interpenetrating networks (IPNs), are currently vastly studied, and their practical applications are a matter of thriving research. In this work, we show the perspective for the use of polyelectrolyte IPN microgels either as scavengers or carriers of antiseptic substances. Here, we report that poly-N-isopropylacrylamide/polyacrylic acid IPN microgels can efficiently absorb the common bactericidal and virucidal compound benzalkonium chloride. The particles can form a stable aqueous colloidal suspension or be used as building blocks for soft free-standing films. Both materials showed antiseptic efficacy on the examples of Bacillus subtilis and S. aureus, which was approximately equal to the commercial antibiotic. Such polymer biocides can be used as liquid disinfectants, stable surface coatings, or parts of biomedical devices and can enhance the versatility of the possible practical applications of polymer microgels.


Assuntos
Anti-Infecciosos Locais , Microgéis , Antibacterianos/farmacologia , Anti-Infecciosos Locais/farmacologia , Compostos de Benzalcônio , Polímeros , Staphylococcus aureus
19.
Polymers (Basel) ; 14(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35335413

RESUMO

In the field of bioengineering, depending on the required application, the attachment of various biological entities to the biomaterial is either favored or needs to be prevented. Therefore, different surfaces modification strategies were developed in combination with the characteristics of the materials. The present contribution reports on the use of the specific surface property of a thermoresponsive polymer poly(N-isopropylacrylamide) pNIPAAM obtained by spin coating in combination with plasma treatment for tuning cell behavior on treated polymeric surfaces. Topographical information for the plasma-treated pNIPAAM coatings obtained by Atomic Force Microscopy (AFM) measurements evidenced a more compact surface for Ar treatment due to combined etching and redeposition, while for oxygen, a clear increase of pores diameter is noticed. The chemical surface composition as determined by X-ray Photoelectron Spectroscopy showed the specific modifications induced by plasma treatment, namely strong oxidation for oxygen plasma treatment illustrated by eight times increase of O-C=O contribution and respectively an increase of C-N/O=C-N bonds in the case of ammonia plasma treatment. Structural information provided by FTIR spectroscopy reveals a significant increase of the carboxylic group upon argon and mostly oxygen plasma treatment and the increase in width and intensity of the amide-related groups for the ammonia plasma treatment. The biological investigations evidenced that L929 fibroblast cells viability is increased by 25% upon plasma treatment, while the cell attachment is up to 2.8 times higher for the oxygen plasma-treated surface compared to the initial spin-coated pNIPAAM. Moreover, the cell detachment process proved to be up to 2-3 times faster for the oxygen and argon plasma-treated surfaces and up to 1.5 times faster for the ammonia-treated surface. These results show the versatility of plasma treatment for inducing beneficial chemical modifications of pNIPAAM surfaces that allows the tuning of cellular response for improving the attachment-detachment process in view of tissue engineering.

20.
J Pharm Sci ; 111(7): 1937-1951, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34963573

RESUMO

In this study, for the first time, the coated tocosome by blend of chitosan, CS, and poly(N-isopropylacrylamide), PNIPAAm, was developed as the efficient and robust drug delivery system with improved drug encapsulation efficiency, extended stability, proper particle size and industrial upscaling for Sunitinib malate anti-cancer drug. Tocosome was synthesized by using Mozafari method as a scalable and robust method and without the need for organic solvents. The effects of tocosome composition and drug concentration on the stability, particle size of tocosome, zeta potential, encapsulation efficacy and loading of drug into it were investigated by Taguchi method, and optimum composition was selected for combining with the polymeric blend. Homopolymer of PNIPAAm was synthesized by two different polymerization methods, including free radical and reversible addition-fragmentation chain transfer (RAFT). Effects of molecular weight (MW) and chain length of the polymers on lower critical solution temperature (LCST) were examined. The developed nanocarrier in this research, CS-Raft-PNIPAAm-tocosome, indicated LCST value beyond 37°C (about 45°C) and this is suitable for hyperthermia and spatio-temporal release of drug particles.


Assuntos
Antineoplásicos , Sistemas de Liberação de Medicamentos , Resinas Acrílicas , Peso Molecular , Polímeros , Solubilidade , Sunitinibe , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA